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Cholera continues to be a major burden for developing nations, especially where
sanitation, quality of water supply, and hospitalization have remained an issue. Recently,
growing antimicrobial-resistant strains of Vibrio cholerae underscores alternative
therapeutic strategies for cholera. Bacteriophage therapy is considered one of the
best alternatives for antibiotic treatment. For the identification of potential therapeutic
phages for cholera, we have introduced a comprehensive comparative analysis of
whole-genome sequences of 86 Vibrio cholerae phages. We have witnessed extensive
variation in genome size (ranging from 33 to 148 kbp), GC (G + C) content (varies
from 34.5 to 50.8%), and the number of proteins (ranging from 15 to 232). We have
identified nine clusters and three singletons using BLASTn, confirmed by nucleotide dot
plot and sequence identity. A high degree of sequence and functional similarities in both
the genomic and proteomic levels have been observed within the clusters. Evolutionary
analysis confirms that phages are conserved within the clusters but diverse between
the clusters. For each therapeutic phage, the top 2 closest phages have been identified
using a system biology approach and proposed as potential therapeutic phages for
cholera. This method can be applied for the classification of the newly isolated Vibrio
cholerae phage. Furthermore, this systematic approach might be useful as a model for
screening potential therapeutic phages for other bacterial diseases.
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INTRODUCTION

Cholera is an acute diarrheal disease caused by Vibrio cholerae, a gram-negative water-borne
bacterium, and it remains to be a major global health problem. It is endemic to several parts of Asia,
Africa, and South and Central America (Zuckerman et al., 2007). Oral and intravenous rehydration
therapy is practiced for treating mild and severe cholera patients. A number of antibiotics are also
recommended for mild and severe cases. In the past, several antibiotics including doxycycline,
tetracycline, ciprofloxacin, and azithromycin have been utilized to treat cholera patients (Sack et al.,
1978; Islam, 1987; Gotuzzo et al., 1995; Hossain et al., 2002; Saha et al., 2006). However, recently,
treatment failures are often observed due to the emergence of antimicrobial resistance (AMR) in
Vibrio cholerae (V. cholerae) (Verma et al., 2019; Das et al., 2020). This underscores the alternative
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approach for cholera therapy. Therefore, recently, scientific
communities are more focused on phage therapy as an alternative
to antibiotics, especially where AMR is a problem (Czaplewski
et al., 2016; Rohde et al., 2018; D’Accolti et al., 2021; Froissart
and Brives, 2021). Phages are specific in their targets whereas
antibiotics target a broad spectrum of both pathogenic and non-
pathogenic microorganisms. In phage therapy, no severe side
effects have been observed and fewer doses are required (Loc-
Carrillo and Abedon, 2011; Principi et al., 2019).

Several experimental approaches have been offered for the
isolation and characterization of bacteriophages (Thanki et al.,
2019; Bujak et al., 2020; Kwon et al., 2020; McCutcheon et al.,
2020; Sofy et al., 2021). Similarly, many Vibrio cholerae phages
have also been isolated and characterized (Nesper et al., 1999;
Faruque et al., 2005a,b; Nelson et al., 2009; Seed et al., 2011;
Comeau et al., 2012; Das et al., 2012; Li et al., 2013; Solis-Sanchez
et al., 2016; Naser et al., 2017). So far only a few Vibrio cholerae
phages were studied in animal models which have been proven
effective to protect against cholera challenge and may be useful
to treat cholera (Yen et al., 2017; Bhandare et al., 2019). Bhandare
et al. (2019) presented a bacteriophage Phi_1 to control cholera in
an infant rabbit model. They showed that the oral administration
of Phi_1 phage can reduce bacterial load significantly (Bhandare
et al., 2019). Yen et al. (2017) tested a cocktail of three phages
(ICP1, ICP2, and ICP3) to prevent cholera in infant mouse
and rabbit models. They revealed that oral administration of a
cocktail of three phages significantly reduced both colonization
and cholera-like diarrhea (Yen et al., 2017). On the other
hand, the sequencing cost of the whole genome is significantly
reduced due to the advancement in sequencing technology.
As a result, several whole-genome sequences of bacteriophages
and their detailed characterization are available in the public
domain. Comparative genomic methods might be helpful for
the screening of potential bacteriophages for therapy. Recently,
several comparative genomic studies have been offered to
understand the phages and their clinical implication on host
bacteria (Fouts et al., 2013; Turner et al., 2017; Ha and Denver,
2018; Gao et al., 2020). Fouts et al. (2013) compared two
Vibrio cholerae O139 Bengal-specific phages to understand the
genetic and structural differences among them. They observed
that 59 out of 79 predicted proteins are identical, and there
were few SNP (single-nucleotide polymorphisms) and small
INDEL (insertions/deletions) among the two phages (Fouts
et al., 2013). Gao et al. (2020) analyzed the whole-genome
sequence of 142 prophages of Salmonella enterica and classified
17 discrete clusters for 90 phages and 52 singletons. They
have noticed high diversity among the phages that and might
help the practical utilization of phages as antibacterial agents
(Gao et al., 2020). Turner et al. (2017) also examined 37
Acinetobacter phages and obtained seven distinct clusters and
two singletons. They claim that this study will aid in the
classification of novel isolated Acinetobacter phages (Turner
et al., 2017). Similarly, Ha and Denver (2018) also analyzed
130 complete genome sequences of Pseudomonas phages and
recognized 12 discrete clusters and 30 singletons. They also
reported extensive gene diversity among the phages (Ha and
Denver, 2018). Angermeyer et al. (2018) compared complete

genome sequences of 19 distinct isolates of Vibrio cholerae phage
ICP1 to comprehend how ICP1 phage is changing over the years
2001–2012. They found that ICP1 isolates are highly conserved
and retain a large core genome. However, over the years, ICP1
also acquired some unknown genes, as well as the CRISPR-
Cas system. No comprehensive comparative genomic method is
available for critical analysis of Vibrio cholerae phages. Therefore,
comprehensive comparative genomics analysis of Vibrio cholerae
phages might help us understand the correlation among them,
classification of newly isolated phages, and screening of the
potential therapeutic phages.

In the current study, we have introduced a comprehensive
comparative genomic approach to get clear genomic, functional
characteristics of Vibrio cholerae phages and identification of
potential phages for cholera therapy. For this purpose, we have
examined all the available complete genome sequences of Vibrio
cholerae phages in the public domain. We have extensively used
state-of-the-art comparative genomic analysis methods.

MATERIALS AND METHODS

Genome Sequence of Vibrio cholerae
Phages
All the 86 complete genome sequences of Vibrio cholerae phages
were manually curated and downloaded from the Reference
Sequence (RefSeq) and the International Nucleotide Sequence
Database Collaboration (INSDC) databases of the National
Center for Biotechnology Information (NCBI). The available
complete genome sequences of phages and stated Vibrio cholerae
in the host field were manually confirmed and considered for this
study (Supplementary Table 1).

Genome Annotation
To assure annotation evenness, we have randomly selected 10
out of 86 Vibrio cholerae phages and re-annotated them. All the
possible genes of phage are predicted by GeneMarkS (Besemer
and Borodovsky, 2005). The functional annotations of the
predicted genes were carried out by NCBI BLASTp program with
non-redundant protein sequences (nr) database (Boratyn et al.,
2013). Putative transfer ribonucleic acid (tRNA) was predicted
by tRNAscan-SE (Lowe and Chan, 2016). For these 10 phages,
we have noticed similar structural and functional annotation as
reported in NCBI; hence, we have not executed the above process
for the remaining phages.

Clustering of Genome
To determine the complete genome-wise similarity among the
phages, we have utilized the BLASTn program of NCBI (Boratyn
et al., 2013). Each phage was BLAST against the remaining 85
phages. For assigning the phages in the same genome cluster, we
have considered BLASTn query coverage and identity > 75% with
an E-value threshold of 0. However, for the majority of clusters we
have noticed BLASTn query coverage and identity > 90% with an
E-value threshold of 0.

All the complete genome sequences of phages were
concatenated into a single nucleotide sequence and considered
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as an input in nucleotide dot-plots. Genome Pair Rapid Dotter
(Gepard) version 1.30 has been employed for comparison of
whole-genomes and visualization (Krumsiek et al., 2007). The
MUMmer program of JSpecies has been applied for computing
average nucleotide identity (ANI) among the phages (Richter
et al., 2016; Marcais et al., 2018). Orthologous groups of proteins
among the phages were identified by OrthoFinder (Emms and
Kelly, 2019). Comparative whole-genome maps of phages are
visualized by utilizing CGView (Grant and Stothard, 2008). We
have considered the first phage genome of a cluster as a reference
genome and BLAST with the other phage genomes (mainly
3–5) in CGView.

Evolutionary Analysis
Based on the presence of DNA polymerase proteins among the
majority of the Vibrio cholerae phages, we have considered this
protein for evolutionary analysis. The DNA polymerase protein
sequence of phages were extracted and stored into a single
FASTA file. The FASTA file contains a single DNA polymerase
protein of each phage. Furthermore, we have incorporated
the DNA polymerase protein of Klebsiella pneumoniae and
Salmonella typhi for outgroup identification. For the evolutionary
study, we have utilized the Molecular Evolutionary Genetics
Analysis (MEGA) version 10 (X) software (Kumar et al., 2018).
Multiple Sequence Comparison by Log-Expectation (MUSCLE)
and Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) tools of MEGA have been used for protein sequence
alignment and phylogenetic tree construction, respectively
(Edgar, 2004). The bootstrap value of 2,000 and a 75% cut-
off value of a condensed tree was considered for the final
construction of the phylogenetic tree.

Screening of Potential Phage for Therapy
In the recent past, Vibrio cholerae phages Phi_1 and ICP cocktail
(ICP1, ICP2, and ICP3) have been experimentally used to
understand the therapeutic application of cholera phages in the
animal model (Yen et al., 2017; Bhandare et al., 2019). For further
analysis, we have examined only the cluster that should have at
least one therapeutic phage. The whole-genome of phages in a
cluster was analyzed by Clustal Omega and MAFET (Katoh et al.,
2002; Madeira et al., 2019). We have considered guided tree and

identity matrix value to identify the top two similar phages of
therapeutic phage. Furthermore, protein sequence level similarity
and the orthologous group of proteins among the screening
phages were identified by CD-HIT Suite and OrthoFinder,
respectively (Huang et al., 2010). Finally, whole-genome data of
therapeutic phages and their top two closest phages were analyzed
and visualized by Mauve (Darling et al., 2004).

RESULTS

Genomic Characteristic
We have investigated a total of 86 complete genomes of Vibrio
cholerae phages. As presented in Table 1, the genome size of
phages varied from 33 to 148 kbp. However, in the majority
of phages, genome size was found to be nearly 40 kbp and
the GC (G + C) content ranges from 34.5 to 50.8%. Although
the number of proteins encoded by these phage genomes
varies from 15 to 232, we found that the majority of phage-
encoded proteins range from 40 to 50. Five out of 86 phages
were found to encode tRNA with a range of 1–17. Vibrio
phages JSF10 (NC_042074), phi 3 (NC_028895), vB_VchM_Kuja
(NC_048827), JA-1 (NC_021540), and VCO139 (NC_049350)
have encoded tRNAs of 17, 8, 3, 1, and 1, respectively.

Genome Clusters
The BLASTn sequence similarity among the phages is computed
to recognize phage genome clusters. We have identified nine
clusters and three singletons of phages using BLASTn sequence
coverage and identity > 75% with an E-value threshold of 0.0
(Supplementary Table 2). As displayed in Figure 1A, Clusters

TABLE 1 | The genomic characteristic of 86 complete genomes of Vibrio
Cholerae phages.

Genomic features Number or range

Complete genome size (bp) 33,106–148,180

GC (%) 34.5–50.8

Proteins 15–232

tRNAs 1–17

FIGURE 1 | (A) Distribution of Vibrio Cholerae phages in clusters. (B) Isolation country of Vibrio Cholerae phages in the world.
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FIGURE 2 | Dot plot of all the 86 Vibrio Cholerae phages. Dot plot is visualized by Gepard version 1.30 (Krumsiek et al., 2007).

1 and 2 have the highest number of phages (22 for each) and the
smallest number of phages (three for each) are found in Clusters
7, 8, and 9. The three singletons are also shown here. Our analysis
revealed that the maximum number of phage genome sequences
was reported from Bangladesh (64%) followed by China (14%),
India (7%), and Russia (7%), respectively (shown in Figure 1B).

All possible pairwise sequence similarity among the phages
were computed by whole-genome dot plot and ANI. All the 86
whole-genome sequences of phages were concatenated into a
single nucleotide file and used for both axes. The exact match
of nucleotide was plotted as a black dot. Therefore, parallel
black lines to the main diagonal shows continuous and strong
sequence similarity whereas gray lines show weak similarity.
We have observed the presence of nine clusters and three
singletons (shown in Figure 2) by analyzing this dot matrix.
Furthermore, we have considered one representing phage for
each cluster and three singletons (9 + 3 = 12) and treated it as a
ClusterRep (Representing Cluster). All the downstream analyses
were also carried out for this cluster. The dot plot analysis for
ClusterRep has displayed no similarity among the 12 phages
(Supplementary Figure 1).

The ANI among the phages of a respective cluster was
computed (Table 2 and Supplementary Tables 3–10) and in most

of the cases, we have observed the ANI of phage pairs is > 95%.
The ANI of cluster1 ranges from 93.97 to 100%. Similarly, a
minimum ANI score of 98.72% and a maximum score of 100%
have been observed for Cluster2. A similar ANI pattern was also
observed in other clusters. As presented in Table 2, the majority
of phage pairs have ANI > 97% in Cluster 4. No similarity was
noticed for ClusterRep (Supplementary Table 11).

For a respective cluster, we have detected a substantial number
of orthologous groups of proteins. For Clusters 1, 2, 3, 4, 5, 6, 7,
8, and 9, the number of orthologous groups was found to be 54,
269, 38, 35, 101, 44, 152, 70, and 67, respectively (Supplementary
Tables 12–20). Interestingly, we have not found any orthologous
group of proteins for ClusterRep.

We have employed the CGView tool for the comparative
whole-genome map of each cluster along with ClusterRep. As
presented in Figures 3A–D and Supplementary Figures 2–

7, we have used the first phage of a cluster as a reference
genome and BLAST with the other phage within the cluster.
The similarities among the phages were plotted by a solid color
circle and dissimilarities among the phages were plotted by
a white color circle. For Clusters 1–9, high similarities have
been observed within the cluster whereas, no similarities were
observed in ClusterRep.
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TABLE 2 | Average nucleotide identity (ANI) among the phages of Cluster 4.

ICP2-2013-A-Haiti Saratov15 Saratov12 ICP2 ICP2-2011-A ICP2-2006-A JSF27 JSF23

ICP2-2013-A-Haiti * 85.79 85.74 86 85.82 85.99 85.99 85.84

Saratov15 85.92 * 99.99 97.61 97.68 97.62 97.66 97.62

Saratov12 85.87 99.99 * 97.57 97.67 97.59 97.63 97.57

ICP2 86.01 97.61 97.57 * 99.05 98.97 99.21 98.96

VICP2-2011-A 85.82 97.68 97.67 99.05 * 99.72 99.81 99.86

ICP2-2006-A 85.99 97.62 97.59 98.97 99.72 * 99.72 99.82

JSF27 85.99 97.66 97.63 99.21 99.81 99.72 * 99.73

JSF23 85.84 97.62 97.57 98.96 99.86 99.82 99.73 *

*specified ANI for same phage.

Phylogenetic Analysis
The DNA polymerase proteins of each phage have been
incorporated for the construction of the phylogenetic tree. We
have noticed the presence of DNA polymerase protein in the
genome of 74 out of 86 phages. As shown in Figure 4, all the
clusters and outgroups are distinguishable using evolutionary
analysis of DNA polymerase proteins. Figure 4 demonstrates
that the phages are highly evolutionary conserved within the
cluster. However, for ClusterRep, no evolutionary conservation
was found (shown in Figure 5).

Screening of Potential Phage for Cholera
Therapy
To screen potential phages which may be used for therapeutic
application, we have investigated those clusters that have at
least one therapeutic phage. As a result, we have considered
Clusters 1, 2, 4, and 5 for the final analysis. For the ICP3
(NC_015159.1) therapeutic phage in Cluster 1, we have detected
ICP3_2009_A (HQ641342.1) and ICP3_2007_A (HQ641344.1)
as the top two closest phages (Supplementary Table 21
and Supplementary Figure 8). In Cluster 2, ICP1_2006_A
(HQ641351.1) and ICP1_2006_B (HQ641350.1) have been
detected as the top two for the ICP1 (NC_015157.1) therapeutic
phage (Supplementary Table 22 and Supplementary Figure 9).
ICP2_2011_A (KM224878.1) and JSF27 (KY883658.1) have been
found as the top two phages for therapeutic ICP2 (NC_015158.1)
phage in Cluster 4 (Supplementary Table 23 and Supplementary
Figure 10). As presented in Table 3, JA-1(NC_021540.1) and
VCO139 (NC_049350.1) have been found as the top two
phages for therapeutic Phi_1 (NC_028799.1) phage in Cluster 5
(Supplementary Figure 11).

The orthologous gene investigation of the top three phages
of Cluster 1 shows 47 orthologous groups of proteins (Figure 6
and Supplementary Table 24). Forty-two protein sequence level
clusters were detected among the ICP3 and ICP3_2007_A using
CDHIT with sequence identity cut-off > 90% (Supplementary
Table 25). Similarly, 42 clusters were also found among the
ICP3 and ICP3_2009_A (Supplementary Table 26). A similar
analysis was also carried out for the top three phages of Clusters
2, 4, and 5; 220, 68, and 75 orthologous groups of proteins
were found for Clusters 2, 4, and 5, respectively (Figure 6
and Supplementary Tables 27–29). Furthermore, maximum
numbers of protein sequence level clusters were also observed

for Clusters 2, 4, and 5 using CDHIT with sequence identity
cut-off > 90% (Supplementary Tables 27–35). Finally, whole-
genome sequences of the top three phages for the above clusters
(1, 2, 4, and 5) were also compared and found high similarity
among these top three phages for respective clusters (Figure 7
and Supplementary Figures 12–14). However, for ClusterRep,
we have not observed any similarity in Mauve (Supplementary
Figure 15).

DISCUSSION

In this study, we have extensively compared 86 Vibrio cholerae
phages to understand the genomic, functional patterns, and
common orthologous proteins among them and their probable
usage in cholera therapy. We have noticed that the majority
of Vibrio cholerae phages are isolated from Bangladesh since
the Bengal Delta region is the native homeland of cholera
(Figure 1B and Supplementary Table 1; Alam et al., 2011;
Kopprio et al., 2020). The genome length and number of
predicted proteins of phages displayed a diverse range (Table 1).
However, the majority of phage genome length is ∼40 kb and
the number of encoded proteins is 40–50. The numbers of
encoded proteins are directly proportional to the genome length
of phages (Supplementary Table 2) and the majority among
them are putative proteins. However, genome length is not a
factor to decide the number of tRNAs. For the identification
of clusters and singletons, the majority of comparative genomic
approaches used whole-genome dot plot and nucleotide identity
more than 45–50% at the genus level (Hatfull et al., 2010; Pope
et al., 2011; Turner et al., 2017; Ha and Denver, 2018; Gao
et al., 2020). Since we have focused on the species level we have
considered BLASTn identity and coverage more than 75% within
the 86 Vibrio cholerae phages for the identification of clusters
and singletons (Supplementary Table 2). However, we have
verified the clusters using whole-genome dot plot and nucleotide
identity and witnessed similar results (Figure 2, Table 2,
and Supplementary Tables 3–10). The high- and no-sequence
similarities were observed within and between the clusters,
respectively (Figure 2 and Supplementary Figure 1). Most of
the Vibrio cholerae phages were clustered among themselves
since we have discovered that 96.5% (83/86 ∗ 100) of phages
formed nine clusters (Figure 1A and Supplementary Table 2).

Frontiers in Microbiology | www.frontiersin.org 5 March 2022 | Volume 13 | Article 803933

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-803933 March 24, 2022 Time: 14:6 # 6

Barman et al. Comparative Genomic for Potential Therapeutic Choleraphage Screening

FIGURE 3 | (Continued)
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FIGURE 3 | (A) Comparative whole-genome map of ICP 3 phage and Cluster 1 phages. (B) Comparative whole-genome map of ICP2-2013-A-Haiti phage and
Cluster 4 phages. (C) Comparative whole-genome map of VPUSM 8 phage and Cluster 6 phages. (D) Comparative whole-genome map of ICP 3 phage and
ClusterRep phages. All CDS, GC content, and skew of reference genome are also shown in the above figures.
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FIGURE 4 | Evolutionary analysis of DNA polymerase proteins. The MEGA X software with MUSCLE, the UPGMA algorithm, the bootstrap value of 2,000, and a
75% cut-off value of a condensed tree have been used for the analysis. The outgroup DNA polymerase proteins are also included for significant analysis.
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FIGURE 5 | Evolutionary analysis of DNA polymerase proteins of ClusterRep. The MEGA X software with MUSCLE, the UPGMA algorithm, the bootstrap value of
2,000, and a 75% cut-off value of a condensed tree have been used for the analysis.

Therefore, singletons (3/86, ∼3.5%) are notably lower than
Bacillus (18.1%), Pseudomonas (23.1%), and Salmonella (36.6%)
(Grose et al., 2014; Ha and Denver, 2018; Gao et al., 2020). We
are unable to check the possibility of singleton due to the unique

isolation site, since only the isolation country name is retrievable
instead of the exact place name. The bias due to the majority
(64%) of phages isolated from the same country (Bangladesh)
have not reflected the phage diversity and proportion of phages
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TABLE 3 | Percentage of identity matrix by ClustalOmega for Cluster 5.

NC_049380.1 NC_028799.1 NC_021540.1 NC_049350.1

NC_049380.1 100 46.47 46.42 46.34

NC_028799.1 46.47 100 89.79 89.65

NC_021540.1 46.42 89.79 100 99.44

NC_049350.1 46.34 89.65 99.44 100

Bold signify the top 2 identity score with respect to the therapeutic phage.

classified into each cluster. As we know that the orthologous
proteins function similarly in different species, we have searched
for the orthologous group of proteins among the phages.
Significant numbers of orthologous groups of proteins have
been found within the clusters but no orthologous group of
proteins was found between the clusters (ClusterRep). This
indicates strong functional similarity and dissimilarity within and
between the clusters, respectively (Supplementary Tables 12–
20). Furthermore, similarity and dissimilarity within and between
the clusters were also clearly visualized by CGView (Figures 3A–
D and Supplementary Figures 2–7). We have observed the
majority of phages consist of DNA polymerase protein. This
protein is liable for DNA replication. The evolutionary analysis
of DNA polymerase protein of phages reveals high conservation
within the clusters (Figure 4) and high diversity between the
clusters (ClusterRep) (shown in Figure 5). In Cluster 2, we
have observed that 19 distinct isolates of ICP1 phage are highly
conserved, which was earlier found by Angermeyer et al. (2018).
For screening of potential therapeutic phages, we have studied
only those clusters that should have at least one reported
therapeutic phage.

A high degree of sequence similarities within the clusters has
been observed in this study. Therefore, screening of potential

FIGURE 6 | Comparison of orthologous group of proteins and minimum
number of encoded proteins among the top three screening phages. COG
stands for cluster of orthologous gene.

therapeutic phages from these clusters, we have utilized the
guided tree and identity matrix value. The whole-genome
sequences of phages have been used to form the guided tree
and measure the identity matrix value. The top two similar
phages of the therapeutic phage have been identified by guided
tree and identity matrix value (Supplementary Tables 21–23
and Supplementary Figures 9–11). A high degree of protein
sequence and functional similarity has been observed between the
therapeutic and screened phages (Figure 6 and Supplementary
Tables 24–29). These indicate strongly that the screening phages
might be used for therapeutic targets for Vibrio cholerae. The
majority of screening phages of Phi_1, ICP1, ICP2, and ICP3 are
highly conserved.

We have extensively studied and compared the global database
of complete genome sequences of Vibrio cholerae phages and
testified conserved genomic and functional patterns within
the clusters. No conserved genomic and functional patterns

FIGURE 7 | Whole-genome comparative genome analysis of Vibrio Cholerae phage ICP3, ICP3_2009_A and ICP3_2007_A using Mauve (Darling et al., 2004).
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have been observed between the clusters. This study can be
utilized for the classification of the newly isolated Vibrio cholerae
phage. A high degree of sequence and functional similarity has
been discovered among the therapeutic and screened phages,
indicating strong implications in cholera therapy. Furthermore,
experimental verification in the animal model might be needed
for identifying the exact impact of screened phages in the host
Vibrio cholerae.
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