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The pancreas has both endocrine and exocrine function and plays an important

role in digestion and glucose control. Understanding the development of

the pancreas, grossly and microscopically, and the genetic factors regulating

it provides further insight into clinical problems that arise when these

processes fail. Animal models of development are known to have inherent

issues when understanding human development. Therefore, in this review,

we focus on human studies that have reported gross and microscopic

development including acinar-, ductal-, and endocrine cells and the neural

network. We review the genes and transcription factors involved in organ

formation using data from animal models to bridge current understanding

where necessary. We describe the development of exocrine function in the

fetus and postnatally. A deeper review of the genes involved in pancreatic

formation allows us to describe the development of the di�erent groups

(proteases, lipids, and amylase) of enzymes during fetal life and postnatally and

describe the genetic defects. We discuss the constellation of gross anatomical,

as well as microscopic defects that with genetic mutations lead to pancreatic

insu�ciency and disease states.
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Introduction

The pancreas has both endocrine and exocrine functions. The endocrine system

consists of multiple peptide hormones that function to regulate blood glucose but also

influence exocrine functions (e.g., somatostatin). Its exocrine function involves the

secretion of enzymes, bicarbonate, and water to aid in the digestion of nutrients.

There aremany unanswered questions related to embryonic pancreatic development.

Due to ethical issues, research in human development of the pancreas has been limited

and predominantly conducted via animal studies.

In this review, we describe the current understanding of the development

of the human pancreas, including gross and microscopic anatomy with a

focus on exocrine function. In addition, we will describe disease states as

the consequence of abnormalities in pancreas development and the genetic
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mutations behind them. We will utilize animal models to

highlight the possible development of the human pancreas and

its implications in disease states.

Intrauterine pancreas development

The foregut endoderm gives rise to the dorsal and

ventral pancreatic buds between days 26 and 31 of

embryonic development.

Initially, there are two ventral pancreatic buds but the left

side regresses. Figure 1 depicts the rotation of the stomach and

duodenum starting at week 5 (Figure 1A) which results in the

fusion of the two buds with the ventral bud lying posterior by

week 6 (Figure 1B). The majority of the organ is derived from

the dorsal bud while the ventral bud will give rise to the uncinate

process and part of the head of the pancreas (Figure 1C) (1–3).

Pancreatic ducts

The main pain of the pancreatic duct (duct of Wirsung) is

formed from the pancreatic duct of the ventral bud and the

distal part of the duct of the dorsal bud. The proximal part of

the dorsal bud contains an accessory pancreatic duct that opens

into the minor duodenal papilla (4, 5). Initially, the ducts of the

dorsal and ventral pancreas fuse, followed by partial regression

of the dorsal pancreatic duct proximal to the duodenum to form

Santorini’s canal (6). In some, this will open into the minor

papilla, while in others, it will be non-draining or connect with

the main duct (6–8). Lack of fusion of the ventral and pancreatic

ducts results in pancreatic divisum (9). By the 8th week, the

bile tree and main pancreatic duct are joined together at the

duodenum (10).

Three variants have been noted in the location of biliary

and pancreatic ducts. The most common is when the pancreatic

and bile duct joins at variable distances from the duodenum.

The second variant includes joining at the duodenal wall and

the third variant is when the pancreatic duct and biliary duct

open at separate locations in the duodenum.While no particular

pathology has been associated, there may be potential for

pancreatitis in some individuals with the second and third

variants (7, 11). These variations are important during the time

of surgery or ERCP (11, 12).

Cellular matrix

Based on animal models the formation of cells that make

up the pancreas starts as the epithelium of the buds begins to

fold. It is followed by phases of branching, proliferating, and

differentiating. The result is grape-like clusters, in which islet

cells form clusters to the periphery of acinar and ductal cells (5).

The pancreas is made predominantly of acinar and duct

cells, while the islet cells make up 1 to 2% of the pancreas.

By the 9th week, the pancreas exists as tubules and clusters of

undifferentiated epithelial cells. The tubules continue to grow,

followed by lobule formation by the 14th week. Acinar cells with

zymogen granules are noted between the 12th and 15th week,

and in significant numbers by the 20th week (13). During this

phase, the endoplasmic reticulum and Golgi apparatus undergo

significant maturation (6). This is followed by progressive

growth with a lumen in the center and lobules to the periphery

with numerous acini (6).

Pancreatic stellate cells secrete extracellular matrix proteins

and seem to have a significant function in the first trimester of

human pancreatic development by enhancing differentiation to

exocrine cell lineages (14).

Neuronal network

Comparable with the enteric nervous system, an intra-

pancreatic nervous system develops to enable a degree of

independence of the pancreas from the central nervous

system and the gut. The pancreatic ganglia are the nervous

integration centers of the pancreatic exocrine and endocrine

secretion. Vagal preganglionic, sympathetic postganglionic,

sensory, and enteric fibers innervate the fully developed

pancreas. Postganglionic nerve fibers surround almost every

acinus, forming a periacinar plexus containing cholinergic,

noradrenergic, peptidergic, and nitrergic fibers, which terminate

at the acinar cells. The autonomic nervous system of

the pancreas interacts with ganglionic structures that are

randomly scattered throughout the pancreatic parenchyma and

represent the intrinsic neural component of the pancreatic

nerve supply (15). Neurons and nerve fibers form complexes

with endocrine cells, and epithelial cells located in ducts

early in the second trimester and include pain fibers from

parasympathetic nerves (16). Interestingly, innervation is found

most densely at the head of the pancreas and decreases

toward the tail (17). The sympathetic system seems to

develop during this early fetal period and may have a

role in endocrine pancreas development (18). Understanding

sympathetic innervation of the exocrine pancreas is in its

infancy. Studies seem to demonstrate sympathetic inhibition

of blood flow, resulting in decreased exocrine secretion,

and therefore indirect effect (19). On the other hand,

parasympathetic innervation has a large role in exocrine

function, mediated via vagal nerve activity, especially in the

cephalic phase (20). Gastric, intestinal, and absorbed nutrient

phases also appear to have both direct and indirect (via

vagal nerve) mechanisms of pancreatic enzyme secretion

(21). See Neural Control of the Pancreas | Pancreapedia for

more information.
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FIGURE 1

Development of the Pancreas. (A) Rotation of the ventral bud with the stomach and duodenum to the right. (B) The ventral and dorsal bud fuse

together. (C) The main pancreatic duct exiting via the ventral bud to the duodenum. Ventral bud gives rise to uncinate process and part of the

head of the pancreas. The dorsal bud gives rise to the remainder of the pancreas. Reprinted from “Pancreatic Duct Variations and the Risk of

Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis” Ojo A S. Cureus, 12 (9): e10445. 2020 by Cureus.

Development of exocrine function

The major adult human digestive exocrine pancreatic

enzymes include amylase, pancreatic triglyceride lipase (PTL),

colipase, trypsinogen, chymotrypsinogen, carboxypeptidase A1

and A2, and elastase. We will discuss the enzymes found in the

intrauterine period followed by postnatal development and the

maturation process to adult levels of the enzymes.

Intrauterine period

Most of the human pancreas exocrine development is

derived from morphological studies. The exocrine tissue

comprises acinar cells that secrete digestive enzymes and a duct

system that deliver them to the small intestine.

Pancreatic secretory trypsin inhibitor (PSTI) or serine

protease inhibitor kazal type 1 (SPINK1) was first noted by

immunohistochemistry at the 8th gestational week (22).

Proteases

Adult human proteases include trypsinogen,

chymotrypsinogen, elastase 1, and carboxypeptidase A1

and A2.

Many enzymes, including trypsinogen, chymotrypsinogen,

and elastase-1, appear between 14th and 16th weeks of

gestation (22–24).

The trypsinogen and chymotrypsinogen appear to be

present from 16th weeks gestation and increase until birth

(23). Activation of trypsinogen to trypsin requires enterokinase,

while chymotrypsinogen requires trypsin for conversion to

chymotrypsin (25, 26). Chymotrypsin was present in the 23-

week premature infants with levels similar to term infants (27).

While initially the development of enterokinase was thought to

be around 26th week gestation, the levels of chymotrypsin found

by Kolacek et al. suggest this may be slightly earlier (27, 28).

Neonates from 32 weeks gestation to term appear to have

90% to 100% of trypsin levels of children 2 years of age. On

the other hand, levels of chymotrypsin is 50-60% and while

carboxypeptidase B is 10-25% the level of 2-year-old children,

thus showing the development of protease levels over time

(Table 1) (29).

Lipases

Pancreatic triglyceride lipase (PTL) is the predominant

lipase in human adults. However, other enzymes involved in fat

breakdown include colipase and phospholipase A and B.

Lipases such as carboxyl ester lipase and pancreatic lipase-

related proteins 1 and 2 (PLRP) were present from 14 to 16

weeks gestation (22–24), though PLRP1 has no known activity

(38). The mRNA encoding PLRP1 and PLRP2was present by the

16th week in the human fetal pancreas. In contrast, the mRNA

encoding PTL is limited in the fetal pancreas (29), and likely does

not start increasing until 41 weeks gestation (24).
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TABLE 1 Ontogeny of common pancreatic enzymes in humans.

Pancreatic

enzyme

Prenatal development

(Gestational week)

Postnatal activities Adult level References

Amylase 39 weeks <1% of adult values or absent

levels until 6 weeks

6 months to 2 years (22, 29–32)

Pancreatic

triglyceride lipase

13–21 weeks 5–10% of adult values 2 years (29, 33–35)

Trypsin * 14–16 weeks 90–100% of adult values <1month (22, 23, 29, 30)

Chymotrypsin* 14–16 weeks 50–60% of adult values 2 years (22, 23, 29, 30, 36)

Elastase 14–16 weeks 25% of adult values 2 weeks (22, 37)

*Initially detected as trypsinogen and chymotrypsinogen.

Amylase

Pancreatic amylase (encoded by AMY2) is present in adult

humans but has not been detected in the fetus, and in fact is

at low levels in humans even until 3 months of age (22, 39,

40).

Postnatal maturation of the exocrine
function

Digestion of lipid, protein, and carbohydrates in

infants relies on the state of the maturation of exocrine

pancreatic function. However, diet composition can also

affect enzyme production. Infants do not respond to exogenous

cholecystokinin (CCK) or secretin well, but the exact maturation

time of response of the exocrine pancreas to secretagogues is

not well-defined (41, 42). Understanding normal age-based

values of pancreatic enzyme activity in duodenal fluid with

pancreatic function testing would allow a better understanding

of the ontogeny of pancreatic exocrine tissue.

Interestingly, a diet in the form of starch and protein

augments the production of α-amylase and trypsin, respectively,

but fat does not stimulate the increased lipase levels in infants

(36). However, a high protein and low-fat diet stimulates both

trypsin and PTL activity (36). After 12 months of age, PTL does

appear to be stimulated over baseline activity by meals (29). It

may therefore be possible that CCK and secretin more effectively

stimulate exocrine function closer to 12 months of age.

Initially, infants have “physiologic” steatorrhea in the first

3 to 6 months postnatally. As previously noted, lipase is at

very low levels in the neonatal period. Based on rodent models,

PLRP2 may have a role in triglyceride digestion in newborns

(38). Along with PLRP2, the presence of colipase has been noted,

which based on animal models appears to increase the activity

of PLRP2 (43). Overall, PTL output or the coefficient of fat

absorption is 5 to 10% of the adult values (29, 33, 44). In a study

by Track et al., the PTL levels at 3 weeks were significantly higher

than at 3 days of life and approached that of adult levels (34).

However, in the study by Lebenthal et al., the PTL levels were low

at birth and 1 month, with a substantial rise by 2 years (Table 1)

(29, 30).

Amylase in the acinar cells was not detected until 39

weeks gestational age, and the functional amount of amylase

does not arise until the 6th week postnatally (22, 29). In

premature infants, amylase activity does not increase after a

meal, compared to trypsin, and it is presumed that pancreatic

amylase needs are met in the form of salivary amylase and

amylase in breastmilk (29, 45). Indeed, it is thought that amylase

remains at low levels until 6 months, although isolated amylase

deficiency was noted to be frequent till 2 years of age (Table 1)

(31, 32). Interestingly, in one cohort, isolated amylase deficiency

had been noted beyond 2 years of age with a prevalence of up to

3.5% (32).

Elastase on the other hand is found at low levels at birth in

meconium but reaches levels at the lower end of normal within

3 to 4 days in term infants and 2 weeks in preterm infants

(Table 1) (37).

The immaturity of exocrine pancreas function is a

notable factor in infant’s vulnerability to metabolic and

nutritional stress (33). Thus, additional non-pancreatic sources

of digestion are present. Breast milk can be a source of

amylase and bile salt-stimulated lipase. Additionally, brush-

border glucoamylase is present in newborns with similar

concentrations to that of adults, which may help in the digestion

of complex carbohydrates.

Genes involved in the pancreas
development

The process for the development of the pancreas and

the fetus is based on specific coordination between genetics

and the local environment. Much of our understanding of

genes and molecular signaling comes from animal studies

with the assumption that human development is similar.

Table 2 summarizes genes and roles in pancreas development.
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We will discuss some of the genes that are involved

in pancreas development and more specifically acinar and

ductal cells. For further details, please visit Development

of the Pancreas | Pancreapedia and work by Jennings

et al. (47).

After the initial formation of pancreatic tissue, activation

of Wnt/β-catenin is required for pancreatic tissue growth,

particularly in acinar cells (46). Inhibition of another protein,

sonic hedgehog (SHH), likely due to the proximity of

the notochord, allowed for future expression of pancreas-

duodenum homeobox 1 (PDX1), also known as insulin

promoter factor 1 (IPF1) (47, 52). PDX1 has been found

as early as pancreatic bud formation and continues to

be present in all epithelial cells in the embryonic period,

and remains in the nuclei of non-endocrine epithelial cells

along with the nuclei and cytoplasm of islet cells into

adulthood (48).

Acinar cells begin initially as several carboxypeptidase

A1 pyramidal cells bud from the pancreatic epithelium,

likely representing the proacinar population. Additionally,

GATA4, basic helix-loop-helix transcription factor (MIST1), and

pancreatic secretory trypsin inhibitor are also expressed (1).

However, the seminal work by Jennings et al. (56) suggests

forkhead box protein A2 (FOXA2), and SRY-related homeobox

9 (SOX9) are other predominant transcription factors that define

cell types. In particular, SOX9 and FOXA2 are present in ductal

cells, while GATA4 is present in acinar cells from the second

trimester onward (56). SOX9 has been noted in dorsal and

ventral buds from day 32 with higher levels found in later

embryonic stages days 44 to 52 (60). Other cellular markers of

ductal cells include cytokeratin 19 (CK19) and CD133. CD133

is found in fetal duct-like cells, while CK19 is widely expressed

in fetal pancreatic epithelial cells and continues as a ductal cell

marker in adults (48, 65).

Notch signaling interacts with recombination signal

binding protein for immunoglobulin kappa J region (RBPJ)

to downregulate neurogenin-3 (NEUROG3) expression via

hairy and enhancer of split-1 (HES1) (66). NEUROG3 is

involved in endocrine commitment. HES1 along with pancreas-

associated transcription factor 1a (PTF1a) promotes acinar

development (5).

As previously noted, PTF1a is important in the development

of acinar cells. This is a class B basic helix-loop-helix (bHLH)

transcription factor, which appears to be conserved across

species. In animal models, the development of pancreatic buds

includes PTF1a along with PDX1 expression (67). However,

further development of the pancreas includes an enhancer that

binds to the active form of PTF1a and RBPJ to regulate PTF1a

expression in acinar cells (68). Over time RBPJ is replaced with

RBJPL which in complex with PTF1A and other class A bHLH

forms PTF1-L and drives downstream regulators of digestive

enzymes (53, 69, 70).

Structural abnormalities in pancreas
development

Detailed description of developmental abnormalities that are

associated with pancreatitis are outside the scope of this review.

For completeness we describe them in brief.

Pancreatic divisum

Pancreatic divisum is the most common abnormality related

to ductal fusion and drainage. It occurs in up to 10% of

individuals (9). The lack of pancreas fusion results in drainage

of the dorsal part of the pancreas via the minor papilla,

while the ventral portion drains the head of the pancreas,

uncinate process, and biliary tree into the major duct (71). It

remains unclear if this anomaly increases the risk of recurrent

pancreatitis and chronic pancreatitis.

Annular pancreas

The annular pancreas is a rare cause of pancreatitis and

duodenal obstruction, typically with non-bilious emesis (72).

It results in a thin band of pancreatic tissue surrounding the

second part of the duodenum. It is hypothesized that the two

ventral buds remain and fuse with the dorsal bud to create

the ring (4). This may be the result of abnormal hedgehog

signaling (5). Within the annular pancreas, there are six further

classifications of type of annular pancreas depending on ductal

drainage, including themain duct, minor duct, and common bile

duct (73, 74).

Pancreatobiliary malformation

Anomalous pancreaticobiliary junction results from the

joining of bile and pancreatic ducts outside the duodenal

wall. It is believed that dysplasia and misarrangement of the

bile and ventral pancreatic duct around the time of ventral

pancreas formation results in pancreaticobiliary malformation

(PBM) (75, 76). Typically, the end of the common bile

duct is surrounded by the papillary sphincter, regulating

bile flow while preventing reflux of pancreatic juices (77).

However, with PBM, the sphincter is more distal (more

than 15mm) to the junction of the bile and pancreatic

duct. As a result, bile and pancreatic juices may reflux

into the other respective ducts, resulting in inflammation,

bile duct dilation, pancreatitis, bile duct, and gallbladder

cancer (78, 79).

It is further divided into three types, bile duct, pancreatic

duct, and complex type, based on each joining at an acute angle.
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TABLE 2 Transcription factors and cell signaling involved in human pancreas development.

GENE ROLE References

Wnt/ β-catenin Inhibition in endoderm allows for pancreas and liver development. Later activation is

required for cellular growth, specifically acinar cells

(46)

PDX1 Important in early pancreas formation, is found in multipotent progenitor cells as well as

ductal and endocrine cells. Mutations have been associated with pancreatic agenesis as well

as MODY

(47–51)

Sonic Hedgehog (SHH) Signaling from notochord decreases activity of Shh, allowing PDX1 expression (47, 52)

PTF1A Has a role along with PDX1 in pancreas development and formation, as well as a crucial

role in acinar cell development

(53–55)

GATA4 Transcription factor involved in early dorsal and ventral pancreatic bud formation. Later is

found in progenitor and peripheral Tip cells, and finally acinar cells Association with

neonatal diabetes and possible exocrine insufficiency

(56, 57)

NEUROG3 Appears to be present by 8 weeks, and disappears by 35 weeks, and is important in

endocrine islet cell formation

(58, 59)

SOX9 Transcription factor in determining cell types and is uniformly present in ductal cells.

Additionally has a role in ventral and dorsal bud formation. Mutation results in multiple

systemic abnormalities, including pancreatic hypoplasia

(56, 60)

HNF1B Involved in pancreas formation and ductal cell lineage early on in embryogenesis.

Mutations have been associated with pancreas agenesis and MODY

(61–64)

Reflux into the biliary system is thought to result in a higher

risk for congenital choledochal cyst, and, in particular, type Ia,

Ic, and IV-A are associated with PBM (80). The biliary system is

particularly susceptible as the pressure in the pancreatic duct is

generally higher (81).

Ansa pancreatica

The ansa pancreatica is a rare type of

anatomical variation of the pancreatic duct. It is a

communication between the main pancreatic duct

(of Wirsung) and the accessory pancreatic duct (of

Santorini). Ansa pancreatica has been considered a

predisposing factor in patients with idiopathic acute

pancreatitis (82).

Genetic diseases with compromised
exocrine function

The most common genetic disorder resulting in exocrine

pancreatic insufficiency include Cystic fibrosis (>90%),

followed by Schwachman-diamond, Johanson-Blizzard,

Pearson’s bone marrow, pancreatic agenesis/hypoplasia,

isolated enzyme deficiencies, and genetic or metabolic causes

of pancreatitis (83). These will be discussed here in brief

for completeness.

Cystic fibrosis

Cystic fibrosis transmembrane conductance regulator

(CFTR) is found in ductal epithelial cells and is involved in

HCO3 - and Cl− transport between the membranes along

with water (84). Impaired movement of the ions, and fluid,

results in increased viscosity and obstruction of the lumen (85).

It is hypothesized that pancreatic insults begin in utero and

progress after birth to affect all ducts resulting in pancreatic

insufficiency (86). Pancreatic insufficiency occurs in 85% of

this population, with a high prevalence among those with

homozygous mutations for 1508 (83).

Schwachman-diamond syndrome

Schwachman-Diamond syndrome is an autosomal recessive

disorder with bone marrow involvement, skeletal abnormalities,

and pancreatic insufficiency with variable penetrance (87).

Mutations predominantly on chromosome 7 seem to be

responsible, but with a spectrum of homozygous and compound

heterozygous mutations (88, 89). It has been identified in 90%

of individuals with this syndrome and the protein produced by

the gene appears to affect ribosome function and may reduce

protein production (90). Biopsies of the pancreas have shown

that the duct and islet cell functions are preserved; however, acini

are replaced by adipose tissue (91). Interestingly, over time, it

seems that patients regain some function, and 40% to 60% have

sufficient exocrine function (92).
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Johanson-Blizzard syndrome

Johanson-Blizzard syndrome is an autosomal recessive

disorder with a defect in the UBR1 gene on Chromosome 15

(15q14–21.1) (93). E3 Ubiquitin ligase UBR1 is involved in the

breakdown of intracellular pathways, thus mutations in this

affect appropriate protein recycling (94). The typical clinical

features are exocrine pancreatic insufficiency, hypoplasia/aplasia

of the alae nasi, congenital scalp defects, and growth retardation

(95, 96). Zenker et al. reported that individuals with this

syndrome did not express UBR1 and had intrauterine-onset

destructive pancreatitis with secondary replacement of acinar

cells with adipose tissue resulting in pancreatic insufficiency

(93, 97, 98).

Pearson syndrome

Pearson syndrome is characterized by the bone marrow

with vacuolization of erythroid and myeloid precursors, and

sideroblasts, along with pancreatic insufficiency and it was

initially reported by Pearson (99). It was later confirmed that this

syndrome is the result of mitochondrial DNA deletion, affecting

protein-coding and tRNA genes and therefore mitochondrial

structure and function (100, 101). However, the prevalence

of pancreatic insufficiency varies, likely due to variation in

mitochondrial DNA deletions (100, 102–104).

Pancreatic agenesis

Agenesis of the dorsal pancreas can have non-specific

findings, including abdominal pain, and often requires imaging

findings such as CT to show a lack of pancreatic tissue (105).

Several transcription factors have been implicated in pancreas

malformation and agenesis, these include PDX1, Hepatocyte

nuclear factor (HNF1B), PTF1A, and SOX9. A case report

described a homozygous point deletion mutation in PDX1

resulting in pancreatic agenesis with resulting exocrine and

endocrine insufficiency (106). While complete agenesis of the

pancreas is incompatible with life, case reports have noted

variations in ventral and dorsal agenesis ranging from partial to

complete (107, 108).

HNF1B mutations have led to the absence of part of the

head, body, and tail of the pancreas, suggesting a role for

HNF1B in dorsal pancreas formation (61–63). Another key

regulator, particularly of exocrine function, PTF1A, has been

implicated in pancreatic and cerebellar agenesis (54). Mutations

in downstream enhancers of PTF1A have also been noted with

isolated pancreatic agenesis (55). Finally, SOX9 has a role in

multiple tissues, and particularly the pancreas through much of

its formation. Mutation in one gene results in developmental

abnormalities of skeletal, reproductive, and other organs such as

pancreas hypoplasia (56, 60).

Pancreatitis

SPINK1 is responsible for inhibiting prematurely activated

trypsin in the pancreas. Mutations in the gene have resulted

in variations in pathology ranging from increased risk of

pancreatitis and exocrine pancreatic insufficiency to inconsistent

implications in pancreatic disease (109, 110). Overall, it does

appear that the gene is implicated in the earlier cause of

pancreatitis and has more pancreatic insufficiency than normal

cohorts (111). Indeed, case reports have described exocrine

pancreatic insufficiency in infants (112).

Cationic trypsinogen (PRSS1), anionic trypsinogen (PRSS2),

and mesotrypsin (PRSS3) are forms of trypsinogen with PRSS1

being the dominant one (104). A hereditary pancreatitis is a rare

form of chronic pancreatitis resulting from amutation in PRSS1,

which is autosomal dominant with high penetrance and risk of

pancreatic adenocarcinoma (113, 114). Episodes of pancreatitis

have been noted to be bimodal with peaks around 6 years and 18

years of age, but with variability in pancreatic exocrine function

deficiency, though this was often based on clinical symptoms or

stool testing (113, 115, 116).

Carboxypeptidases are metalloproteases that play a role in

the digestion of proteins and peptides by hydrolyzing C-terminal

peptide bonds (117). Following trypsinogen, carboxypeptidase

A1 (CPA1) is the next most common protein excreted in

pancreatic fluid (118). Among a cohort of German individuals,

CPA1 variants were noted to be a risk factor for chronic

pancreatitis. Although the mechanism is uncertain, the authors

propose misfolding with subsequent stress in the endoplasmic

reticulum as a cause (119).

Chymotrypsinogen C variants (CTRC) is a calcium-

dependent serine protease that is important in cationic

trypsinogen activation and trypsin degradation (120, 121).

Within the pancreas, however, it appears that it has a role

in trypsinogen degradation (121, 122). Therefore, mutations

result in loss of function and have been associated with early

pancreatitis and chronic pancreatitis in pediatrics (123, 124).

Maturity onset diabetes of the young
(MODY)

Mutations in transcription factors previously noted in the

development of the pancreas have been implicated in anatomical

variants as well as in endocrine issues, namely, MODY. HNF1B

and PDX1 are two that have been implicated (49, 50, 62, 125).
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Additionally, deficiency in carboxyl ester lipase (CEL) resulted

in another form of MODY. CEL, also referred to as bile salt-

dependent lipase (BSDL), is one of the four lipases involved

in hydrolyses of dietary fat, fat-soluble vitamins, and more

specifically cholesterol esters (126). The combined endoscopic

pancreatic stimulation test and MRI have shown severely

reduced acinar function, along with low pancreas volume with

increased lipomatosis in cases of MODY (127, 128).

Future directions

Knowledge of gene expression and the role of transcription

factors allow for further research into stem cell therapy. Current

research in both the endocrine and exocrine function was

conducted on animal models, though with human pluripotent

stem cells (hPSCs). Pluripotent stem cells can be obtained

from embryonic cells or can be induced from adult somatic

cells, such as fibroblasts or ductal epithelium. Ethical issues

are likely to be a big barrier to the use of embryonic cells.

Thus, understanding of factors required to convert somatic

cells to pluripotent stem cells and then into pancreatic cell

lines will hold promise for future. Studies so far seem

to show promise in de-differentiating somatic cells-induced

pluripotent stem cells (iPSC) and then differentiating into

pancreatic progenitor cells (129, 130). In fact, clinical studies are

underway in Type 1 diabetes mellitus and the new technologies

hold promise in those with exocrine pancreatic dysfunction,

particularly in those with chronic pancreatitis requiring islet

cell transfer.

There are many answered questions in the human

development of the pancreas. How does autonomic innervation,

including sympathetic and parasympathetic innervation,

develop in the embryo, including when does stimulation such

as cephalic input begin? Likewise, a better understanding of

innervation by pain fibers may help target therapy.

As current tests for exocrine pancreatic insufficiency include

the use of CCK and secretin stimulation, and understanding

the maturational process and when the pancreas responds

are important.

The use of whole exome sequencing has been increasing

with increased access to technology. How certain variants affect

exocrine function, and therefore digestion, absorption, and

growth will likely provide useful clinical information.

Conclusion

This review shows a framework for the development of

the human pancreas including both gross and microanatomy.

Pancreas organogenesis is a stepwise process regulated by

a complex network of signaling and transcriptional events,

that start with the early endoderm toward pancreatic fate.

Many crucial players in this process have been identified,

including signaling pathways, genes, regulatory elements, and

transcription factors. Much of the work is based on the

static evaluation of embryonic and fetal specimens that were

available due to ethical issues. While gene expressions and

transcription factors involved in pancreas formation have

been reported, further understanding of cell-to-cell interaction,

including those with stellate cells is necessary. It is possible

that with a better understanding of iPSC conversion into

various pancreatic cell lineages will help understand better the

interaction between these cell types along with gene expression

and transcription factor production. Molecular understanding

of pancreas formation holds exciting promise for future

therapies in both the endocrine and exocrine arms.
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