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ABSTRACT: Morquio A syndrome (mucopolysacchari-
dosis IVA) is an autosomal recessive disorder that
results from deficient activity of the enzyme N-
acetylgalactosamine-6-sulfatase (GALNS) due to alter-
ations in the GALNS gene, which causes major skeletal
and connective tissue abnormalities and effects on multi-
ple organ systems. The GALNS alterations associated with
Morquio A are numerous and heterogeneous, and new
alterations are continuously identified. To aid detection
and interpretation of GALNS alterations, from previously
published research, we provide a comprehensive and up-
to-date listing of 277 unique GALNS alterations associated
with Morquio A identified from 1,091 published GALNS
alleles. In agreement with previous findings, most reported
GALNS alterations are missense changes and even the
most frequent alterations are relatively uncommon. We
found that 48% of patients are assessed as homozygous
for a GALNS alteration, 39% are assessed as heterozy-
gous for two identified GALNS alterations, and in 13%
of patients only one GALNS alteration is detected. We
report here the creation of a locus-specific database for
the GALNS gene (http://galns.mutdb.org/) that catalogs
all reported alterations in GALNS to date. We highlight
the challenges both in alteration detection and genotype—
phenotype interpretation caused in part by the heterogene-
ity of GALNS alterations and provide recommendations
for molecular testing of GALNS.

Hum Mutat 35:1271-1279, 2014. Published 2014 Wiley Period-

icals, Inc.**
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Introduction

Morquio A syndrome (mucopolysaccharidosis IVA, MPS IVA;
MIM #253000) is an autosomal recessive lysosomal storage disorder

Additional Supporting Information may be found in the online version of this article.
*Correspondence to: Nicole Miller, BioMarin Pharmaceutical Inc., 105 Digital Dr.,
Novato, CA 94949. E-mail: NMiller@bmrn.com

caused by deficient activity of the enzyme N-acetylgalactosamine-6-
sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate
sulfatase or galactosamine (N-acetyl)-6-sulfate sulfatase; MIM
#612222) due to mutations in the GALNS gene. Deficient GALNS
activity causes accumulation of the glycosaminoglycans (GAGs) ker-
atan sulfate (KS) and chondroitin-6-sulfate (C6S) in multiple tis-
sues, which leads to skeletal and connective tissue abnormalities
together with pulmonary limitations and cardiac pathology [Har-
matz et al., 2013; Montano et al., 2007; Yasuda et al., 2013]. Morquio
Aisarare disorder, with an estimated incidence ranging from one in
76,000 births in Northern Ireland to one in 640,000 births in West-
ern Australia [Hendriksz et al., 2013a; Nelson, 1997; Nelson et al.,
2003]. The clinical presentation of Morquio A is characterized by
variable expressivity, but even patients with more attenuated forms
of Morquio A are significantly affected and suffer substantial disease
burden [Montano et al., 2007; Montafo et al., 2008; Tomatsu et al.,
2011; Hendriksz et al., 2013a; Harmatz et al., 2013].

Clinical suspicion of Morquio A syndrome typically leads to
screening urine GAG analysis or screening enzyme activities in
dried blood spot samples, but the gold standard for diagnosis of
Morquio A is demonstrating deficient GALNS enzyme activity in
either leukocytes or fibroblasts together with wild-type activity of
appropriate control enzymes to confirm sample integrity and ex-
clude other disorders that can reduce GALNS enzyme activity, such
as multiple sulfatase deficiency or mucolipidosis type II/III [Wood
etal,, 2013]. Molecular analysis can confirm the Morquio A diagno-
sis and aid genetic counseling by detecting the causative alterations
in the GALNS gene [Tylee et al., 2013; Wood et al., 2013].

The GALNS gene is approximately 50 kb in length and contains
14 exons, producing a 2,339 base pair mRNA that encodes a 522-
amino acid protein (Fig. 1) [Tomatsu et al., 1991; Nakashima et al.,
1994]. The alterations in the GALNS gene associated with Morquio
A are numerous and heterogeneous and have been found through-
out the coding sequence and flanking splice sites; as of 2005, 148
unique gene alterations were known [Tomatsu et al., 2005b] and
many more have since been reported. The most common GALNS
gene alterations are missense alterations [Tomatsu et al., 2005b;
Hendriksz et al., 2013a]. DNA methylation at CpG sites has been
detected in every exon but the first, and the inappropriate repair
of spontaneous deamination events is thought to lead to tran-
sition mutations at these sites [Tomatsu et al., 2004]. Multiple
introns contain Alu repetitive elements (http://genome.ucsc.edu/,
February 2009 Assembly)[Meyer et al., 2013], which can undergo
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Figure 1. GALNS Gene Structure: a view of most frequently reported alleles and reported large deletions/rearrangements. GALNS enzyme
primary active site residues (Rivera-Colon et al., 2012) are indicated (x): p.Asp39, p.Asp40, p.Cys/dihydroxyalanine79, p.Arg83, p.Tyr108, p.Lys140,

p.His142, p.His236, p.Asp288, p.Asn289, and p.Lys310.

recombination and potentially lead to large deletions and/or rear-
rangements. Even the most commonly detected GALNS alleles are
relatively uncommon, although some alleles are far more prevalent
in certain regions or ethnic group subpopulations, possibly due to
founder effects in which one or a few GALNS gene alterations were
present in populations started by a small number of individuals
[Tomatsu et al., 2005b; Wood et al., 2013; Yamada et al., 1998; Kato
et al., 1997]. This heterogeneity can pose challenges for the inter-
pretation of molecular testing results from patients with Morquio
A because detection of novel GALNS gene alterations of unknown
significance may occur relatively frequently.

Methods

We performed a literature search for GALNS gene alterations
reported from patients with Morquio A when at least one altered
GALNS allele was reported. GALNS gene alteration data were gath-
ered from the primary reports. When the information was available,
the gene alterations were recorded as patient genotypes (i.e., the two
GALNS alleles reported from a patient); however, there were 81 in-
stances where GALNS gene alterations were reported in tabular lists
without information about their occurrence in patients. Some older
reports of GALNS gene alterations were adjusted so that all DNA and
protein sequence numbering is based on the GALNS cDNA sequence
(GenBank entry NM_000512.4), and the DNA sequence position “1”
corresponds to the A of the initial ATG in the reference sequence. In
some cases, errors in original publications have been corrected based
on subsequent reports or author communications (Supp. Table S1).
Sequence variant descriptions follow recommendations of the Hu-
man Genome Variation Society [den Dunnen and Antonarakis,
2000]. Assessed patient GALNS genotypes, assessments of disease
state, and patient geographic/ethnic affiliations are as reported in
the referred original publications(s) of that gene alteration.
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Reported GALNS gene alterations associated with Morquio A
were classified by mutation type, in many cases reporting deduced
changes to the GALNS amino acid sequence: missense alterations,
including alterations in the initial GALNS ATG and nucleotide sub-
stitutions eliminating the GALNS stop codon; nonsense alterations;
“insertion and/or deletion” alterations; and “intronic” alterations,
nucleotide substitutions in an intron (insertion/deletions occurring
in introns are classified as “insertion and/or deletion”).

Results and Discussion

Alterations in the GALNS Gene from Patients with
Morquio A

The information presented here serves as an update and aug-
mentation to a previous comprehensive summary of alterations in
the GALNS gene associated with Morquio A syndrome [Tomatsu
et al,, 2005b]. In addition to the inclusion of patient data and gene
alterations published since 2005, the data were gathered in the con-
text of patient genotypes (i.e., the two GALNS alleles reported from
a patient) when available because this allows additional analyses
not possible previously. Additionally, three new genotypes from pa-
tients with Morquio A were recently published [Lachman et al.,
2014], including a patient with the novel GALNS gene alterations
¢.317A.G (p.Asnl06Ser) and c.553delG (p.Glul85Argfs14). These
data have been added to Supp. Table S2 only and are not included
in this manuscript’s analyses. This Mutation Update is a retrospec-
tive analysis of alterations in the GALNS gene as reported in the
primary literature. However, the possibility exists that a GALNS al-
teration reported to be associated with Morquio A disease may not
be causative, and so caution is warranted in the interpretation of
rare GALNS alterations with unclear molecular consequences.
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Figure 2. Population properties of published patients with Morquio A. A: A plurality of patients with Morquio A are reported to be homozygous
for a GALNS gene alteration. All Morquio A patients with GALNS gene alteration data presented as a genotype were divided into the following
categories: those assessed to be homozygous for a reported GALNS gene alteration, heterozygous for two reported GALNS gene alterations, or
only one mutated GALNS allele reported. B: Frequency of reported alleles in patients with Morquio A by mutation type. GALNS alleles reported
from patients with Morquio A (i.e., totaling all reports of a given gene alteration; n = 1091) are categorized by alteration type; missense alterations
are further divided between the three most frequently reported alterations in the GALNS gene (c.1156C>T [p.R386C; n = 55]; ¢.337A>T [p.I113F;
n="52]; and ¢.901G>T [p.G301C; n = 45]) and all other missense alterations (n=706). C: Most GALNS gene alterations are rare. All reported GALNS
alleles are categorized and graphed by how often they have been reported in patients with Morquio A. Gene alterations that have been reported
only once or twice (two left columns) are divided between those gene alterations reported in a single patient or two or more patients. Two of the
87 alterations in the GALNS gene only reported once are from one instance of a GALNS allele reported from a patient with Morquio A where two
missense alterations—with unknown individual association with disease—are present in cis [Morrone et al., 2014]. The most frequently reported
GALNS gene alterations are listed in columns in order of reported frequency, with the top listed gene alterations the most frequently reported
within that category.

Genotypes from Patients with Morquio A reports of the same gene alteration only once. The 541 patients with
Morquio A from whom information about GALNS homozygosity
or heterozygosity was reported and the 81 instances of GALNS alle-
les reported in tabular form (where homozygosity or heterozygosity
was not reported) together contain 277 distinct reported gene al-
terations. Counting multiple reports of the same mutation as one
distinct gene alteration, missense alterations are the most frequently
reported distinct alterations in GALNS from patients with Morquio
A: distinct missense alterations account for 185 (67%) of the 277

> R - reported distinct gene alterations, in close agreement with other
ing (to cor}ﬁrm a patient’s assessed genotype) and/or analysis for published results [Tomatsu et al., 2005b; Hendriksz et al., 2013a].
large deletions and other rearrangements are often not performed,

an unknown subset of the patients assessed as homozygous actually
may be heterozygous for the detected GALNS gene alteration and an
undetected gene alteration (see Clinical and Diagnostic Strategies).

In a retrospective analysis, we identified from the literature 541
published genotypes of patients with Morquio A syndrome for
which at least one alteration in the GALNS gene was reported (Supp.
Table S2). Of these 541 patients, 257 patients (48%) were assessed as
being homozygous for an identified GALNS gene alteration, 212 pa-
tients (39%) were assessed as being heterozygous for two identified
gene alterations, and 72 patients (13%) had an alteration in only a
single GALNS allele identified (Fig. 2A). Because parental genotyp-

The next most common detected gene alteration type is insertions
and/or deletions (47 out of 277 distinct gene alterations; 17%). Of
the 47 detected distinct insertions and/or deletions, 28 are predicted
to cause frameshifts, 11 are in-frame deletions or insertions, and
eight likely have more complex effects. Detected deletions, both
small and large, outnumber detected insertions 39 to 8. Few large
deletions or complex rearrangements have been reported to date,

First, we examined distinct unique gene alterations in GALNS  possibly due to under-detection (see Clinical and Diagnostic Strate-
regardless of how frequently they are reported, counting multiple ~ gies). Intronic changes (excluding deletions and/or insertions, which

GALNS Alteration Types and Frequencies
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are considered above) account for 24 of the 277 distinct gene alter-
ations (9%); 22 of these gene alterations affect one of the -1, -2, +1,
or +2 nucleotides. Nonsense changes account for 21 of the 277 dis-
tinct gene alterations (8%) in GALNS reported from patients with
Morquio A.

Next, we examined the frequency at which alterations in the
GALNS gene were reported from patients with Morquio A and to-
taled all reports of the same GALNS allele (Supp. Table S3, Fig. 2B).
This is different from the above analysis of gene alterations types as
a function of the 277 distinct gene alterations. This analysis is per-
formed with a different denominator unit, the number of GALNS
alleles. The 541 patients with Morquio A have 1,010 reported mutant
GALNS alleles and 72 instances in which the second mutant GALNS
allele was not identified. The 1010 reported GALNS alleles from
patient GALNS genotypes were combined with 81 alleles reported
in tabular form to yield 1,091 reported mutant GALNS alleles in
patients with Morquio A. Of the 1,091 detected alleles, 858 are mis-
sense alleles (79% of all alleles; Fig. 2B). Again, this analysis differs
from that of the previous paragraph: from patients with Morquio A,
missense mutations are both the most frequently reported distinct
alterations in the GALNS gene (67% of 277 distinct alterations) and
the most frequently reported alleles (79% of 1,091 detected GALNS
alleles). Of the 1,091 mutant GALNS alleles reported from patients,
the three most commonly reported alleles together represent only
152 0f 1,091 reported alleles (14%; Fig. 2B), again demonstrating the
heterogeneity of alterations in the GALNS gene from patients with
Morquio A [Tomatsu et al., 2005b](Fig. 2C). The allele most fre-
quently reported is the missense change c.1156C>T (p.Arg386Cys),
reported 55 times (55 of 1,091; 5%); the second most frequently
reported allele was the missense change ¢.337A>T (p.Ile113Phe),
reported 52 times (52 of 1,091; 5%); and the third most reported
allele was the missense change c.901G>T (p.Gly301Cys), reported
45 times (45 of 1,091; 4%). These same three alleles are the most
frequent both in this data set and in Tomatsu et al. (2005b), but
their relative frequency is reduced in this data set. Compared with
Tomatsu et al. (2005b), here c.1156C>T (p.Arg386Cys) is 5% of re-
ported GALNS alleles but 8.9% previously; ¢.337A>T (p.Ile113Phe)
is 5% of reported alleles here but 5.7% previously; and c.901G>T
(p.Gly301Cys) is 4% of reported alleles here but 6.8% previously.

Notably, many GALNS alleles have only been reported in a single
patient: 42 GALNS gene alterations have only been reported in the
homozygous state from a single patientand 86 of 277 gene alterations
(31%) have only been reported once (Fig. 2C).

GALNS Alleles and Geography

Worldwide, the ten most frequently reported GALNS gene al-
terations from patients with Morquio A (Table 1) are c.1156C>T
(p-Arg386Cys; reported 55 times), ¢.337A>T (p.Ile113Phe; reported
52 times), c.901G>T (p.Gly301Cys; reported 45 times), c.120+1G>A
(reported 23 times), c.1171A>G (p.Met391Val; reported 22
times), ¢.935C>G (p.Thr312Ser; reported 22 times), c.871G>A
(p-Ala291Thr; reported 20 times), c.860C>T (p.Ser287Leu; re-
ported 20 times), c.953T>G (p.Met318Arg; reported 19 times), and
¢.757C>T (p.Arg253Trp; reported 18 times).

In addition to overall differences in the frequency that individ-
ual GALNS alleles are reported, there are differences in reported
allele frequencies in specific subpopulations, which makes some al-
leles more or less common than might be expected. This analysis
relied on information of patients’ countries, regions, or ethnicities
as provided by the references, which may not have been collected
in a consistent manner. However, it is relevant to consider both the
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Table 1. Ten Most Frequently Reported GALNS Alleles from Pa-
tients with Morquio A, by Reported Countries/Ethnicities

Percentage of Percentage of

Number that allele’s all detected
Allele detected total alleles
p-Arg386Cys 55 100 5.0
Spanish 9 16 0.8
Argentine 6 11 0.5
Chinese 5 9 0.5
Italian 4 7 0.4
Colombian 3 5 0.3
Polish 3 5 0.3
Turkish 3 5 0.3
Chilean 3 5 0.3
All other countries/ethnicities 14 35 1.3
p.lle113Phe 52 100 4.8
Irish 27 52 2.5
British 15 29 1.4
British/Irish 3 6 0.3
All other countries/ethnicities 7 13 0.6
p.Gly301Cys 45 100 4.1
Colombian 16 36 1.5
Portuguese 6 13 0.5
Spanish 5 11 0.5
All other countries/ethnicities 10 40 0.9
c.120+1G>A 22 100 2.0
Tunisian 20 91 1.8
All other countries/ethnicities 2 9 0.2
p.Thr312Ser 22 100 2.0
Irish 14 64 1.3
British/Irish 3 14 0.3
All other countries/ethnicities 5 23 0.5
p-Met391Val 22 100 2.0
French Canadian 7 32 0.6
French 4 18 0.4
Canadian Caucasian 3 14 0.3
American caucasian, German 2 9 0.2
All other countries/ethnicities 6 27 0.5
p-Ala291Thr 20 100 1.8
Asian-multiethnic 8 40 0.7
British 4 20 0.4
Finnish 3 15 0.3
Pakistani 2 10 0.2
Chinese 1 5 0.1
Japanese 1 5 0.1
All other countries/ethnicities 1 5 0.1
p-Ser287Leu 20 100 1.8
Middle Eastern 4 20 0.4
Turkish 3 15 0.3
Spanish 2 10 0.2
Polish 2 10 0.2
Greek 2 10 0.2
Macedonian 2 10 0.2
Austrian 1 5 0.1
New Zealander 1 5 0.1
Irish/Italian/Polish 1 5 0.1
All other countries/ethnicities 2 10 0.2
p.Met318Arg 19 100 17
Chinese 11 58 1.0
Taiwanese 3 16 0.3
Other 2 11 0.2
South-East Asian 2 11 0.2
Japanese 1 5 0.1
p.Arg253Trp 18 100 1.6
Pakistani 16 89 1.5
All other countries/ethnicities 2 11 0.2

“All other countries/ethnicities” includes not given.



reported country/regional, and/or ethnic affiliations associated with
patients with Morquio A, because in aggregate they reveal substantial
differences in the frequency of different GALNS alleles in different
populations. For example, the splice site mutation c.120+1G>A is
the fourth most frequently reported GALNS gene alteration from
patients with Morquio A, but most reports are for patients from
Tunisia (Table 1). The missense alteration ¢.337A>T (p.Ile113Phe)
is the second most frequently reported GALNS gene alteration from
patients with Morquio A, but it is most frequently reported in pa-
tients from the British Isles (Table 1), and for Morquio A patients
identified as of “Irish” descent, ¢.337A>T (p.Ile113Phe) represents
43% of all reported GALNS gene alterations (Table 2). Other lo-
calities beyond those listed in Table 2 also have high reported rates
of individual alterations; for example, the gene alteration c.901G>T
(p.Gly301Cys) is 50% of all reported alleles from Colombian pa-
tients with Morquio A. The high frequency of a specific GALNS
gene alteration in some populations could be due to founder effects.

Genotype—Phenotype Correlation

Morquio A disease severity descriptions historically focused pri-
marily on height and growth, which measure only a specific manifes-
tation of a disease that affects multiple body systems with variable
expressivity [Harmatz et al., 2013; Montafio et al., 2007; Yasuda
et al., 2013]. Patients have physical limitations resulting from the
skeletal, connective tissue, respiratory, and cardiac manifestations
of Morquio A; endurance, mobility, and the ability to complete
everyday activities (e.g., clipping nails or brushing hair) are also
relevant measures of disease severity [Harmatz et al., 2013]. The
International Morquio A Registry documented the natural course
of Morquio A disease and showed that frequent surgical interven-
tions are required by patients with Morquio A [Montafio et al.,
2007]. Clinical experience demonstrates that the attenuated nature
of the disease is subjective and likely underestimated when only
height/growth are considered as a measure of disease severity. A
pair of siblings with Morquio A seen in clinical practice illustrates
this: one sibling was very short but ambulatory and with minimal
medical problems; whereas, the other sibling was taller but could
not walk independently and had a history of surgeries related to
Morquio A (personal communication, P. Harmatz). As de novo
GALNS mutations are rare and these sibs are expected to have the
same gene alterations, other genetic factors and their individual
medical histories may also contribute to these differences. These
siblings illustrate that height or growth-based metrics alone may
not capture fully the effect of Morquio A on a patient.

The genotype—phenotype relationship of 148 Morquio A GALNS
gene alterations was previously assessed [Tomatsu et al., 2005b]:
(1) by the homozygosity of the gene alteration, (2) by the level of
residual activity of the GALNS enzyme based on in vitro expression
study, (3) based on predictions of the effect of the gene alteration
on the protein structure, and (4) in patients with attenuated phe-
notypes with an allele permitting residual enzyme activity, which
would be dominant over an allele permitting no activity. Tomatsu
et al. [2005b] found 31 gene alterations associated with an atten-
uated phenotype and 101 gene alterations associated with a severe
phenotype but also noted the challenges in associating GALNS geno-
types with Morquio A phenotypes. Rivera-Colon et al. (2012) also
recently summarized GALNS gene alterations with associated dis-
ease severity, which, in the existing Morquio A literature, generally
refers to a growth rate phenotype.

In a retrospective analysis, we summarize the mutation types
found in patients with Morquio A assessed to be homozygous for a

Table 2. Ten Most Reported Country/Ethnic Affiliations, by Num-
ber of Reported GALNS Alleles from Patients with Morquio A

Alleles detected
(all alleles, Percentage of Percentage of
Reported including that country’s all detected
country/ethnicity unidentified) total alleles
Chinese 93 (118) 100 8.5
p-Met318Arg 11 12 1.0
p.Gly340Asn 9 10 0.8
p-Leu366Pro 7 8 0.6
All other alleles 66 71 6.0
Japanese 52 (67) 100 4.8
p-Asn204Lys 8 15 0.7
Double gene deletion 8 15 0.7
p.His430GInfsTer71 5 10 0.5
Double deletion 5 1 0.5
c.121-2A>G 4 8 0.4
All other alleles 22 42 2.0
Irish 60 (63) 100 5.5
p.Ille113Phe 27 45 2.5
p.Thr312Ser 14 23 1.3
All other alleles 19 32 1.7
British 52 (62) 100 4.8
p.Ile113Phe 15 29 1.4
p.Ala291Thr 4 8 0.4
All other alleles 33 63 3.0
Asian-multiethnic 58 (58) 100 5.3
p.Glyl16Val 12 21 11
p.Ala291Thr 8 14 0.7
p.Prol51Leu 7 12 0.6
p-Ala392Val 6 10 0.5
p.Leu36Arg 6 10 0.5
p.Gly139Ser 4 7 0.4
All other alleles 15 26 1.4
Turkish 49 (51) 100 4.7
p.Glul12ArgfsTer15 8 1 0.7
p-Met494Val 4 8 0.4
p.Trpl41Arg 4 8 0.4
p-Leu390Ter 4 8 0.4
p.His236ArgfsTer25 4 8 0.4
p.Arg386Cys 3 6 0.3
p-Ser287Leu 3 6 0.3
All other alleles 19 39 1.9
Middle Eastern 47 (48) 100 44
p.Arg94Cys 6 13 0.5
p.Gly201Glu 6 13 0.5
p-Ser287Leu 4 9 0.4
p.Trp159Cys 4 9 0.4
p-Asp233Asn 4 9 0.4
c.121-1G>A 4 9 0.4
All other alleles 19 40 1.8
Italian 45 (45) 100 4.1
p.Arg386Cys 4 0.4
p-Met1Val 8 18 0.7
p.Trp10Ter 4 0.4
p-Phel67Val 4 9 0.4
p.-Prol25Leu 3 7 0.3
p.Alal07Thr 3 7 0.3
All other alleles 19 42 1.7
Brazilian 37 (38) 100 3.5
p-Ser341Arg 5 14 0.5
p.Glyl16Ser 4 11 0.4
p.Val239Phe 4 11 0.4
p.Cys165Tyr 4 11 0.4
p.Asn164Thr 3 8 0.3
p-Ala203Val 3 8 0.3
p.Arg386Cys 2 5 0.2
p.Gly301Cys 2 5 0.2
p-Arg94Cys 2 5 0.2
p-Vall6Glu 2 5 0.2
p-Leu307Pro 2 5 0.2
p.Glus1Lys 2 5 0.2
All other alleles 2 5 0.3
(Continued)
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Table 2. Continued

Alleles detected

(all alleles, Percentage of Percentage of

Reported including that country’s all detected
country/ethnicity unidentified) total alleles
Spanish 36 (36) 100 3.3
p-Arg386Cys 9 25 0.8
p.Gly301Cys 5 14 05
Exon 5 skipping 5 14 0.5
p.Tyr254Cys 5 14 0.5
p-Ser287Leu 2 6 0.2
p.Gly139Ser 2 6 0.2
All other alleles 8 22 0.7
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Figure 3. Assessed growth phenotype severity of patients with
Morquio A, by GALNS gene alteration type. All patients assessed as ho-
mozygous for a GALNS gene alteration were grouped by their assessed
growth phenotype and then divided by alteration type. Assessments of
“attenuated,” “slowly progressing,” or “mild” growth phenotypes were
grouped with “less severe” (n = 26); assessments of “moderate” were
grouped with “intermediate” (n = 6); and assessments of “rapidly pro-
gressing” and “severe” were grouped with “most severe” (n = 107).
Graph labels show the numbers of each GALNS gene alteration type
reported.

GALNS gene alteration for each of the growth phenotype categories
and report that, as expected, gene alterations expected to severely
affect protein function, such as deletions and nonsense gene alter-
ations, are more common in patients with the most severely im-
pacted growth phenotypes (Fig. 3, Supp. Table S4). We limited our
analysis to patients reported to be homozygous for a GALNS gene
alteration to avoid the possibility of any interallelic interactions (for
examples from other disorders, see refs. Caciotti et al., 2003; Caciotti
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et al,, 2005; Gieselmann et al., 1991; Thomas, 1994; Zlotogora and
Bach, 1983]. The International Morquio A Registry documented
the heterogeneity of Morquio A disease and reported that 68.4%
of patients in the registry had a severe growth-impacted phenotype
and that 25% had either a mild or attenuated growth phenotype
[Montano etal., 2007]. The analysis here, performed on an indepen-
dent data set and reporting assessed growth phenotype, also found a
similar proportion of growth-impacted severity phenotypes: of the
patients with Morquio A homozygous for a GALNS gene alteration,
77% (107 of 139) have a reported severe growth phenotype, 4% (6 of
139) have an intermediate growth phenotype, and 19% (26 of 139)
have a less severe growth phenotype. Missense alterations were the
most commonly reported gene alteration type from homozygous
patients across all growth phenotypes, in agreement with the high
frequency of missense alterations reported in patients with Morquio
A (Fig. 2B, Tomatsu et al. 2005b, Hendriksz et al., 2013a]. In ad-
dition to missense alterations, homozygous patients with the most
severe growth phenotypes had other GALNS gene alteration types,
including insertions and/or deletions, intronic alterations, and non-
sense alterations. The missense alterations found in patients with
more severe growth phenotypes are likely to be more deleterious
alleles, with stronger possible effects on the GALNS enzyme (Supp.
Table S4). With one exception, homozygous patients with less se-
vere growth phenotypes had missense alterations; one patient with
a less severe growth phenotype was reported to be homozygous for
the intronic alteration ¢.898+1G>C [Tomatsu et al., 2005b]. Overall,
these results are consistent with a previous independent analysis
that found that most GALNS gene alterations associated with a less
severe growth phenotype were missense alterations (Tomatsu et al.,
2005b].

Locus-Specific Database

We have developed a Locus-Specific Database (LSDB) for the
GALNS gene and a Website (http://galns.mutdb.org/) that supports
browsing, searching, and sorting the database as well as submissions
of new variations. Currently, the database includes previously pub-
lished variants reported as “pathogenic” as well as those extracted
from dbSNP [Sherry et al., 2001], SwissProt (UniProt Consortium,
2014),and Cosmic [Forbes et al., 2011]. BioMarin assisted in the col-
lation of these mutations, but no mutations were from data collected
as part of any BioMarin-sponsored clinical trial. This is in part be-
cause most BioMarin studies did not collect molecular testing data
as part of uniform enrollment criteria and also because the scope
of this update is to report only on published Morquio A mutations.
We have converted all variants to the nomenclature recommended
by HGVS [den Dunnen and Antonarakis, 2000], mapped transcript
positions to the protein when the annotations were missing in the
original publication as well as from the protein to the transcript
when this annotation was missing (for variants present in Swis-
sProt for example). We have also annotated variants as “reported
pathogenic” or “benign” when a gene alteration was defined as such
in a published article or as a “variant of unknown clinical signif-
icance” otherwise. We record additional curator comments about
each gene alteration in a free text format in the comment section,
which can include growth phenotype severity or other evidence of
pathogenicity.

For missense alterations, we provide a bioinformatics analysis via
MutPred [Li et al., 2009] and PolyPhen2 [Adzhubei et al., 2010]
prediction scores and associated classifications for research pur-
poses to aid assessment as to whether an amino acid substitution
is potentially deleterious. These scores and classifications are for



research use only and are not intended for use in clinical diagnosis of
Morquio A. A MutPred score cutoff of 0.5 was used to classify varia-
tions as “predicted non-pathogenic” or “predicted pathogenic.” We
have also listed every missense allele with either a MutPred or a
PolyPhen2 score below 0.75 (Supp. Table S5). To aid in assessment
of these alleles, the number of alleles reported and an estimate of the
likelihood of a familial relationship between the reported patients is
also provided.

In addition, we provide a JMOL protein structure viewer
(Jmol: an open-source Java viewer for chemical structures in 3D.
http://www.jmol.org/, accessed February 2014) for visualization of
each gene alteration. All submissions will be carefully curated mov-
ing forward by our curation team. BioMarin has not and will not
curate the LSDB. All GALNS variants in the LSDB are available for
inclusion in other resources. This LSDB for GALNS gene alterations
will encourage reporting of detected GALNS variants and will be a
useful resource for the Morquio A community. Again, diagnosis of
Morquio A should be made clinically and via demonstration of an
enzyme defect in GALNS alongside other normal lysosomal enzyme
activities in the context of a consistent clinical picture [Wood et al.,
2013].

Future Prospects

Animal Models and Therapies

It is important to consider the use of GALNS molecular testing
in the context of both what is known about Morquio A syndrome
to date as well as in the context of Morquio A patient care. Much
of our understanding about inherited disorders benefits from un-
derstanding animal models. However, although there are multiple
mouse models carrying different mutations in the murine GALNS
homolog [Tomatsu et al., 2003; Tomatsu et al., 2005a; Tomatsu et al.,
2007; Tomatsu et al., 2008; Tomatsu et al., 2010], mouse and human
catabolism of KS differs and the murine model did not develop the
dysostosis phenotype of Morquio A [Tomatsu et al., 2010]. Despite
the lack of a strong mouse disease model, enzyme replacement of re-
combinant human GALNS for Morquio A was able to proceed into
clinical development, and recent clinical investigation has largely
been focused on the evaluation of enzyme replacement therapy in
Morquio A (Clinicaltrials.gov;[Hendriksz et al., 2013b]. Enzyme re-
placement therapy with elosulfase alfa (BioMarin Pharmaceutical
Inc.) is now approved by the United States Food and Drug Admin-
istration for use in patients with Morquio A.

Although in some cases hematopoietic stem cell transplantation
(HSCT) may play a role in other MPS disorders, there have been
relatively few reports of HSCT performed in patients with Morquio
A [Tomatsu et al., 2011; Valayannopoulos and Wijburg, 2011]. Ad-
ditionally, chaperone therapies and other small molecule therapies,
possibly designed with the aid of the GALNS structure [Rivera-
Colén et al., 2012], could potentially benefit patients with Morquio
A atsome pointin the future [Valayannopoulos and Wijburg, 2011],
but useful application of these therapies would likely depend on
accurate identification of the underlying molecular defect in pa-
tients with Morquio A, emphasizing the need for accurate molecular
testing.

Newborn Screening

Once a therapy for a disorder becomes available, integration of
newborn screening may be considered. GALNS molecular testing
may be an important confirming test in the context of newborn

screening. In the future it may be possible to routinely screen new-
borns for mucopolysaccharidoses disorders, including Morquio A,
by using a liquid chromatography tandem mass spectrometry (LC—
MS/MS) approach to detect reduced GALNS enzyme activity in
dried blood spot samples [Spacil et al., 2013]. As the mucopolysac-
charidoses are relatively rare disorders that can be difficult to diag-
nosis [Cimaz et al., 2009], widespread screening would be of great
benefit. Additionally, the rapid proliferation and future clinical use
of next-generation sequencing technologies may increase identifi-
cation of individuals early in life with biallelic missense variants in
GALNS prior to the development of a clear-cut clinical phenotype.
These efforts and increasingly widespread availability of cheaper se-
quencing technologies in the future may lead to opportunities for
earlier diagnosis of Morquio A patients; however, there are limi-
tations to running molecular screening panels for the purpose of
diagnosis that are outside of the scope of this review. We would like
to re-emphasize that for Morquio A, and other similar monogenetic
metabolic disorders for which there may be substantial numbers
of “novel” or “private” gene alterations identified, enzyme activity
testing is the standard for diagnosis [Wood et al., 2013].

Biomarkers

Although we recorded reported growth phenotype in the LSDB,
we confirm, as previously reported in the last mutation update, that
assessing genotype—phenotype relationships in Morquio A remains
a challenge [Tomatsu et al., 2005b]. The heterogeneous alterations
in the GALNS gene cause a spectrum of Morquio A disease mani-
festations and existing metrics of disease state do not always capture
the full disease burden for patients [Harmatz et al., 2013; Montafio
etal., 2007; Yasuda et al., 2013]. Biomarkers are needed to better un-
derstand Morquio A disease burden, aid patient counseling and the
design of clinical evaluation plans. The levels of KS present in either
plasma or urine have both been proposed as possible biomarkers
for Morquio A disease severity [Dung et al., 2013; Harmatz et al.,
2013]. The usefulness of plasma KS level as a biomarker is limited
by the overlap between measurements from normal individuals and
Morquio A patients [Longdon and Pennock, 1979; Martell et al,,
2011; Zanetti et al., 2009]. Urinary KS levels from patients with
Morquio A negatively correlate with both growth rates and final
height and positively correlate with greater impairment in clini-
cal tests of endurance/mobility and respiratory capacity [Northover
etal., 1996; Montaio et al., 2008; Harmatz et al., 2013]. Future study
into the relationship between possible biomarkers for Morquio A
disease burden in the context of genotype—phenotype relationship
could provide improved early diagnosis and/or improved clinical
management of Morquio A syndrome.

Clinical and Diagnostic Strategies

Molecular analysis of the GALNS gene plays an important sup-
porting role in the diagnosis of Morquio A. The gold standard for
diagnosis of Morquio A is detection of deficient GALNS enzyme
activity together with the wild-type activity of appropriate con-
trol enzymes [Wood et al., 2013]; detection of alterations in both
GALNS alleles can confirm the diagnosis and aid genetic counseling.
Accurate diagnosis of patients with Morquio A can be challenging,
particularly for individuals with more slowly progressing disease,
which makes confirmation of disease diagnosis by molecular anal-
ysis valuable.

The proportion of patients with Morquio A assessed as being
homozygous for a GALNS gene alteration is substantial. Of the
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published genotypes from patients with Morquio A for whom at
least one GALNS gene alteration was identified, 48% (257 out of
541) are assessed as being homozygous. Given the large number of
alterations in the GALNS gene and that the three most frequently de-
tected disease-associated alleles represent a total of 14% (152 out of
1,091) of all detected alleles, the 48% rate of assessed homozygosity
suggests that factors such as founder effects and consanguinity may
influence the high rate of assessed homozygous patient genotypes.
It is possible that uniparental isodisomy (UPD) may cause homozy-
gosity for a GALNS alteration in a small subset of cases. Although
identification of these cases is important for genetic counseling, to
date only one example has been reported [Catarzi et al., 2012].

Potentially, the percentage of patients with Morquio A assessed as
being homozygous may be higher than the true frequency. In a sub-
set of apparently homozygous patients, it is possible that deletions,
rearrangements, and point mutations that eliminate binding sites
for genotyping primers will cause allele dropout and a false assess-
ment of apparent homozygosity. Of note, few large deletions have
been reported from patients with Morquio A. Without additional
deletion-duplication testing (by use of an appropriate technique
such as quantitative genomic PCR (QF-PCR)), any deletion not en-
tirely contained within an individual PCR amplicon will likely be
missed by current sequencing approaches. Potentially, undetected
large deletions could both cause apparent homozygosity and may
contribute to the 13% of published patient genotypes for which only
one GALNS gene alteration is identified (Fig. 2A).

Routine parental genotyping is recommended in the Morquio A
diagnostic algorithm [Wood et al., 2013]; however, parental geno-
typing is not often performed and is even less frequently described
in the literature. Parental genotyping results can aid interpretation
of results from the patient and facilitate genetic counseling by al-
lowing detection of situations in which the patient’s results alone
might lead to inaccurate conclusions being drawn; examples include
cases in which two detected gene alterations are in cis, homozygos-
ity due to UPD [Catarzi et al., 2012], and cases of allele dropout
causing apparent homozygosity [Landsverk et al., 2012; Tylee et al.,
2013]. One center performing molecular testing for multiple dif-
ferent autosomal recessive disorders found that, after performing
parental testing on 75 patients initially assessed to be homozygous,
four patients were incorrectly assessed as homozygotes due to allele
dropout and two patients were genuinely homozygous but via UPD
[Landsverk et al., 2012]. However, circumstances will not always
allow for parental testing to be performed, particularly when it may
raise a question of paternity.

The numerous GALNS gene alterations associated with Morquio
A can make interpretation of molecular analysis results difficult. As
with other Mendelian disease genes, the detection of novel GALNS
alterations will occur relatively frequently. Additionally, there are
GALNS sequence variants in exons (Supp. Table S6) and introns
that have been reported without accompanying phenotypic infor-
mation or a clear association with Morquio A. Although the func-
tional consequences of some GALNS gene alterations can readily
be predicted, such as nonsense alterations or large deletions, pre-
dicting the consequences of novel missense alterations from the
sequence change alone can be difficult. The detection of a variant
multiple times in patients with Morquio A from independent fam-
ilies strongly supports linking a variant with Morquio A disease;
conversely, novel, difficult-to-interpret gene alterations (e.g., many
missense alterations) should be interpreted with caution and only
limited conclusions drawn [Morrone et al., 2014]. Consequently,
reporting detected GALNS alterations facilitates the differentiation
of disease-associated alleles from benign alterations and should be
encouraged.
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