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Rational drug repositioning
for coronavirus-associated diseases using
directional mapping and side-effect inference

Jianhua Wang,1,2,3,6 Jiaojiao Liu,4,6 Menghan Luo,2,3 Hui Cui,5 Wenwen Zhang,2,3 Ke Zhao,2,3 Hongji Dai,1

Fangfang Song,1 Kexin Chen,1 Ying Yu,3 Dongming Zhou,4,* Mulin Jun Li,1,2,3,7,* and Hongxi Yang2,3,*

SUMMARY

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of
coronavirus disease 2019 (COVID-19), has infected hundreds ofmillions of people
and caused millions of deaths. Looking for valid druggable targets with minimal
side effects for the treatment of COVID-19 remains critical. After discovering
host genes from multiscale omics data, we developed an end-to-end network
method to investigate drug-host gene(s)-coronavirus (CoV) paths and the mech-
anism of action between the drug and the host factor in a directional network.
We also inspected the potential side effect of the candidate drug on several com-
mon comorbidities. We established a catalog of host genes associated with three
CoVs. Rule-based prioritization yielded 29 Food and Drug Administration (FDA)-
approved drugs via accounting for the effects of drugs on CoVs, comorbidities,
and drug-target confidence information. Seven drugs are currently undergoing
clinical trials as COVID-19 treatment. This catalog of druggable host genes asso-
ciated with CoVs and the prioritized repurposed drugs will provide a new sight in
therapeutics discovery for severe COVID-19 patients.

INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), is currently spreading around the world rapidly (Del Rio and Malani, 2020). This coronavirus (CoV)

has infected more than half a billion people and caused over 5 million deaths, implying a global health

threat. Despite prevention strategies such as social distancing and vaccines (Wiersinga et al., 2020), the

most common treatments for infected patients are supportive care and respiratory support because there

are no effective antiviral drugs. As the development of a new drug takes years to a decade, drug reposition-

ing can significantly accelerate the development cycle of therapies for COVID-19.

The key to drug repositioning of COVID-19 is to identify critical targets for the CoV replication cycle. Cur-

rent candidates that have been tested in clinical trials can be divided into two groups according to their

mechanism of action (MoA): virus-based and host-based treatment options. The former targets the virus

components involved in the CoV replication cycle. For example, approved nucleoside analogues (favipir-

avir and ribavirin) and experimental nucleoside analogues (remdesivir and galidesivir) may have potential

against SARS-CoV-2 (Elfiky, 2020; Malin et al., 2020; Ozlusen et al., 2021; Tong et al., 2020). Two oral antiviral

treatments, Molnupiravir and Paxlovid, were recently authorized by the Food and Drug Adminstration

(FDA). Molnupiravir has relatively low efficacy and may have potentially serious adverse effects, such as

mutagenicity and congenital disabilities (Borio et al., 2022). Paxlovid is an oral protease inhibitor that ap-

pears to be more effective than existing protease inhibitors with fewer safety concerns (Borio et al., 2022).

The host-based approaches are less straightforward than the virus-based approaches. They target the key

host factors utilized by CoV for viral replication or stimulate innate antiviral responses in hosts. It was quickly

discovered that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and leverages the serine protease

TMPRSS2 for S protein initiation (Hoffmann et al., 2020). ACE2 regulates the renin-angiotensin system (RAS)

in several diseases and expresses in the lungs and the kidney, small intestine, testis, and heart (Donoghue

et al., 2000; Gordon et al., 2020). TMPRSS2 activates the virus-membrane fusion on the cell surface by

cleaving the S protein. In addition to ACE2 and TMPRSS2, several candidate receptors can aid SARS-

CoV-2 infection, such as the cell-surface proteins tyrosine-protein kinase receptor UFO (Axl), low-density
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lipoprotein receptor class A domain-containing protein 3 (LDLRAD3), and C-type lectin domain family 4

member G (CLEC4G) (Wang et al., 2021b; Zhu et al., 2021a). Moreover, members of pathways that mediate

membrane fusion and lipid metabolism, such as PI3K type 3 (PIK3C3) and PI3K regulatory subunit 4 (PIK3R4)

from phosphatidylinositol 3-kinase (PI3K) pathway and sterol regulatory element-binding protein 1 and 2

(SREBF1 and SREBF2), are also crucial for infection (Baggen et al., 2021b). Several efforts have been

made to identify drugs that inhibit SARS-CoV-2 by targeting host proteins. An in vitro study demonstrates

that the inhibition of the protease activity of TMPRSS2 partially prevents the entry of SARS-CoV-2 into the

lung epithelial cells (Bottcher et al., 2006). In vitro studies suggest that both chloroquine and hydroxychlor-

oquine may prevent the transport of SARS-CoV-2 from the early endosome to the endolysosome. In addi-

tion to treating malaria, chloroquine and hydroxychloroquine also have immunomodulatory effects. (Liu

et al., 2020). However, none of these options was confirmed to have an anti-SARS-CoV-2 effect, which mo-

tivates the discoveries of other uncovered but practical host factors.

Fortunately, more comprehensive approaches have been applied to identify host factors, such as affinity

purification mass spectrometry (AP-MS) and CRISPR screening (Schneider et al., 2021; Stukalov et al.,

2021). By systematically collecting and collating the results of these data, more host genes can be discov-

ered. Thus, our goal is to find drug candidates that can target these host genes. Existing computational

drug-repositioning methods can be classified into structure-based and network-based methods (Dotolo

et al., 2021). The network-based methodology combines the virus-host interactome and drug targets in

the human protein-protein interaction (PPI) network as a systems pharmacology-based network medicine

platform, which is vital and widely used in drug repositioning for COVID-19 (Dotolo et al., 2021; Fiscon

et al., 2021; Ge et al., 2021; Li et al., 2021; Morselli Gysi et al., 2021; Zhou et al., 2020a, 2020b, 2020b). These

methods can be divided into three categories: clustering, propagation, and deep learning. They measure

the similarity of sub-networks from the network, the proximity of drugs to the host network, or predicted

interactions. Some even predict combinations of drugs (Siminea et al., 2022). Network pharmacology

can choose drugs combined in lower doses but targeting the causal disease mechanism, may solve the

one symptom–one target–one drug problem caused by traditional combination therapy (Casas et al.,

2019; Nogales et al., 2022). However, these methods ignore that most of the applied PPI networks are

all directional, which initializes the incorporation of this type of information in our analysis. For example,

we should consider inhibitors of proviral genes rather than stimulators, even though both classes of

drug-based networks show a similar pattern with the host network. Furthermore, a drugmay target multiple

host genes through the network. If the drug stimulates some genes and inhibits others, its effect on the

virus needs to be reassessed. Importantly, current methods barely avoid the potential side effect of repur-

posed drugs for COVID-19 patients with chronic underlying diseases, such as diabetes mellitus, cardiovas-

cular disease, chronic pulmonary disease, and cancers.

In this study, to identify the potential antiviral agents, we applied an end-to-end computational method to

search drug-gene(s)-coronavirus (CoV) paths in a directional network and inferred the effect of drugs on

CoV. We constructed the integrative network by aggregating three networks with direction information,

including a virus-host interactome, a human PPI network, and a drug-target network. By leveraging the

edge direction in the networks, we can determine whether a drug is reachable to the virus and the MoA

between the drug and the virus protein, i.e., inhibition or stimulation. Considering that patients with spe-

cific comorbidities are more susceptible to COVID-19 infection, we inspected the side effect of the drug

candidate on several common comorbidities based on the genetic information of several complex dis-

eases. We reported 29 FDA-approved drugs (7 currently in clinical trials as COVID-19 treatment) by a

scoring strategy accounting for the effects of drugs on CoVs and comorbidities and other auxiliary informa-

tion. We also compared the prediction performances with the connectivity map (CMAP) method. Together,

we established a precise host-based antiviral drug repositioning strategy by incorporating directional in-

formation andminimizing side effects, which will provide a new sight in therapy discovery for the pandemic.

RESULTS

Strategy overview for the compilation of directional effect of host genes and COVID-19 drug

repositioning

The analytical workflow for our drug repositioning is shown in Figure 1. The whole analysis process is mainly

divided into four steps. We first comprehensively collected candidate host genes from three major do-

mains for mechanistic research of CoV infection: genetic risk genes, physical interaction genes, and biolog-

ical regulation genes (Figure 1A). The source of genetic risk genes was mainly collected from the GWASs of
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COVID-19. Physically interacting genes were obtained from the literature, PPI databases, and AP-MS ex-

periments. The biological regulation genes were collected from the results of the CRISPR screen of

CoV-infected cells. To select drugs with the correct mechanisms of action (MoA), we also determined

the direction of the effect of viral infection while collecting host genes (Figure 1B, STAR Methods). We

determined the direction of genetic risk genes by GWAS and variant annotation. We used the up- and

downregulation of physically interacting genes in viral infection expression profiles as their direction.

The direction of biological regulation genes was derived from their effect on the screening results. We

then collected data on human protein interactions, their direction of action, and the effects of drugs and

drug targets. Thus, we constructed a directed multicomponent network including CoV, host genes, human

genes, drug targets, and drugs. We then searched for drug-gene(s)-CoVs paths in this network and used

A

B

C D

Figure 1. Overview of host-based drug repositioning framework

(A) We collected host genes from three aspects, which are genetic risk genes, physical interaction genes, and biological

regulation genes.

(B) We then determined the direction of the effect of viral infection while collecting host genes. Genes with negative

direction have inhibitory effects to the infection of viruses.

(C) By combining three directional networks, we constructed a virus-host-drug interactome with orientation information.

We applied the random walk with restart algorithm to the seek shortest paths from the drugs to the viruses. Then we

inspected the accessibility of each drug to host genes and assembled directional drug-gene(s)-Co-Vs paths.

(D) We checked the putative effects of repositioned drugs on common diseases using the similar strategy in (C). The

disease-related genes and their directions were inferred by GWAS and eQTL data.
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the direction information to screen out drugs with suitable MoAs (Figure 2C). To investigate the impact of

drug candidates on the underlying disease in patients with COVID-19, we also identified genetic risk genes

for common complex diseases and their direction to disease from genetic data. Finally, drugs with a po-

tential inhibitory effect on the disease were prioritized based on a combined score, and conversely, drugs

that promote disease were filtered out (Figure 1D, STAR Methods).

Comprehensive integration of CoV host genes and their pathogenic direction

Phylogenetic analysis of human CoVs shows that SARS-CoV-2, SARS-CoV, and MERS-CoV have a high con-

servative genome (Figure S1). Specifically, the envelope and nucleocapsid proteins of SARS-CoV-2 are two

evolutionarily conserved regions, having high sequence identities between SARS-CoV and MERS-CoV

(Zhou et al., 2020a). Therefore, these three viruses may share infectious mechanisms through common

host genes, and the therapeutic drugs could be overlapped. We systematically integrated candidate

host genes from three different angles: (1) to identify genetic risk genes of COVID-19, we first got significant

risk variants (p-value<5 3 10�8) of 517 COVID-19 GWASs from GRASP (https://grasp.nhlbi.nih.gov/

Covid19GWASResults.aspx) (Table S1), yielding 2,618 risk variants significantly associated with COVID-

19 (Table S2). If the risk variant is an expression quantitative trait locus (eQTL) of whole blood or lung,

we retrieved the eGene of the eQTL as the risk gene and inferred the direction of the risk gene to the virus

bymatching the effect size of the GWAS and the effect size of the eQTL.We identified 77 genetic risk genes

(Table S3), including innate antiviral defenses, which are critical early in infection (IFNAR2, OAS1, and

OAS3). OAS3 encodes for the oligoadenylate synthase family of proteins that degrades viral RNA and ac-

tivates antiviral responses, and its expression was predicted to be significantly associated with the disease

(Pairo-Castineira et al., 2021; Schmiedel et al., 2020). The association on chromosome 19p13.12 colocalizes

an eQTL of TYK2, the target of JAK inhibitors, whose high expression is associated with COVID-19 (Schmie-

del et al., 2020). (2) To collect the high confidence proteins interacting with CoVs, we gathered data from

PPI databases, public literature, and affinity AP-MS analyses. We used up- and downregulation of genes in

the CoV infection process as gene-to-virus direction. Expression profiling data were obtained from publicly

available tissue from virus-infected and normal samples. We identified 435 genes that interact with viral

proteins and their direction of action (Table S4). Among them, 16 genes interacted with both SARS-CoV

and SARS-CoV-2 and were significantly differentially expressed in the expression profiles of the two viruses

(Figure S2). Aconitase1 (ACO1) is overexpressed in COVID-19 and underexpressed in non-COVID-19 viral

infections. Interestingly, ACO1 is involved in iron metabolism, and heme appears to be interlinked with

COVID-19 pathophysiology (Thair et al., 2021). PCDH9, one of the downregulated genes, interacts with

multiple proteins of CoVs, includingM, NSP6, ORF6, ORF7a, ORF7b, and S proteins. PCDH9 protocadherin

is essential in epithelial cell-cell adhesion and the integrity of endothelial barrier function (Bass et al., 2021).

The disruption of cadherin proteins by viral protein ORF7b could contribute to several symptoms of

COVID-19 infection, including multiorgan failure (Troyanovsky et al., 2007). (3) Genome-wide screens

have been widely used to identify host factors for various viruses, including CoVs (Flint et al., 2019; Li

et al., 2020; Wang et al., 2021a). Genome-wide perturbations can identify genes in human cells that play

a key role in viral infection and the body’s response. We selected the top-ranked genes from six

genome-wide CRISPR screens (Table S5) and determined their direction based on the perturbation pattern

and the effect size. We identified 958 genes from the CRISPR screen data (Table S6). It is worth noting that

seven genes were selected in the screening of all three viruses, including CTSL, which encodes the

Cathepsin L protease. CTSL can functionally cleave the SARS-CoV-2 spike protein and enhance virus entry

(Zhao et al., 2021). Studies have shown that inhibitors of CSTL can effectively prevent human CoVs infection

(Zhou et al., 2016).

By combining the genes from the three sources, we identified 1,410 host genes (Table S7). Remarkably, no

genes were collected from all three sources simultaneously, and the overlap between the three sources is

also relatively small, suggesting current biological assays or genetic methods may capture complementary

patterns of CoV-host crosstalk. For example, only 1 out of the 77 genetic risk genes is derived from the

CRISPR screen and physical interaction, respectively (Figure 2A). For SARS-CoV-2, we revealed 882 candi-

date host genes (Figure 2B). Among them, BMPR2 is not only a genetic risk gene but also interacts with

Figure 2. Integration of host genes and enrichment analysis

(A and B) Venn plot shows the overlap between all (A) and SARS-CoV-2 (B) host genes curated in three categories.

(C) All host genes with direction. Labeled purple nodes are genes shared by SARS-CoV and SARS-CoV-2.

(D and E) Labeled pink nodes are genes shared by SARS-CoV-2 and MERS-CoV. Labeled bright cyan nodes are genes shared by SARS-CoV and MERS-CoV.

In the middle gray are genes shared by the three viruses. KEGG pathway enrichment analysis of antiviral genes (D) and proviral genes (E).
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SARS-CoV-2 ORF3 protein. Heterozygous mutations in BMPR2 can cause hereditary pulmonary hyperten-

sion (Rhodes et al., 2019). Drugs targeting BMPR2 may affect the prognosis of patients with pulmonary hy-

pertension based on genetic evidence. SARS-CoV-2 and SARS-CoV share 67 host genes (Figure 2C),

including ACE2, the primary cell entry receptor for SARS-CoV-2, whereas 35 genes, including TMEM41B,

were identified as host genes of both SARS-CoV-2 and MERS-CoV. TMEM41B, an essential host factor

for HCoV-229E, can promote lipid localization in infected cells (Trimarco et al., 2021). We divided these

genes into antiviral and proviral genes according to their effect on the CoVs. There are 654 antiviral genes

and 756 proviral genes. Antiviral genes were enriched in viral-infection-related pathways such as influenza

A and hepatitis C and inflammation-related pathways such as cytokine-cytokine receptor interaction and

Th17 cell differentiation (Figure 2D). Proviral genes were also enriched in some infection-related pathways,

such as human papillomavirus infection, Salmonella infection, and Vibrio cholerae infection (Figure 2E).

Both proviral and antiviral genes were also enriched in autoimmune diseases such as rheumatoid arthritis

and inflammatory bowel disease.

Drug repositioning and prioritization for COVID-19 treatment using directional network

propagation and side-effect inference

The catalog of host genes associated with CoVs and the directional information can provide mechanistic

insight for drug target selection. As the development of a new drug takes a long time and huge cost, we

believe our integrated resource could be alternatively suitable for improving drug repositioning oppor-

tunities on COVID-19. We developed an end-to-end network approach to search for potential drug re-

purposing. We first constructed a directional informative human PPI network by fusing STRING, KEGG,

and reactome data (Jassal et al., 2020; Kanehisa et al., 2019; Szklarczyk et al., 2019). The directional hu-

man interactome used in this study contains 11,126 proteins and 167,776 interactions. We also collected

drug and drug-target interactions with a clear direction of action from DGIdb (Freshour et al., 2021).

Together, 23,306 directional drug-target interactions of 9,540 drugs were used in this study. We merged

drug-target interactions, human protein interactions, and virus-host interactions into a whole drug-gene-

CoV network. Then we used the random walk with restart (RWR) algorithm to find drug-gene(s)-CoVs

paths in the network and inferred the direction of the drug to the CoVs (see STAR Methods). Totally,

6,234 drugs with inhibitory effects on CoVs were inferred. Older age and comorbidities play essential

roles in influencing the severity of COVID-19. We applied a genetics-based method to predict the impact

of repurposed drugs on comorbidities, including diabetes mellitus, cardiovascular disease, cerebrovas-

cular disease, chronic liver disease, chronic kidney injury, autoimmune disease, and cancers. According

to our previous strategy, we filtered and prioritized potential drugs by inspecting their impact on these

complex diseases (Cui et al., 2020). We collected 10,557 variants in 17 diseases and mapped these var-

iants to 536 genes (Table S8). Finally, we identified 246 drugs with possible side effects and 269 with po-

tential comorbidity treatments.

To select the optimal drugs, we utilized the properties of drug-gene(s)-CoVs path (including drug-target

interaction, network mapping, and source of host genes) for each drug to derive a combined score and

used it to prioritize drug candidates (see STAR Methods). We found that 29 of the top 100 drugs are

FDA approved (Figure 3A, Table 1), and seven of these are in clinical trials for the treatment of COVID-

19. We collected 397 drugs in clinical trials for COVID-19 from Clinicaltrials.gov and overlapped with the

top 100 drugs. None of the drugs in clinical trials prior to phase 3 have been found in clinical trials for

COVID-19, and there are nine drugs in phase 3/4 clinical trials for COVID-19 (Figure 3B); this may be

because most of the COVID-19 clinical trial drugs are in clinical phase 3 or FDA approved. We identified

well-studied drugs with clinical trials, such as aspirin and chlorpromazine. Chlorpromazine is an antipsy-

chotic drug that has recently been proposed to have antiviral activity against SARS-CoV-2 (Stip, 2020).

The MoA of chlorpromazine is either via inhibition of clathrin-mediated endocytosis and/or at later stages

of virus assembly and egress (Stip et al., 2020). We also identified drugs with no clinical trials evidence but

showed potential, such as bosutinib. Bosutinib is a treatment for chronic myeloid leukemia by inhibiting the

Abelson kinase signaling pathway. In addition, experimental data suggest that bosutinib is a powerful anti-

inflammatory agent (Ma et al., 2017; Tiribelli et al., 2019). Recently, bosutinib was found to strongly inhibit

SARS-CoV-2 in vitrowith low toxicity (Yang et al., 2021). Recently, it was reported that pseudoephedrine can

antagonize COVID-19 virus by blocking virus expansion (Yu et al., 2021). Another example is that ponatinib

is a potent inhibitor of SARS-CoV2-induced cytokine storm (Chan et al., 2021), whereas epinephrine may be

considered an intervention to minimize the severity of COVID-19 (Derakhshan et al., 2020).
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Moreover, we compared our method with the CMAPmethod based on similarity analysis of expression pro-

files, which was frequently used in drug repositioning (Subramanian et al., 2017). CMAP contains the cellular

gene expression profiles under the perturbation of 2,428 drugs. We measured the associations of gene

expression patterns between CoV-infected patients and the reference-compound-perturbed cells (STAR

A

B C

Figure 3. Network-based drug repositioning and prioritization

(A) FDA-approved drugs in our top 100 prioritized drugs. Green nodes are drugs in clinical trials for COVID-19 treatment.

(B) The overlap of the top 100 drugs and clinical trials.

(C) Performance comparison between our strategy and CMAP. We used the top 50 genes that were up-regulated and down-regulated in the expression

profiles of SARS-CoV-2-infected samples and controls as input to CMAP. We used data from two types of cells, alveolar type II cells (GSE152586) and green

monkey kidney cells (GSE154783).
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Table 1. 29 FDA-approved drugs and related evidence in our top 100 prioritized drugs

D2V Score Drug CHEMBL ID Clinical Trial

N of Drug-gene-

CoV paths Original indication

29.375 Bosutinib CHEMBL288441 None 92 Chronic Myelogenous Leukemia

28.083 Thalidomide CHEMBL468 NCT04273581,

NCT04273529

82 Erythema Nodosum Leprosum

27.833 Aspirin CHEMBL25 NCT04333407,

NCT04498273,

NCT04343001,

NCT04410328,

NCT04365309,

NCT04381936,

NCT04363840,

NCT02735707,

NCT04324463,

NCT04425863

92 Nonsteroidal Anti-Inflammatory

Drug (NSAID)

24.750 Midostaurin CHEMBL608533 None 75 Acute Myeloid Leukemia

24.917 Regorafenib CHEMBL1946170 None 74 Metastatic Colorectal Cancer

23.708 Pseudoephedrine CHEMBL1590 None 70 Decongestant

24.583 Ponatinib CHEMBL1171837 None 77 Chronic Myeloid Leukemia

21.833 Cannabidiol CHEMBL190461 NCT04731116,

NCT04615949,

NCT04467918,

NCT04504877

72 Epilepsy

23.167 Adapalene CHEMBL1265 None 69 Acne Vulgaris

23.167 Panobinostat CHEMBL483254 None 73 Multiple Myeloma

23.000 Romidepsin CHEMBL343448 None 73 Cutaneous T cell Lymphoma

22.625 Vorinostat CHEMBL98 None 73 Cutaneous T cell Lymphoma

22.625 Belinostat CHEMBL408513 None 73 Peripheral T cell Lymphoma

22.417 Bortezomib CHEMBL325041 None 63 Multiple Myeloma

21.833 BYl719 CHEMBL2396661 None 70 Breast Cancer

21.500 BAY80-6946 CHEMBL3218576 None 70 Follicular Lymphoma

21.417 Pomalidomide CHEMBL43452 None 65 Multiple Myeloma

20.917 Lenalidomide CHEMBL848 NCT04361643 66 Transfusion-Dependent Anemia

20.708 Amlexanox CHEMBL1096 None 68 Aphthous Ulcers

20.208 Sorafenib CHEMBL1336 None 62 Renal Cell Carcinoma

18.917 Everolimus CHEMBL1908360 None 54 Breast Cancer

14.417 Pazopanib CHEMBL477772 None 46 Renal Cell Carcinoma

18.417 Minocycline CHEMBL1434 None 54 Bacterial Infections

17.583 Brigatinib CHEMBL3545311 None 55 Non-Small Cell Lung Cancer

17.333 Progesterone CHEMBL103 NCT04365127,

NCT04865029

54 Amenorrhea

17.333 Vandetanib CHEMBL24828 None 55 Thyroid Cancer

16.208 Epinephrine CHEMBL679 None 46 Allergic Reactions (Type I)

17.083 Chlorpromazine CHEMBL71 NCT04366739,

NCT04354805

54 Schizophrenia

17.042 Ketamine CHEMBL742 NCT04366739,

NCT04354805

57 Anesthetic Agent
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Methods). COVID-19 clinical trial drugs are used as ground truth. Our method has the highest area under

the curve (AUC) of 0.61 compared with the results calculated by CMAP using two SARS-CoV-2 infection

expression profiles (Figure 3C).

Rational interpretation of several drug repositioning opportunities for the treatment of

COVID-19

Network analysis methods such as deep learning, network diffusion, and network proximity can evaluate

the accessibility of drugs to SARS-CoV-2 in the background network (Ge et al., 2021; Morselli Gysi et al.,

2021; Zhou et al., 2020a). However, given a proviral host gene, we should choose its inhibitor/antagonist

as therapeutics instead of its activator/agonist, even if the activator/agonist shows higher proximity to

this host gene in the network. For example, SIGMAR1, the target of the NSP6 SARS-CoV-2 protein (Morselli

Gysi et al., 2021), is identified as a proviral gene in our study. Although which class of drugs, i.e., agonists or

antagonists of SIGMAR1, is responsible for the replication activity of SARS-CoV-2 remains to be verified by

more experiments (Hashimoto, 2021), the latest evidence revealed that knockout or knockdown of

SIGMAR1 could cause significant reductions in SARS-CoV-2 replication (Morselli Gysi et al., 2021). Further-

more, a clinical trial demonstrated that the antidepressant fluvoxamine, an antagonist of SIGMAR1, could

prevent clinical deterioration in adult outpatients infected with SARS-CoV-2 (Figure 4A) (Lenze et al., 2020).

However, there are network-based approaches to select SIGMAR1 agonists, such as amitriptyline, as a po-

tential treatment for COVID-19 (Morselli Gysi et al., 2021), implying confliction and limitation may largely

exist among current methods.

Drugs withmultiple targets may have implications for other diseases in the fight against viral infections. Just

as we can predict the antiviral properties of existing drugs, we can also predict whether these drugs will

influence preexisting conditions in patients with viral infections. For instance, cannabidiol (CBD), a member

of the cannabinoid class of natural products, is an FDA-approved drug for epilepsy treatment. There are

four clinical trials of CBD for the treatment of COVID-19. Studies have shown that CBD can inhibit the

cell entry and replication of SARS-CoV-2 (Nguyen et al., 2022; van Breemen et al., 2022). In our analysis,

CBD, ranked at 23rd, directly or indirectly targeted 87 host genes. Our comorbidity treatment analysis

found that CBD is also an agonist of PPARG and GPX1. Since 1997, a group of PPARG agonists, thiazolidi-

nediones, has been used to treat type 2 diabetes by alleviating insulin resistance (Larsen et al., 2003). In

theory, cannabis has desirable effects on hyperglycemia through its anti-inflammatory and antioxidant

properties (Mattes et al., 2021). GPX1 has been shown to exert a protective effect against the presence

of coronary artery disease (CAD) (Tang et al., 2008). Its activity was a useful marker for monitoring cardio-

vascular disease (Wickremasinghe et al., 2016). There is now a growing body of evidence that CBD is also

beneficial for the cardiovascular system (Kicman and Toczek, 2020; Stanley et al., 2013). The anti-inflamma-

tory and antioxidant effects of CBD may make it a treatment for coronary heart disease and diabetes,

together with COVID-19 (Figure 4B). Estradiol cypionate (EC) is an estrogen medication used in hormone

therapy for menopausal symptoms and low estrogen levels in cis women. The analysis of electronic health

records of over 68,000 COVID-19 patients revealed that estrogen therapy is associated with more than 50%

reduction in mortality (Seeland et al., 2020). EC was repositioned as COVID-19 treatment in other studies

and is now in phase 2 clinical trial (Siminea et al., 2022). In our analysis, EC can indirectly target HK2 and

PLCB4 through ESR2, identified as a risk factor for atrial fibrillation. Furthermore, estrogen may increase

the risk of myocardial infarction in transgender women by promoting thrombosis (Dutra et al., 2019). There-

fore, EC, despite its potential antiviral effect, could be excluded due to its possible cardiovascular side ef-

fects (Figure 4C). Together, our new drug repositioning strategy utilizes the direction information in the

network to screen the MoA of the candidate drugs and, from a genetic perspective, considers the potential

unwanted side effects of many complex diseases.

DISCUSSION

The key step in host-based drug repurposing for the treatment of infectious diseases is identifying the true

host gene. An increasing number of studies are looking for host genes on a genome-wide scale by different

means, such as GWAS, CRISPR screening, and AP-MS. These large-scale and complementary screens

require systematic integrative analysis to discover more accurate host genes. Moreover, current host-

based drug repositioning strategies generally utilize network proximity, network diffusion, and deep

learning approaches to identify potential repurposing candidates (Belyaeva et al., 2021; Morselli Gysi

et al., 2021; Siminea et al., 2022). The main goal of these approaches is to find drugs that can directly or

indirectly control as many host genes as possible. However, the networks used in these analyses are
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Figure 4. Examples of our drug repositioning candidates

(A) Three inhibitors of SIGMAR1 have the potential to treat COVID-19, while other activators such as amitriptyline were

filtered because of the wrong MoA.

(B) Cannabidiol has potential anti-coronavirus effects. Moreover, it acts as an agonist of GPX1 and PPARG to prevent

coronary heart disease and type 2 diabetes.

(C) Estradiol cypionate indirectly targets two antiviral genes, HK2 and PLCB4, by stimulating ESR2. However, ESR2 is also

an atrial fibrillation risk gene, which means estradiol cypionate increase the risk of cardiovascular disease.
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undirected graphs. In other words, some protein interactions are activating and some inhibiting. Although

some host genes are proviral and some are antiviral, drugs targeting the same target sometimes contain

antagonists and agonists. Thus, it is necessary to search for drugs with correct MoA in directed networks.

To this end, we comprehensively identified host genes and their directions to CoVs by systematically inte-

grating multi-omics data from mass spectrometry, CRISPR screening, and GWAS. We identified 964 host

genes for SARS-CoV-2, 477 host genes for SARS-CoV, 236 host genes for MERS-CoV, and 1,410 unique

genes. These genes include genetic risk genes such as TYK2, physical interaction genes such as ACO1,

and biological regulation genes such as CTSL. The host genes from the three sources overlapped little,

indicating that high-throughput biological assays are complementary. There are more overlapping genes

between SARS-CoV-2 and SARS-CoV than between SARS-CoV-2 and MERS-CoV; this may be because the

genome and structure of SARS-CoV-2 are more similar to SARS-CoV. We also used multi-omics data to

determine the direction of host genes to viruses, that is, their effects on viral infection. We identified 654

antiviral genes and 756 proviral genes. Functional enrichment analysis showed that the pathways enriched

in both proviral and antiviral genes were involved in infection- and immune-related pathways. To apply the

catalog of host genes to drug repositioning, we constructed a background network by fusing three

directed networks, including a virus-host network, a human PPI network, and a drug-target network. We

screened 6,234 drug candidates and designed a scoring system to rank them. Twenty-nine of the top

100 prioritized drugs are FDA approved, including seven in clinical trials for COVID-19. In comparison

with the results of CMAP, the AUC of our method is larger. In this scoring system, besides adding drug-

target interaction scoring and host gene scoring, we also considered the effects of drugs on comorbidities.

We found that CBD not only inhibits SARS-CoV-2 but may also act as a therapeutic drug for coronary heart

disease and diabetes. EC also has antiviral potential, but we found that it may increase the risk of cardio-

vascular disease. Overall, we first comprehensively characterized the host genes of CoVs and their role in

viral infection. In drug relocation prediction, unlike traditional network-based methods, our method fo-

cuses more on the directionality of the MoAs and the interaction networks of drugs to screen drugs with

the correct MoA. In addition, we innovatively considered the potential impact of drug candidates on

comorbidities.

Limitations of the study

There were still several limitations of our study. We collected as many host genes as possible. However, as

more research data become available, wemay discover more host genes to refine the virus-host interaction

network. Our analysis removed host genes whose directions could not be determined. Perhaps their direc-

tion can be identified with other experimental data, such as transcriptome-wide association studies (TWAS)

and Mendelian randomization (Gaziano et al., 2021; Huang et al., 2021; Ma et al., 2022; Pairo-Castineira

et al., 2021). We used data such as eQTLs, expression profiles, and CRISPR effect sizes to determine the

directions of host genes. However, the accuracy of directions identification in these ways is limited by sta-

tistical power and tissue specificity. The effects of these host genes we identified on CoV need to be vali-

dated in in vivo and in vitro experiments. Besides, many COVID-19 drug repositioning studies, including

this study, have used clinical trial datasets as ground truth for performance evaluation. Not all drugs in clin-

ical trials have significant antiviral effects. There is currently no good dataset to verify the robustness of our

strategy and others without biases. Finally, to infer the direction of a drug to CoV in each drug-gene(s)-

CoVs path, we used a random walk algorithm and then combined multiple drug paths for prioritization.

We can apply some more complex algorithms and models to our network in the future.
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Welch, S.R., Nichol, S.T., Tai, A.W., and
Spiropoulou, C.F. (2019). A genome-wide CRISPR
screen identifies N-acetylglucosamine-1-
phosphate transferase as a potential antiviral

target for Ebola virus. Nat. Commun. 10, 285.
https://doi.org/10.1038/s41467-018-08135-4.

Freshour, S.L., Kiwala, S., Cotto, K.C., Coffman,
A.C., McMichael, J.F., Song, J.J., Griffith, M.,
Griffith, O.L., and Wagner, A.H. (2021).
Integration of the drug-gene interaction
database (DGIdb 4.0) with open crowdsource
efforts. Nucleic Acids Res. 49, D1144–D1151.
https://doi.org/10.1093/nar/gkaa1084.

Gaulton, A., Hersey, A., Nowotka, M., Bento, A.P.,
Chambers, J., Mendez, D., Mutowo, P., Atkinson,
F., Bellis, L.J., Cibrián-Uhalte, E., et al. (2017). The
ChEMBL database in 2017. Nucleic Acids Res. 45,
D945–D954. https://doi.org/10.1093/nar/
gkw1074.

Gaziano, L., Giambartolomei, C., Pereira, A.C.,
Gaulton, A., Posner, D.C., Swanson, S.A., Ho, Y.L.,
Iyengar, S.K., Kosik, N.M., Vujkovic, M., et al.
(2021). Actionable druggable genome-wide
Mendelian randomization identifies repurposing
opportunities for COVID-19. Nat. Med. 27,
668–676. https://doi.org/10.1038/s41591-021-
01310-z.

Ge, Y., Tian, T., Huang, S., Wan, F., Li, J., Li, S.,
Wang, X., Yang, H., Hong, L., Wu, N., et al. (2021).
An integrative drug repositioning framework
discovered a potential therapeutic agent
targeting COVID-19. Signal Transduct. Target.
Ther. 6, 165. https://doi.org/10.1038/s41392-021-
00568-6.

Gordon, D.E., Jang, G.M., Bouhaddou, M., Xu, J.,
Obernier, K., White, K.M., O’Meara, M.J., Rezelj,
V.V., Guo, J.Z., Swaney, D.L., et al. (2020). A SARS-
CoV-2 protein interaction map reveals targets for
drug repurposing. Nature 583, 459–468. https://
doi.org/10.1038/s41586-020-2286-9.

Hashimoto, K. (2021). Repurposing of CNS drugs
to treat COVID-19 infection: targeting the
sigma-1 receptor. Eur. Arch. Psychiatry Clin.
Neurosci. 271, 249–258. https://doi.org/10.1007/
s00406-020-01231-x.

Hoffmann, M., Kleine-Weber, H., Schroeder, S.,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Mulin Jun Li (mulinli@connect.hku.hk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyses existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d All original code has been deposited at GitHub (https://github.com/Jianhua-Wang/covid19-

iscience-code) and is publicly available as of the date of publication. It has been listed in the key re-

sources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

COVID-19 GWAS GRASP https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx

whole blood and lung eQTL GTEx (release v8) http://gtexportal.org/home/index.html

Physical interaction genes BioGRID, IntAct, STRING.Viruses, and APID https://thebiogrid.org/, https://www.ebi.ac.uk/intact/,

http://viruses.string-db.org, http://cicblade.dep.usal.es:8080/APID

AP-MS data (Bojkova et al., 2020; Gordon et al., 2020;

Stukalov et al., 2021)

N/A

PPI data STRING, KEGG, Reactome https://string-db.org/, https://www.genome.jp/kegg/,

https://reactome.org

Virus infection differentially

expressed genes

GEO: GSE122876,

GSE33267, GSE152586

See Table S4 for details

CRISPR screening data (Baggen et al., 2021a; Daniloski et al., 2021;

Schneider et al., 2021; Wang et al., 2021a;

Wei et al., 2021; Zhu et al., 2021b)

N/A

Drug-target information DGIdb http://www.dgidb.org

Credible sets of 17 complex

diseases GWASs

CAUSALdb http://mulinlab.tmu.edu.cn/causaldb, see Table S8 for details

Software and algorithms

Python (v3.7) The Python Language https://www.python.org

VEP (release 96) (McLaren et al., 2016) https://www.ensembl.org/info/docs/tools/

vep/script/index.html

B-SIFT (Lee et al., 2009) http://blocks.fhcrc.org/sift/SIFT.html

clusterProfiler (v4.4.4) R package https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

Cytoscape (v3.9.1) (Shannon et al., 2003) https://cytoscape.org

networkx Python package https://github.com/networkx/networkx

CMAP (Subramanian et al., 2017) https://clue.io/query

All code used in the manuscript This manuscript https://github.com/Jianhua-Wang/

covid19-iscience-code
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study analyses existing, publicly available data and does not contain wet lab experiments.

METHOD DETAILS

Comprehensive curation of host genes of three CoVs and determination of the directions

between host genes and CoVs pathogenesis

Since the SARS-CoV-2 was most evolutionarily conserved with SARS-CoV and MERS-CoV, SARS-CoV-2 may

share host genes or therapeutic targets with the other two CoVs. Thus, by fully utilizing the relevant informa-

tion and shared mechanism of infection among these CoVs, we curated as many as host genes of these three

CoVs from three categories: genetic risk genes, physical interaction genes, and biological regulatory genes.

Genetics risk genes

We first retrieved all risk SNP (p-value < 5e-8) in COVID-19 GWAS from GRASP COVID-19 data (https://

grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). Then, the risk SNPs were annotated as coding variants

and non-coding variants by VEP (McLaren et al., 2016). For coding variants, the target gene is the gene

where the mutation locates. We evaluated the effect of the gene by calculating the functional impact score

of the risk allele using B-SIFT (Lee et al., 2009). We assigned the direction of effect as 1 for a B-SIFT score

higher than 0.5 and �1 for a B-SIFT score lower than �0.95. For non-coding variants, we identified the

target genes and directions by integrating significant expression quantitative trait locus (eQTL) data of

whole blood and lung from GTEx (release v8) (Consortium et al., 2017). When a variant is both a COVID-

19 risk variant and an eQTL, the associated expression gene is identified as the target gene of the variant.

When the GWAS risk allele positively affects gene expression, the direction is 1; otherwise, it is �1.

Physical interaction genes

We collected host genes interacting with CoVs from four PPI databases, including BioGRID (Oughtred

et al., 2019), IntAct (Orchard et al., 2014), STRING.Viruses (Cook et al., 2018), and APID (Alonso-Lopez

et al., 2019). We also included high-confidence proteins that interacted with CoVs from three AP-MS exper-

iments (Bojkova et al., 2020; Gordon et al., 2020; Stukalov et al., 2021). In addition, we also included the

host genes of CoV collected by Zhou, Y. et al. (Zhou et al., 2020a). However, there is no information on

the direction of host genes to CoV in these datasets. To determine the direction of each virus-protein inter-

action. We manually searched the name of the protein and matched the virus in the literature and inferred

the direction according to the biological effect of protein on virus infection. The direction of a host protein

on the virus is set as positive if the protein has a helpful role in the invasion and amplification of CoV. More-

over, we used gene expression profiles as complementary sources of directions. We got differentially

expressed genes of all three CoVs by analyzing corresponding gene expression profiles from the NCBI

Gene Expression Omnibus (Katsura et al., 2020; Sims et al., 2013; Yuan et al., 2019). Protein-coding genes

with Adjust p-value% 0.05 and |log2FoldChange| > 1 were included. The direction of a host protein can be

regarded as the same as the sign of log2FoldChange if the protein gene is differentially expressed genes.

Biological regulatory genes

We also collected results from six genome-wide CRISPR perturbation screening assays (Baggen et al.,

2021a; Daniloski et al., 2021; Schneider et al., 2021; Wang et al., 2021a; Wei et al., 2021; Zhu et al.,

2021b). For every screen assay, the top 100 significant genes were included. We comprehensively consider

the perturbation and the effect size of the gene to determine the direction of the gene to the virus. For

example, a gene with a negative effector value in a CRISPR knockout screen will have a therapeutic effect

on the virus.

Construction of the directional virus-host interactome

We construct a directed virus-host network by combining all gene-virus pairs from the three sources and

their directions. Gene-virus pairs with conflicting directions between different sources were deleted.

Non-protein-coding genes were removed. The network was visualized by Cytoscape (Shannon et al., 2003).

Functional enrichment analysis of antiviral and proviral genes

To investigate the biological functions of antiviral and proviral genes, respectively, we performed a

pathway-based analysis based on KEGG annotations by R package clusterProfiler (Wu et al., 2021).
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Gene sets in KEGG pathways with 2–500 genes were included. Genes in the network were analyzed, and

significantly enriched pathways were identified with FDR < 0.05.

Directional human interactome

We constructed a directional human interactome by integrating three resources, including human PPIs

from STRING, and human signaling pathways from KEGG and Reactome (Jassal et al., 2020; Kanehisa

et al., 2019; Szklarczyk et al., 2019). Specifically, for PPIs in STRING, only interactions with clear directions

and scores of more than 700 were included. Interactions with explicit actions, either activation or inhibition,

were selected when both source and target were protein-coding genes.

Drugs and drug targets

Drug-target information, including ancillary data such as interacting scores, and MoAs, was retrieved from

DGIdb (Cotto et al., 2018). The direction of the drug to the target is determined by MoAs. If the MoA is

inhibitory, the direction of the drug is negative and vice versa. Drug-target interactions with unclear direc-

tions are removed. Clinical stage information for the drug was obtained from ChEMBL (Gaulton et al.,

2017).

Drugs repositioning for CoVs

By integrating the directional networks described above, we can identify the potential repositioning of

known drugs on CoVs. We searched the appropriate drug-gene(s)-CoVs paths for each compound. Since

drugs can directly or indirectly affect viral infections, we searched for repurposed drug candidates by

directed mapping and network mapping as described in our previous paper (Cui et al., 2020). Briefly, in

directed mapping, we search for the drugs that target the host genes. For network mapping, we applied

the random walk with restart algorithm to seek the shortest paths from the drug target to host genes and

removed the unlikely paths by measuring the relatedness scores between the start node and end nodes

using Python package networkx (https://github.com/networkx/networkx). Then, we inspected the accessi-

bility of each drug to host genes and assembled directional drug-gene(s)-CoVs paths. Since all the

interactions in networks were labeled with directions encoded as 1 and -1 (for positive effect and negative

effect, respectively), we multiply the directions to infer the drug’s effect on CoVs. Drugs that have a nega-

tive impact on the CoV are considered a potential repositioning, and the proviral drugs were removed.

Unwanted side effects and underlying additional treatment

To predict the impact of repurposed drugs on comorbidities, we first selected the largest GWAS for 17

complex diseases (including diabetes mellitus, cardiovascular disease, cerebrovascular disease, chronic

liver disease, chronic kidney injury, autoimmune disease, and many cancers) from CAUSALdb (Table S8)

(Wang et al., 2020). We retrieved the 95% credible sets of fine-mapping results of each GWAS from

CAUSALdb. Results of FINEMAP were used (Benner et al., 2016). We further selected variants in credible

sets with GWAS p-value < 1E-8 as credible risk variants (CRVs). Then we predicted disease-associated

genes and their directions of effect on diseases by the same approach linking COVID-19 risk SNPs to genes.

After identifying the associated genes and their directions of effect on comorbidities, we checked the ef-

fects of repositioned drugs on these diseases using the directed mapping strategy described above. We

termed negative effects as additional treatment and positive effects as unwanted side effects. Drugs with

unwanted side effects were removed.

Prioritization of repositioning candidate

We designed a plain scoring system to prioritize repositioning candidates. A drug may have multiple drug-

gene(s)-CoV paths. For each Drug-Gene(s)-CoV path, we assigned a DGV score, which equals the

accumulation of drug target score, mapping score, and host gene score. For drug target scores, we

retrieved drug-target interaction scores of each drug from DGIdb. One point was given to the drug

when the score was higher than the median of all interacting scores of the drug; otherwise, half a point.

For the mapping score, the score is set as the inverse of the number of genes. For the host gene score,

it got 1 point if the direction of the interaction was identified by eQTLs and CRISPR screen or half a point

if the direction was identified by gene expression profile. The score for each drug is equal to the sum of all

its DGV scores. Drugs with higher scores were regarded as having higher antiviral potential.
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Assess the performance of drug repurposing

To compare our method with other methods, we used a commonly-used transcriptome analysis approach,

connectivity map (CMAP) (Subramanian et al., 2017). We used gene expression profiles of SARS-CoV-2 in-

fected samples and a control group from alveolar type II cells and African green monkey kidney cells (Kat-

sura et al., 2020; Wei et al., 2021). We input the top-50 up- and downregulated genes into the web tool

(https://clue.io/query) and got the drug candidates ranked by connectivity map scores. We take as ground

truth all drugs currently in clinical trials for COVID-19. Then we computed the receiver operating character-

istic (ROC) curve and estimated the area under the curve (AUC).

QUANTIFICATION AND STATISTICAL ANALYSIS

Functional enrichment analysis was conducted using clusterProfiler with significance threshold set at

FDR<0.05.
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