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Abstract:We aimed to screen the drug metabolism-related
subgroups of pancreatic adenocarcinoma (PAAD) and to
study the prognosis, clinical features, immune infiltration,
and gene mutation differences of different subtypes in
PAAD patients. All 181 cases of PAAD samples and clinical
characteristics data were downloaded from The Cancer
Genome Atlas (TCGA). After matching the drug metabo-
lism-related genes downloaded from PMID 33202946 with
the TCGA dataset, the drug metabolism-related genes were
initially obtained. Besides, univariate Cox regression ana-
lysis was used to screen the drugmetabolism genes related
to the prognosis of PAAD. Moreover, the construction of
the protein–protein interaction (PPI) network and gene
ontology were performed. The four subgroups of PAAD
obtained from unsupervised clustering analysis were sys-
tematically analyzed, including prognostic, GSVA, immune
infiltration, and gene mutation analysis. A total of 83 drug
metabolism genes related to the prognosis of PAAD were
obtained and enriched in 16 pathways. The PPI networkwas
composed of 248 relationship pairs. Four subgroups that
can identify different subtypes of PPAD were obtained,
and there were significant differences in survival and clin-
ical characteristics, mutation types, and immune infiltration
abundance between subgroups. A total of 17 different path-
ways among the four subgroups involved in cell cycle,
response to stimulants such as drugs, and transmembrane
transport. In this study, the four subgroups related to the
drug metabolism of PAAD were comprehensively ana-
lyzed, and the important role of drug metabolism-related

genes in the immune infiltration and prognosis of PAAD
were emphasized.

Keywords: pancreatic adenocarcinoma, drug metabolism
genes, prognosis, immune infiltration, unsupervised clus-
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1 Introduction

The death of pancreatic ductal adenocarcinoma, also
known as pancreatic adenocarcinoma (PAAD), is one of
the highly lethal cancer types [1–3]. Because PAAD is
very difficult to prevent or diagnose early in the curable
stage and the prognosis is not ideal, the diagnosis and
staging of PAAD is the key to the treatment of this disease
[4]. For the treatment of patients with PAAD, conven-
tional combined chemotherapy has made significant pro-
gress in the treatment of PAAD. However, the subtypes of
the disease present broad resistance to therapy [5]. There-
fore, comprehensive and accurate diagnosis and treatment
strategies such as personalized and targeted therapy based
on tumor and genomic markers have great application
prospects [6].

The in-depth understanding and research of PAAD-
related gene regulation can provide a theoretical basis for
the molecular targeted therapy of PAAD. KRAS proto-
oncogene, GTPase (KRAS), and tumor protein p53 (TP53)
were confirmed to be important biomarkers for the prog-
nosis of PAAD, and can also be used as a tool for treatment
prediction [7]. It was well known that TP53 was a tumor
suppressor, and mutations of TP53 can be detected in 70%
of PAAD patients [8]. The mutation of TP53 in PAAD
patients mainly led to the loss of DNA binding ability,
which in turn resulted in the loss of gene transcription
activation [9]. For example, compared with patients whose
TP53 functionwas completely lost due tomutations, patients
with normal TP53 expression had significantly improved
survival [10]. Therefore, it is suggested that TP53 can be
used as a biomarker for the prognosis of PAAD and treatment
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prediction. As for KRAS, it is a small GTPase (21 kDa) and
95% of PAAD patients had KRAS mutations [11], which
caused KRAS to be constitutively activated resulting in
uncontrolled cell proliferation and other processes that
led to the development and spread of cancer [12]. The
results of multiple studies have shown that compared
with patients with wild-type KRAS, patients with KRAS
mutations showed worse responses to gemcitabine or erlo-
tinib and worse survival [13,14]. These molecular markers
may play an important role in the future treatment of
PAAD. However, the research and application of PAAD
drug metabolism genes in the field of therapy and prog-
nosis are still very limited.

Compared with molecular targeted therapy, immuno-
therapy has little effect on PAAD, not only because of its
immunosuppressive tumor microenvironment but also
because of the unclear role of immune cells in PAAD
[15]. The screening of immune cells related to the clinical
characteristics of PAAD may have guiding significance
for the early diagnosis of PAAD patients. Studies have
shown that the expression of CD8+ T cells was correlated
with the survival time of PAAD [16]. In particular, high
tumor infiltration of CD8+ T cells can lead to a better
prognosis. In addition, the synergistic activation of T
and natural killer (NK) cells in a transgenic mouse model
of resectable PDAC has been shown to prevent the recur-
rence of PAAD [17]. Therefore, detecting the expression of
immune cells may be important for judging the prognosis
of patients with PAAD.

Currently, there is no joint study of drug metabolism-
related genes with the immune infiltration and prognosis
of PAAD. In this research, PAAD tumor data were down-
loaded from The Cancer Genome Atlas (TCGA), and mul-
tiple data mining methods were used to further screen
drugmetabolism-related genes and analyze PAAD subgroups
that were related to the prognosis of PAAD (Figure A1). This
research may contribute to exploring the relevance between
the drug metabolism-related genes and the prognosis of
PAAD as well as immune infiltration of PAAD.

2 Materials and methods

2.1 Data acquisition and screening

A total of 181 PAAD case samples and clinical data were
downloaded from the TCGA dataset (http://xena.ucsc.
edu) [18], and 177 PAAD samples included in this study
(all tumors samples) were obtained after excluding the

adjacent samples (TCGA.H6.A45N.11A, TCGA.H6.8124.11A,
TCGA.YB.A89D.11A, TCGA.HV.A5A3.11A). For the data
quality control (QC), the count value of the PAAD gene
expression matrix was used for log2(count + 1) standardi-
zation, and then 60,489 transcripts were merged with the
same transcripts through Python (the mean method for
processing). After removing the genes whose expression
level was 0, 31,186 Ensembl_IDs were obtained. Gencode
(ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/) was
used for gene annotation of the transcriptome. In addition,
the conversion between Ensembl_IDs and Symbol ID was
performed on Python. The “normalizeBetweenArrays” func-
tion in the R language limma 3.9.19 package was used to
normalize the data [19]. Finally, 298 drugmetabolism-related
genes were downloaded from PMID 33202946. Besides,
through matching with the TCGA data set (PAAD) and
eliminating genes with missing values less than 50%,
the drug metabolism-related gene expression matrix was
set for subsequent clustering studies.

3 Screening of prognostic related
genes

In order to screen the drug metabolism genes related to
the prognosis of PAAD, the R language Survival Package
(version3.10.3, http://www.bioconductor.org/packages/
release/bioc/html/survival.html) was used for univariate
Cox regression analysis based on the sample survival
information of the TCGA data set and the gene expres-
sion value in each sample [20].

3.1 Construction of protein–protein-
interaction (PPI) network and pathway
enrichment analysis

In order to explore the interaction of the expressed proteins
of drug metabolism-related genes, PPI prediction analysis
was performed on the prognostic-related drug metabolism
proteins obtained above. STRING (v9.1) (https://www.
string-db.org) was applied in the construction of the
PPI network, and a threshold (score threshold = 0.4)
was set to draw the online protein interaction network.
In addition, the PPI score (score threshold = 0.4) was
adopted to show the PPI interaction relationship more
clearly. The Cytoscape (v3.8.2) tool software (https://
github.com/cytoscape/cytoscape.js/tree/v3.8) was used
to draw the network diagram.
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The R language ClusterProfiler (v3.16.1) package (http://
bioconductor.org/packages/release/bioc/html/clusterProfiler.
html) was used for pathway enrichment analysis [21]. More-
over, through gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases, pathway enrichment
analysis was performed on prognostic-related drug metabo-
lism genes, and the false discovery rate (FDR) method was
used to correct the P value. Finally, the ClusterProfiler
(v3.16.1) package was used to draw the pathway enrich-
ment map.

3.2 Unsupervised clustering analysis

To further determine the regulation mechanism of dif-
ferent drug metabolism-related genes in patients with
PAAD, unsupervised clustering analysis was performed
by the R language NbClust package (v 3.0), which was
used in all TCGA samples (177 cases) (https://cran.r-
project.org/web/packages/NbClust/index.html) to deter-
mine the best classification group [22]. Then, clustering
wasperformedon the k-meanmethodprovidedby theNbclust
package. Finally, principal components analysis (PCA, R lan-
guage dplyr package v 1.0.5, https://cran.r-project.org/web/
packages/dplyr/, prcomp function) and linkage clustering
analysis (R language pheatmap package v 1.0 .12, https://
cran.r-project.org/web/packages/pheatmap/) were used to
explore the differences between different subgroups.

3.3 Gene set variation analysis (GSVA) of
different subgroups

In order to explore the differences in the pathway scoring
status of the four different subgroups, we used GO (http://
software.broadinstitute.org/gsea/msigdb) as a reference
set and conducted the subgroup of 177 samples through
the ‘gsva’method provided by the R language GSVA (v 3.10.3,
http://www.bioconductor.org/packages/release/bioc/html/
GSVA.html). First, linkage cluster analysis was used to
explore whether different subgroups have associated clus-
tering patterns on GSVA scores and whether there was a
linkage between subgroups. If linkage existed, subgroups
were considered to be combined and participated in the
analysis of the pathway score. Limma package (v 3.44.3) of
R was used to analyze the different pathways among
subgroups.

3.4 Prognostic survival analysis and clinical
information association analysis among
subgroups

The R language Survival (v3.2-10) package (Version3.10.3,
http://www.bioconductor.org/packages/release/bioc/html/
survival.html) was used for prognostic risk difference ana-
lysis based on the survival matrix of the subgroups and
subtype groupings. In addition, the Kaplan–Meier (K–M)
survival prognostic curve (P value < 0.05) was used to
explore the difference between different subgroups.

Then, TCGA clinical data were used to count the
number of WHO grades (G), sex ratios, age distributions,
and responses to chemotherapy (complete response, CR;
partial response, PR; progressive response, PD; stable
disease, SD) included in each subtype. In addition, the
Chi-square test in the MASS (v 7.3-53.1) package of R lan-
guage was used to calculate whether there were differ-
ences in different clinical characteristics of each subgroup.
Because each subgroup contained different number of
people, the above clinical characteristics were counted
as “percentage = count/total number of people” as the
final index included in the study. Finally, ggplot2 was
applied in the drawing of bar graphs.

3.5 Analysis of the abundance of immune
infiltration in subgroups

In order to explore the differences in the abundance of
immune infiltration between subgroups, 177 TCGA sam-
ples were included in this part of the study. Immune
infiltration analysis was performed by the CIBERSORT
(R 4.0.2) package [23], which used a leukocyte signature
matrix (LM22). Besides, a variety of immune cell types in
all PAAD samples were analyzed by the deconvolution
method [24]. After calculating the proportion of immune
infiltrating cells, the Mann–Whitney U-test was used to
compare and analyze the differences in the proportion of
immune infiltration of patients in different subgroups.

Furthermore, we searched for markers of different M2
macrophages subtypes (M2a, M2b, M2c, M2d) from the
published literature [25,26]. The number of markers for
M2a, M2b, M2c, and M2d are 6 (CD163, CD200R1, CD206,
TGM2, IL1R2, CD209), 2 (CD163, CD86), 3 (CD163, TLR1,
TLR8), and 2 (VEGF, IL10), respectively. Next, based on
the expression matrix of all genes, the ssGSEA (single
sample enrichment analysis) algorithm was used to
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estimate the relative infiltration level of each M2 macro-
phages subtype. Then, the t-test was used to compare
whether there was a significant difference between the
M2 macrophages subtypes of each two clusters. P < 0.05
was considered as a statistically significant threshold.

3.6 Analysis of gene mutations in subgroups

In order to explore the differences in genemutations between
different subgroups, PAAD genome Maf files (somatic muta-
tions) and corresponding clinical signature files in the TCGA
database were adopted. At first, the genomic Maf files of dif-
ferent subgroups were separated. Then, the maftools package
of R language was used to perform gene mutation analysis
[27], and themutationwaterfall chart of different subtypeswas
drawn. Finally, the mutation information of different sub-
groups was counted. Furthermore, we selected the top 2 genes
with mutation frequency in each subgroup and analyzed the
KEGGpathways of these genes that were significantly different
between mutant and nonmutant samples.

4 Results

4.1 Eighty-three drug metabolism genes
were related to the prognosis of PAAD

A total of 177 cases of TCGA expression matrix were
included in this study (Table S1). The TCGA expression
matrix included 31,186 genes and the clinical pheno-
types, namely, WHO grade, gender, age, response to che-
motherapy (SD, PD, CR, and PR), TNM classification
(TNM), and tumor stage ((Table S2).

After the intersection of the 298 reported drug metabo-
lism genes with TCGA (Table S3), a total of 270 genes were
used as the drug metabolism-related gene expression matrix
for subsequent clustering studies (Table S4). The results of
univariate Cox regression analysis between the survival data
of 177 samples in TCGA and 270 drug metabolism genes
suggested that 83 genes had a significant correlation with
the prognosis of PAAD (P < 0.05) (Table S5).

4.2 PPI network construction and pathway
enrichment analysis results

The PPI network of 83 PAAD prognosis-related drug
metabolism proteins was constructed using Cytoscape
(Figure 1a). A total of 248 interactions relationship pairs

were obtained with an interaction score >0.4 (Table S6).
It can be seen that in the PPI network the two relationship
pairs with the highest degree of connection were ABCC8
(ATP binding cassette subfamily Cc member 8) –KCNJ11
(potassium inwardly rectifying channel subfamily j member
11) and PPARG (peroxisome proliferator activated receptor
gamma) –RXRA (retinoid × receptor alpha).

Besides, the enrichment analysis of KEGG and GO
pathways was performed on the 83 genes, and a total of
eight KEGG and eight GO pathways were enriched. The
eight enriched KEGG pathways were as follows: drug
metabolism-cytochrome P450, metabolism of xenobiotic by
cytochrome P450, chemical carcinogenesis, retinol metabo-
lism, drug metabolism-other enzymes, bile secretion, ABC
transporters, and tyrosinemetabolism (Figure 1b). Moreover,
the GO pathway included xenobiotic metabolic process,
response to xenobiotic stimulus, cellular response to xeno-
biotic stimulus, hormone metabolism, cellular hormone
metabolic process, steroid metabolic process, retinoic acid
metabolic process, and drug catabolic process (Figure 1c).

4.3 PAAD subgroups were obtained from
unsupervised clustering analysis

Based on the 83 drug metabolism-related genes, patients
were divided into different subgroups through unsuper-
vised cluster analysis. As shown in Figure 2a, as the number
of clusters increased, the total within sum of square (WSS)
gets smaller. When the WSS decreased slowly, the effect of
further increasing the number of clusters was considered
not to be better, and this point was the optimal number of
clusters. The final result showed that the samples can be
divided into four subgroups (Figure 2a). Moreover, Cluster 1,
Cluster 2, Cluster 3, and Cluster 4 contained 48, 55, 8 and 66
people, respectively (Table S7), and the linkage clustering
heat map revealed that although there was a certain corre-
lation between samples in different groups, the correlation
between the same subgroup was greater, and the correla-
tion was also reflected in different clinical characteristics
(Figure 2b). Furthermore, it can be seen from PCA that the
four groups were separated well (Figure 2c, Dim1 = 28.1%).

4.4 Prognostic K–M survival analysis and
clinical information association analysis
results

For the above four subgroups (Clusters 1–4), the survival
data of TCGA were used for K–M survival analysis. The
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Figure 1: Protein–protein interaction network (PPI) and enrichment analysis of 83 drug metabolism genes: (a) PPI network; (b) enrichment
results of Kyoto encyclopedia of genes and genomes (KEGG); and (c) enrichment results of gene ontology (GO).

Figure 2: Unsupervised clustering of 83 drug metabolism genes: (a) the best type was determined; (b) linkage association clustering
analysis (Clusters1–4); and (c) principal components analysis (PCA) of subgroup clustering.
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results suggested that there were significant differences
among the four subgroups (Figure 3a, P = 0.0017), con-
firming that the obtained subgroups were real. In
addition, the results of clinical information association
analysis showed significant differences in the four sub-
groups (Figure 3b–f). These differences were reflected in
the WHO classification (G1, G2, and G3), gender ratio, sur-
vival status, and response to chemotherapy (CR, PR, PD,
and SD) (Table 1, p < 0.001). In the Cluster 1 subgroup,
there were more individuals with the age of <65 years,
WHO G2 grade, and PR, but the survival rate was relatively
lower. Similar to Cluster 1, in Cluster 2, the WHO classifica-
tion results showed that G2 > G3 > G1 and the survival rate
was relatively low. The difference was that more indivi-
duals in this subgroup were >65 years old and PD. More-
over, the age of all patients in the clusters was less than 65.
All patients in Cluster 3 alive were alive with CR. After
WHO classification, the G1 level had a clear advantage.
In Cluster 4, the proportion of SD was slightly higher
than that in other subgroups.

4.5 GSVA analysis of different subgroups

The correlation between the significantly enriched GO
pathways was explored through linkage association cluster

analysis (Figure 4a). From the perspective of subgroups, we
can clearly see that the four subgroups formed interlocking
modules, indicating significant differences in GO pathways
between the four groups (Figure 4b). In addition, multi-
group square difference analysis was used to explore sig-
nificantly different GO pathways among the four subgroups,
and the results indicated 17 significantly different pathways
including cell cycle, metabolism and synthesis of organic
matter, response to stimulants such as drugs, and trans-
membrane transport (Figure 4c).

4.6 Abundance analysis for immune
infiltration among subgroups

The CIBERSORT algorithm was used to calculate the 22
immune infiltration abundances among the above sub-
groups, and more than 50% of immune cells with no
immune abundance were excluded. Finally, 12 immune
cells were included in the study (Table S8). Furthermore,
the 12 immune cells were subjected to the Whitney U-test
(Table S9). The results indicated that the immune score of
immune cells varies among different subgroups (Figure 5a).
Compared with the other three clusters, M2 macrophages
had the highest immune score in Cluster 3, while M0macro-
phages and M1 macrophages had the lowest immune score

Figure 3: Prognostic analysis and clinical phenotype of the subgroup: (a) Kaplan–Meier survival analysis; (b) the distribution of WHO classifi-
cations in different subgroups; (c–f) distribution of chemotherapy response (c), gender (d), age (e), and tumor stage (f) in the four subgroups
(because 53% of the samples in Figure 4c lacked data on chemotherapy response, each group of samples cannot constitute 100% ratio).
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Table 1: Comparison of clinical characteristics distribution differences among different subgroups of TCGA

Phenotype Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value

Age <65 56.25 30.91 75.00 46.97 0.00***

≥65 43.75 69.09 25.00 53.03
State Alive 39.58 38.18 100.00 56.06 0.00***

60.42 61.82 0 43.94
Tumor stage Early 95.83 92.73 87.50 93.94 0.34

Advance 4.17 7.27 12.5 6.06
Gender Female 52.08 30.91 50.00 48.48 0.07

Male 47.92 61.82 50.00 51.52
WHO G1 6.25 10.91 87.50 21.21 0.00***

G2 56.25 61.82 12.50 50.00
G3 37.50 23.64 0.00 25.76
G4 0.00 3.64 0.00 3.03

Chemotherapy response CR 2.08 10.91 50.00 19.70 0.00***

PR 27.08 3.64 0.00 3.03
PD 4.17 34.55 0.00 21.21
SD 0.00 3.64 0.00 6.06

***P value <0.001.

Figure 4: Gene set variation analysis: (a) the linkage-heatmap describes the existence of linkage correlation modules between the GSVA
scores of the GO pathway; (b) the linkage-heatmap describes the correlation modules that are linked between the GSVA scores within
different subtypes of TCGA; (c) significant differences in GO pathways (P value <0.05) in the heatmap can see obvious stratification in the
four subgroups.
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in Cluster 3 (Figure 5a). Further analysis of different sub-
types of M2 macrophages (M2a, M2b, M2c, M2d) showed
that the infiltration levels of the four subtypes were basi-
cally consistent among different subgroups (Figure 5b). In
the same subgroup, M2bmacrophages had the highest infil-
tration level, followed by M2a macrophages, then M2c
macrophages, and finally, M2d macrophages.

4.7 Gene mutation analysis for subgroups

Four sets of different mutation waterfall charts were
drawn to count the mutation information of different sub-
groups (Figure 6, Table 2). The results showed that there
were differences in the mutant genes and the mutation
frequency among the 4 subgroups (Table 3). Besides,

Figure 5: Analysis of the differences in immune infiltration among subgroups: (a) immune scores of 12 kinds of immune cells in different
subgroups; and (b) infiltration levels of M2a, M2b, M2c, and M2d in subgroups.
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KRAS and TP53 with the highest mutation frequency in
Clusters 1, 2, and 4 did not appear in the Top 10 mutation
frequencies of the Cluster 3 subgroup.

To further analyze whether the genes with missense
mutation might have functional changes and further

affect the pathway, we selected the genes with high mis-
sense mutation frequency (KRAS, TP53, RGPD3) in dif-
ferent subgroups for further analysis. The pathways with
differences betweenmutant and nonmutant KRAS samples
in Cluster 1 included taurine and hypotaurine metabolism,
regulation of autophagy, pancreatic cancer, etc. (Figure 7a).
KRAS mutations in Cluster 2 involved changes in pathways
such as taurine and hypotaurine metabolism, immunodefi-
ciency, antigen processing and presentation (Figure 7b).
For Cluster 4, there were 27 patients with mutations in
the KRAS (Figure 6). There were differences in multiple
pathways between patients in the KRAS gene mutation
group and patients in the nonmutation group, including
immunodeficiency, natural killer cell-mediated cytotoxi-
city, JAK stat signaling pathway, etc. (Figure 7c). TP53

Figure 6: Somatic mutation analysis of Cluster 1 (a), Cluster 2 (b), Cluster 3 (c), and Cluster 4 (d).

Table 2: Statistics of the number of mutant genes in different
subgroups

Type Cluster 1 Cluster 2 Cluster 3 Cluster 4

Missense mutation 224 302 12 77
Nonsense
mutation

9 11 1 9

Total 234 313 13 86

Table 3: Top 10 mutated genes in different subgroups

Cluster 1 Frq Cluster 2 Frq Cluster 3 Frq Cluster 4 Frq

Top1 KRAS 0.19 KRAS 0.53 CYP2C8 0.13 TP53 0.08
Top2 TP53 0.08 TP53 0.11 ESRRB 0.13 KRAS 0.06
Top3 FLG 0.06 GNAS 0.07 FN1 0.13 CDKN2A 0.03
Top4 C2orf16 0.06 ADAMTS15 0.04 GANAB 0.13 AGXT 0.02
Top5 APOB 0.04 ADAMTSL3 0.04 MACF1 0.13 AHNAK 0.02
Top6 FCRL5 0.04 NOS3 0.04 NSUN7 0.13 AKAP6 0.02
Top7 KCNH7 0.04 PSD 0.04 PRDM15 0.13 AOC1 0.02
Top8 NEB 0.04 TENM2 0.04 SNAP47 0.13 APBA2 0.02
Top9 PLEKHH2 0.04 TGFBR2 0.04 SRSF6 0.13 AQP4 0.02
Top10 SPTA1 0.04 TMEM108 0.04 TRIM47 0.13 ATP9A 0.02

Frq = Mutation frequency.
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mutations in Cluster 1 patients may involve changes in path-
ways including pancreatic cancer and TCA cycle (Figure 7d).
In Cluster 2, patients with TP53 mutation and nonmutation
had changes in multiple pathways, including phenylalanine

metabolism, antigen processing and presentation, etc.
(Figure 7e). For TP53 mutations in Cluster 4, there were
some changed pathways between mutant and nonmutant
patients, including base excision repair, homologous

Figure 7: Significant differences in KEGG pathways between samples with genetic mutations and nonmutated samples. Significant differ-
ences in KEGG pathways between KRAS-mutated and -nonmutated samples in Clusters 1 (a), 2 (b), and 3 (c). Significant differences in KEGG
pathways between TP53-mutated and -nonmutated samples in Clusters 1 (d), 2 (e), and 3 (f). Significant differences in KEGG pathways
between RGPD3 mutated and nonmutated samples in Clusters 3 (g).
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recombination, cell cycle, etc. (Figure 7f). We only detected
RGPD3 mutations in Cluster 3 patients. According to
whether RGPD3 was mutated or not, the patients in
Cluster 3 were divided into the mutation group and non-
mutation group. It was found that there were differences
between various pathways, including ubiquitin-mediated
proteolysis, taurine and hypotaurine metabolism, MTOR
signaling pathway, etc. (Figure 7g).

5 Discussion

In recent years, although there have been advances in
treating PAAD, no joint research of drug metabolism-
related genes with the immune infiltration and prognosis
of PAAD has been performed. In this study, we screened
prognostic differentially expressed genes related to drug
metabolism of PAAD using data from public databases.
We also constructed a PPI network and made an enrich-
ment analysis for these genes screened above. Furthermore,
unsupervised cluster analysis was used to divide these
genes into four subgroups, and there were differences in
survival, clinical, immune infiltration, and gene mutation
among these subgroups.

In the PPI network constructed by 83 PAAD prog-
nosis-related drug metabolism proteins, the relationship
pair with the highest connection degree in the PPI net-
work diagram was ABCC8-KCNJ11. However, the effect of
their interaction on the prognosis of PAAD has not been
reported before this study. ABCC8 was a member of the
ATP-binding cassette (ABC) transporters family. It is well
known that the higher expression levels of a large number
of ABC transporter genes were associated with an increased
chance of survival in patients with PAAD. However, ABCC8
was only confirmed to be an independent prognostic factor
of glioma and has not been detected in any studied cell
lines of PAAD [28]. Regarding KCNJ11, it is a member of the
potassium channel gene family and interacted with ABCC8
to form ATP-sensitive potassium (KATP) channels medi-
ating the secretion of insulin [29]. Besides, studies have
shown that decreased co-expression of ABCC8-KCNJ11
may increase the risk of diabetes [30,31]. It is speculated
that interacting proteins ABCC8-KCNJ11 may be involved
in the prognosis of PAAD and can be used as a new prog-
nostic factor for PAAD. In the PPI network, PPARG– RXRA
showed the second-highest degree of connectivity. PPARG
is a ligand-activated transcription factor that formed a het-
erodimer with RXRA. Research data show that both PPARG
and RXRA were related to the characteristics of PAAD [32].

Moreover, it was found that PPARG (not RXRA) was an
independent prognostic indicator.

After the unsupervised clustering analysis, four sub-
groups were obtained and Cluster 3 had a significantly
better prognosis compared with the other three sub-
groups (p < 0.05). It was speculated that the good prog-
nosis of Cluster 3 was not only because Cluster 3 had the
most patients in the G1 stage and all of them showed a CR
but also had a younger age. The abundance of immune
infiltration between groups also showed differences. The
abundance of M2 macrophages and activated NK cells in
Cluster 3 were the highest and the abundance of M0
macrophages was the lowest in the four groups. It is
well known that different phenotypes of macrophages
have been demonstrated to play distinct roles in tumor
progression [33]. M2 macrophages were divided into dif-
ferent subtypes by different stimuli, including M2a, M2b,
M2c, and M2d. M2a activation is obtained by stimulating
macrophages with IL-4 or IL-13 [34]. M2b cells were eli-
cited by stimulation with LPS or IL1beta. Unlike M2a
cells, M2b cells produce large amounts of TNF-α, IL-1β,
and IL-6 in addition to IL-10. M2c cells were elicited by IL-
10, GC, or TGF-β, and play an important role in the early
stages of wound healing [35]. M2d cells were induced by
A2AR signaling pursuant to initial stimulation by TLR
agonists [36]. In this study, we compared the infiltration
level of different M2 macrophages in the same subgroup
and found that the infiltration level of M2b was the
highest in the four subgroups. A previous study has found
that an increase in the proportion of specific tumor-asso-
ciated macrophages characterized by M2b can lead to
acquired resistance to bevacizumab [37]. However, the
role of the high infiltration level of M2b in PAAD patients
needs further research in the future.

Furthermore, the mutation detection results of sub-
groups 1, 2, and 4 all showed a higher proportion of KRAS
and TP53 mutations but these two mutations in cluster 3
did not appear in top10. The presence of KRAS mutation
is generally associated with clinical aggressiveness of
cancer and reduced survival of the patient [38]. A study
has reported that KRAS and TP53 prognosis of PAAD is
directly associated with a specific mutation of KRAS [39].
These results also further confirmed that the PAAD subgroup
clustering and association analysis based on drug metabo-
lism-related genes were effective. To further understand the
role of gene mutations in different subtypes, we selected
the genes with high missense mutation frequency (KRAS,
TP53, RGPD3) in different subgroups. The results indicated
that mutations in these genes may involve different
pathway changes between different subgroups. Taurine
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and hypotaurine metabolism, regulation of autophagy,
phenylalanine metabolism, and other pathways have
been confirmed to be involved in the occurrence of
PAAD [40–42]. In addition, in this study, the two genes
KRAS and TP53, which have a higher mutation fre-
quency in a variety of cancers, did not appear in Cluster
3 patients, which is an interesting point. First of all, the
classification of patient subgroups in this study was
based on gene expression, and clinical characteristics
were not included in the analysis. Therefore, the result
is an unbiased analysis. Second, our cluster analysis
included genes related to drug metabolism and genes
that complete response to chemotherapy may be more
similar in expression patterns, which leads to clustering
such patients into a subgroup (Cluster 3). Patients in
Cluster 3 will eventually have a better prognosis because
of their good response to drugs.

The GSVA analysis of the differences between the
four subgroups showed that the pathways with signifi-
cant differences were mainly involved in the cell cycle,
metabolism and synthesis of organic matter, response to
stimulants such as drugs, and transmembrane transport.
Mammalian cell cycle regulation is a very complicated
process. The loss of function of key regulatory points
can lead to uncontrolled cell proliferation and further
tumors [43]. The difference in response to drug stimula-
tion between different subgroups is consistent with our
screening of drug metabolism-related goals, and in the
analysis between subgroups, we also found that different
groups had different responses to chemotherapy. The
next research plan is to expand the number of samples
and enrich the types of samples (including PAAD samples
of different nationalities, etc.) for further confirming the
role of data mining analysis and clustering analysis of
drug metabolism-related genes on the prognosis and
immune infiltration of PAAD disease. In addition, the
highly connected drug metabolism-related gene relation-
ship pairs in the PPI network need to be further verified in
different PAAD subgroups.

6 Conclusion

In this study, through TCGA PAAD tumor data mining ana-
lysis, we constructed the PPI network composed of PAAD
drug metabolism-related proteins and four different PAAD
subgroups to investigate the possible molecular pathways
related to the prognosis and immune infiltration of PAAD.
The relationship pairs ABCC8–KCNJ11and PPARG–RXRA
may be associated with the good performance on the PAAD

prognosis. The genes involved in these relationship pairs
may provide a basis for in-depth research on the prognosis
mechanism of PAAD.
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Appendix

Figure A1: Flow chart.
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