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AbsTrACT
The notion of ’precision’ public health has been the 
subject of much debate, with recent articles coming to 
its defence following the publication of several papers 
questioning its value.
Critics of precision public health raise the following 
problems and questionable assumptions: the inherent 
limits of prediction for individuals; the limits of 
approaches to prevention that rely on individual agency, 
in particular the potential for these approaches to widen 
inequalities; the undue emphasis on the supposed new 
information contained in individuals’ molecules and their 
’big data’ at the expense of their own preferences for 
a particular intervention strategy and the diversion of 
resources and attention from the social determinants of 
health.
In order to refocus some of these criticisms of precision 
public health as scientific questions, this article outlines 
some of the challenges when defining risk for individuals; 
the limitations of current theory and study design for 
precision public health; and the potential for unintended 
harms.

‘Precision’ public health (PPH)1 is conceptualised 
as a means of improving population health through 
the use of new technologies, particularly genomics 
and digital, which would guide public health prac-
tice by generating more individually tailored inter-
ventions and policies. The concept of PPH has 
been the subject of much recent debate, with the 
Editor of the Lancet recently coming to its defence 
following the publication of several papers ques-
tioning its value.2 3 In this essay, we frame some key 
challenges for PPH as unanswered scientific ques-
tions, in an attempt to move the discussion forward.

While numerous articles use the term PPH,4 there 
is a lack of a universally agreed definition,5 with 
Khoury recently suggesting PPH as a cover- all term 
for ‘the next generation public health’

Given the vagueness attending this definition, 
it is important that we declare, at the outset, the 
focus of this article. We do not focus on PPH 
applications, which we believe to be scientifically 
uncontentious, for example, using information on 
the genetic profiles of microbes and exposed indi-
viduals in communicable disease outbreak detection 
and management.6 Nor do we address the curation 
and analysis of ever more detailed data on popula-
tions at finer geographical scales for the purpose of 
targeting public health interventions on communi-
ties,7 which is, in our view, little more than conven-
tional public health, but with richer data.

Instead, we take our cue from the PPH emphasis 
in several policy documents in the UK, notably 
in the recent Green paper on prevention,8 which 

spotlights targeted or personalised interventions 
for lifestyle and behavioural change following indi-
vidual genetic or digital profiling, for example, 
using smartphone apps. This version of PPH is our 
main focus. While the Lancet editor warns against 
‘uncritical techno- optimism’ with regard to PPH, 
he also decries unsustainable ‘pilotitis’, an excess 
of pilot studies leading to delayed or foregone 
PPH benefits,1 and stresses the need for workforce 
training if the potential of PPH is to be realised.1 
This position leaves us rather confused and raises 
still further questions. Pilot studies are usually the 
necessary antecedents of robust scientific studies 
of mechanisms, efficacy or effectiveness, and it is 
precisely in this realm that the evidence for PPH 
remains questionable or at least undercooked. In 
spite of this, PPH is front and centre in the UK 
Health Secretary’s forward strategy for person-
alised ‘predictive prevention’.9

What are the main scientific questions that should 
be answered before launching into workforce 
training and PPH implementation? Briefly, among 
the problems raised by PPH that we highlighted in 
a previous article are: (1) the inherent limits to risk 
prediction at the individual level, when the uncer-
tainty due to random processes may be conflated 
with the uncertainty due to limited data or knowl-
edge; (2) the constraints on prevention interven-
tions that rely on individual agency, where such 
a focus might widen inequalities; (3) the undue 
emphasis on the supposed new insights gained from 
an individual’s genetics and their ‘big data’ instead 
of their own preferences for a particular interven-
tion strategy (4) the diversion of scarce resources 
and attention away from the social determinants of 
health.2 Building on these issues, recent exchanges 
have called for a refocusing of the criticisms of 
PPH as scientific questions.10 In this essay, we, 
therefore, outline key scientific challenges relating 
to: defining risk for individuals; the limitations of 
current theory and study design for PPH and under-
standing the potential for unintended harms.

Defining risk for inDiviDuAls
We see significant problems in defining risks for 
individuals (Rose’s ‘causes of cases’) in areas where 
the epidemiology is just not up to the job. For 
example, large- scale ‘precision nutrition’ has been 
proposed as a PPH approach to delivering indi-
vidualised dietary behavioural change in efforts 
to address obesity and the health impacts of poor 
diet.11 However, data to inform precision nutri-
tion approaches are derived from population- level 
studies beset with problems of such magnitude that 
commentators have raised doubts about the possi-
bility of ascertaining the impact of single dietary 
components on health outcomes.12 For example, if 
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we usually have crushed walnuts with our low glycaemic index 
breakfast cereal and are subsequently observed to have a lower 
risk of heart disease, to what do we attribute our good fortune? 
Ioannidis is likely correct12 in contending that the implausible 
estimates of benefits or risks associated with specific dietary 
choices that we typically derive from population- level studies are 
due to the biases, residual confounding and selective reporting 
typical of these studies. While innovative approaches have been 
developed to address the key issue of collinearity among nutri-
ents in our diet,13 these modern counterfactual based methods 
merely enable a more principled assessment of causal effects in 
populations, based on a clearer understanding of the assump-
tions coded in the underlying directed acyclic graph that the 
analyst proposes. Their relevance to us as individuals and our 
own risk, which may change as our dietary fastidiousness or 
budget changes over the life course, seems unclear.

limiTATions of CurrenT Theory
Even if we were able to pinpoint an intervention target for an 
individual, how would we design and test the optimum interven-
tion? What are the scientific questions and challenges that would 
need to be addressed in terms of theory and study design? The 
UK National Institute for Health and Care Excellence (NICE)14 
and Public Health England15 both endorse the view that inter-
vention design that is informed by sound theory has a better 
chance of success. Digital technologies that enable frequent, 
time intensive but tailored behavioural interventions hold some 
promise, but also pose many challenges to our current health 
behaviour theories and models.16

First, we lack a clear understanding and theory of factors 
influencing engagement with digital behavioural change inter-
ventions,17 which is a precondition for effectiveness for many 
of the interventions promoted through smartphones. Yardley et 
al rightly highlight the importance of considering how techno-
logical and behavioural elements combine to influence engage-
ment.17 Extending our nutritional PPH example above, many 
time- varying factors (rushing to work, picking up the kids), not 
to mention personality traits (neuroticism or conscientiousness), 
may affect engagement with digital interventions to promote a 
healthy diet and health behaviours themselves. In addition, the 
behaviours may be subject to compensatory spillover effects 
affecting other behaviours at the level of the individual.18 Disen-
tangling the influence of a single dietary component from these 
other influences on health outcomes in an individual is chal-
lenging, if not impossible.

Second, we will surely need to develop more complex mech-
anisms of behavioural change to explain within- person changes 
over time. By contrast, our current health behaviour theories 
have traditionally been formulated to explain between- person 
differences. Inherently, the processes affecting behavioural 
choices and actions within individuals over time are dynamic, and 
some have argued that lessons learnt from control systems engi-
neering16 may help us accommodate feedback between under-
lying psychological constructs and so ‘close the loop’. Relatively 
scant attention has been given to developing a formal system of 
behavioural change theories, though the recent paper by West et 
al is an overdue and very welcome contribution in this regard.19 
While commendable, the paper did not give much consideration 
to timescale and current theories appear to be a poor fit with 
the more rapid intraindividual dynamics of mobile technology 
interventions. Even if behavioural change theories can address 
timescale issues, current theory may be inadequate if, as some 
believe, behavioural change is better understood through the lens 

of chaos theory and complex adaptive systems,20 the key prin-
ciples of which include unique sensitivity to initial conditions, 
leading to highly variable outcomes that are difficult to predict, 
occurring within adaptive systems where multiple components 
interact to produce results greater than the sum of their parts.

Ecological momentary assessment (EMA) has developed in 
response to the challenge of understanding behavioural change 
in individuals over time. EMA sets out to more intensively 
monitor behaviour and its antecedents over time by measuring 
moods and behaviours in real time, increasingly using ‘wearable’ 
technologies.21 The combination of EMA alongside smartphone 
behavioural change apps has contributed to the drive for digi-
tally enabled personalised prevention and health promotion.22 
But this is another area where, despite the policy hype, we 
believe that technological development may be outrunning the 
underpinning science.

Reporting standards for EMA studies have only recently been 
developed, and these should improve assessment of how measure-
ment tools, sampling methods, sampling schedules, sample 
intensity, prompting strategies and compliance rates might affect 
study interpretation.23 The same authors developed a checklist 
and believe that when these key methodological considerations 
are reported accurately, we may begin to see improved reliability 
and validity of individual study findings.23 What this checklist 
does not offer is guidance on how best to analyse EMA data. 
A variety of statistical methods have been proposed to model 
and understand, or to predict, the behavioural dynamics in EMA 
settings, with different researchers opting for, variously, hidden 
multistate Markov models,24 time series modelling with Markov 
chains,25 dynamic regression and unified structural equation 
modelling.26 It would be too easy to dismiss such choices as 
matters of taste were it not for the fact that they usually materi-
ally affect the inferences that can be drawn.27

limiTATions of CurrenT sTuDy Design
Assuming we have appropriated a theory informed optimal 
design for our PPH intervention, do we routinely use the right 
study designs to test its effectiveness? The conventional parallel 
group randomised controlled trial is not up to the task. The 
leading alternative designs, namely n- of-1 studies and microran-
domised trials (MRTs) of Just in Time Adaptive Interventions 
(‘JITAI’) offer promise but raise ancillary scientific questions with 
which many researchers and practitioners have yet to grapple.28

N- of-1 studies provide the statistical basis to distinguish 
interindividual and intraindividual variation, which is crucial 
for intervention personalisation,29 offering a scientific basis for 
tailoring interventions to individuals. While the key design aspect 
of an n- of-1 study is that an individual is followed for a period 
of time and their responses measured before and after an inter-
vention,30 there is in fact currently little consensus on the most 
effective way to analyse behavioural and psychological n- of-1 
studies. In a recent systematic review of n- of-1 studies assessing 
behavioural change, only 25% of the 39 studies included in the 
review used appropriate statistical approaches for n- of-1 data 
analysis.28 31 32 The authors highlighted the challenges inherent 
in defining a null hypothesis for such studies or quantifying clin-
ically important differences for power calculations.

Designing good tests of PPH interventions is dependent on 
defining the minimum clinically important difference (MCID) 
but population- level MICDs are different from individual 
MCIDs, both conceptually, and in the methods that must be lever-
aged for their estimation.33 This makes it challenging to define 
a ‘responder’29 in the context of personalised interventions. For 
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example, we ourselves have shown how health professionals 
struggle to distinguish signal from noise when trying to identify 
‘a responder’ to treatment in even simple scenarios.34 Some tend 
to overestimate the effects of a patients’ genotype on ‘responder’ 
status.34 But even if we properly define an individual- level 
MCID, the calculation of a final sample size (in this case how 
many epochs are necessary to observe and characterise the time 
trace of behaviour) will also depend on an individual’s engage-
ment and willingness to be followed up and record data over 
prolonged periods. Less literate and less motivated subjects—
more likely, perhaps, to be living in disadvantaged circum-
stances—are likely to have more missing data, and so the quality 
of predictions and estimates of intervention effectiveness may 
vary importantly across these groups.

Recently Murphy et al introduced the MRT design, which 
involves randomisation of interventions at various times and 
decision points at which an intervention may be effective, based 
on context or past behaviour.35 An example is the provision of a 
tailored activity suggestion to increase step count delivered via 
mobile phone technology.36 Microrandomisation of this JITAI for 
each participant on each day of the study permits an assessment 
of the causal effect on exercise of providing one intervention 
compared with an alternative, and whether this effect varies based 
on context or mood, which is being monitored (as per EMA) via 
the mobile phone.35 However, even Murphy et al have acknowl-
edged that novel statistical methods are required to distinguish 
the effects of participant- determined features, dependent on 
personal agency, from those of routinely provided behavioural 
change intervention.35 This endogeneity problem is compounded 
when we acknowledge that awareness of being monitored could 
itself modify the experience and the behaviour—and how to fully 
address this in the analysis is not yet clear.37

Assessing the cost- effectiveness of PPH interventions poses 
an additional challenge. When new interventions are intro-
duced to the UK National Health Service (NHS), NICE expects 
a robust cost effectiveness analysis, and adoption decisions 
are usually based on favourable incremental cost effectiveness 
ratios (ICERs). Ioannidis et al have pointed out some conceptual 
difficulties in applying population- level ICERs to individuals 
because for notionally the same ICER, cost- effectiveness will 
differ for individuals who have different priorities for specific 
outcomes, or who have different attitudes toward risk or time 
discounting.38 Methods are being developed to cater for such 
considerations,39 40 though it is not clear to us how the NHS 
should use this information in commissioning PPH. Developing 
a meta- analytical summary41 of a series of n- of-1 cost effective-
ness studies would seem to defeat the purpose.

uninTenDeD ConsequenCes
A critical scientific (and practice) issue that needs greater delib-
eration must surely be the question of how to assess unintended 
consequences and harms in PPH interventions, and as part 
of their implementation—their ‘dark logic’.42 We can antici-
pate several unintended consequences that should be carefully 
monitored before widespread roll- out. In the bright new future 
of PPH, a key concern is that people may receive feedback 
about the supposed genetic or ‘environmental’ risk of multiple 
diseases. This feedback may have unpredictable effects. In the 
context of PPH based on genetic or digital phenotypes, exces-
sive testing could lead to needless costs and potential harms, 
including false positive results, ‘overdiagnoses’ and unnecessary 
worry and intervention, a phenomenon that has been termed the 
‘biomarkup’.43

Most of the genomic tests for risk prediction that have emerged 
from Genome Wide Association Studies for chronic disease lack 
long- term studies demonstrating robust evidence of improved 
outcomes or survival after testing. At the same time, the machine 
learning technology that is yielding new digital biomarkers from 
our ‘wearables’ is often based on algorithms that are not readily 
interpretable.43 One mildly ridiculous example is the commen-
tary on recent mood prediction apps that offer such forecasts 
as ‘Happy with a 20% chance of sadness’, despite how little 
we know about how predicting mood could affect how people 
feel.44 But this problem may go beyond how people feel. A recent 
study showed that merely receiving genetic risk information (on 
obesity risk) changed individuals’ cardiorespiratory physiology 
and perceived satiety after food consumption45 and these effects 
were sometimes greater than the effects associated with actual 
genetic risk. Although this was a relatively small (though robust 
experimental) study, it is not unique. Others have shown how 
mindset can affect hormonal responses after food.46 Thus, when 
we convey genetic risk, we may in future have to take account 
of these physiological effects and adjust the threshold and nature 
of the intended intervention as appropriate. We suspect that the 
form of the risk communication, for example, relative versus 
absolute risk reduction, may itself have a bearing.

An equally serious point concerns the impact of artificial intel-
ligence (AI)- based personalised interventions on health inequali-
ties. AI- driven approaches to PPH lack an ‘effector arm’ that can 
grasp and handle the complexity of individuals’ lives.47 Machine 
learning algorithms let loose on ‘big data’ may simply amplify 
historical biases against vulnerable populations—it is contended 
that machine learning algorithms, model design, biases in data 
(based on engagement through personal agency) and the inter-
actions of model predictions with patients or their doctors may 
prove important drivers of inequalities in future access to health-
care.48 And somewhat related to this is the risk that the unreg-
ulated realm of commercially sponsored apps for behavioural 
change that provide online or social media- enabled tailored 
‘support’ may be susceptible to bots or targeted marketing from 
corporations whose products have little to offer personal or 
public health.49

ConClusions
Before rushing headlong into implementation and workforce 
training for PPH, we need more insights into the problems 
and challenges outlined above. Until these issues are addressed, 
it will not be clear that the benefits of superficial intervention 
‘tailoring’ for personalised prevention, common in today’s PPH 
interventions delivered through mobile technologies, outweigh 
the harms. Finally, in the current context of declining life expec-
tancy and increasing inequalities in the UK,50 it is concerning that 
PPH approaches are being strongly promoted as solutions.51 We 
agree with the recent commentary by Olstad and McIntyre that 
PPH could benefit, conceptually and practically, from a refocus 
on the upstream social determinants of health.52 In the mean-
time, while evidence for sound policy and practice is still being 
sought, we consider Horton’s diagnosis of ‘pilotitis’ premature.1
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