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Introduction
Skeletal muscle atrophy or wasting is a devastating complica-
tion of a large number of chronic disease states such as cancer, 
diabetes, chronic heart failure, and cystic fibrosis (Jackman and 
Kandarian, 2004). Besides a reduced survival rate, muscle atro-
phy is related to poor functional status and health-related qual-
ity of life during starvation, denervation, immobilization, aging, 
and numerous other conditions (Kandarian and Stevenson, 
2002). Rapid atrophy occurs because of accelerated proteolysis 
leading to a loss of fiber cross-sectional area (CSA), protein 
content, and strength in skeletal muscle (Glass, 2003; Jackman 
and Kandarian, 2004).

Recent findings indicate that skeletal muscles respond to 
different types of atrophy conditions by activating a complex 

network of biochemical and transcriptional pathways, leading 
to the expression of a set of genes termed “atrogenes” (Glass, 
2003; Cao et al., 2005). Many atrogenes are the components of 
ubiquitin–proteasome system that provides a mechanism for  
selective degradation of regulatory and structural proteins (Glass, 
2005; Solomon and Goldberg, 1996; Lecker et al., 2006). Two 
E3 ubiquitin ligases, muscle RING-finger 1 (MuRF1) and mus-
cle atrophy F-box (MAFbx; also called Atrogin-1), have now 
been identified that are highly up-regulated in several distinct 
models of skeletal muscle atrophy in both rodents and humans 
(Bodine et al., 2001; Gomes et al., 2001). Their catabolic role in 
skeletal muscle has been established by the finding that targeted 
deletion of MAFbx or MuRF1 rescues atrophy in several condi-
tions (Bodine et al., 2001; Gomes et al., 2001; Glass, 2010).  
In addition, it is now increasingly clear that the autophagy– 
lysosomal pathway also plays a crucial role in myofibril prote-
olysis in skeletal muscle (Sandri, 2010). Accumulating evidence 
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pression level and autoubiquitination of tumor necrosis 
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involved in receptor-mediated activation of several sig-
naling pathways, is enhanced in skeletal muscle during 
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autophagy-related molecules in skeletal muscle upon 
denervation. Inhibition of TRAF6 also preserves the  
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mitochondria in denervated muscle. Moreover, depletion 
of TRAF6 prevents cancer cachexia in an experimental 
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an important therapeutic target to prevent skeletal  
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Figure 1.  Expression of TRAF6 is increased in atrophying skeletal muscle. C57BL6 mice were subjected to either the conditions of denervation (sciatic 
nerve transection), tumor growth (LLC), or diabetes (STZ injection), and TA muscle was isolated and used for biochemical analyses. (A) Fold change in 
mRNA levels of TRAF6 in TA muscle of challenged mice compared with control mice. (B and C) Western blot analyses of protein levels of TRAF6 in TA muscle 
(B) and soleus muscle (C) of control and challenged mice. Black lines indicate that intervening lanes have been spliced out. (D) Control and denervated 
TA muscle extracts were immunoprecipitated with TRAF6 antibody followed by Western blotting using ubiquitin (Ub) antibody (top). Western blotting using 
anti-TRAF6 after stripping the membrane (middle) and anti-tubulin (bottom). Error bars indicate SD. *, P < 0.01 (values significantly different from controls). 
CON, control; DEN, denervated; DIAB, diabetic.



1397TRAF6 mediates skeletal muscle atrophy • Paul et al.

mechanisms, are also activated in atrophying skeletal muscle, 
we hypothesize that TRAF6 plays a critical role in regulation of 
skeletal muscle mass in different catabolic conditions.

The major aim of this study was to investigate the physio-
logical functions of TRAF6 in differentiated skeletal muscle 
and in catabolic conditions. Because conventional TRAF6-null 
mice die perinatally and neonatally because of severe osteo
porosis and other defects (Lomaga et al., 1999; Naito et al., 1999; 
Kobayashi et al., 2003), for this study, we have generated  
skeletal muscle–specific TRAF6 knockout mice. Our results 
show that muscle-specific depletion of TRAF6 preserves 
skeletal muscle mass, fiber size, and contractile functions in  
response to denervation. Furthermore, specific inhibition of 
TRAF6 also inhibits skeletal muscle wasting in a mouse model 
of cancer cachexia.

Results
Expression of TRAF6 is increased in 
atrophying skeletal muscle
Although TRAF6 is expressed in several cell types, it remains 
unknown how the expression of TRAF6 is regulated in skeletal 
muscle cells. Using C2C12 myoblasts, we first studied how the 
levels of TRAF6 protein change at different time points after in-
duction of differentiation. As shown in Fig. S1 A, TRAF6 is ex-
pressed in proliferating myoblasts, but its levels are dramatically 
reduced in differentiated myotubes. Reduced levels of TRAF6 
protein appear to be a result of its reduced expression because 
transcript levels of TRAF6 were also significantly reduced in 
myotubes compared with myoblasts (Fig. S1 B). Interestingly, 
the expression of other TRAFs was not affected during myo-
genic differentiation (Fig. S1 A). Furthermore, TRAF6 is highly 
expressed in developing skeletal muscle of young animals but 
its levels are reduced in adult animals (Fig. S1 C).

We next determined whether the expression of TRAF6 
changes in skeletal muscle in different atrophy conditions. As a 
model of denervation-induced muscle atrophy, C57BL6 mice 
were denervated for 4 d as described previously (Mittal et al., 
2010). Lewis lung carcinoma (LLC) cells have been widely 
used to generate a model for cancer cachexia-induced muscle 
wasting in mice (Cai et al., 2004). To determine how expression 
of TRAF6 is regulated in cachexia, C57BL6 mice were given a 
single subcutaneous injection of LLC cells (in the left flank), 
which led to the growth of tumors at the site of injection. After 
12 d of LLC inoculation, the right hind limb muscles were iso-
lated and analyzed for TRAF6 expression. To induce type I dia-
betes, C57BL6 mice were treated with chronic intraperitoneal 
injections of streptozotocin (STZ) for 5 d as described previ-
ously (Baba et al., 2009). Finally, skeletal muscles of control 
and challenged mice were isolated and processed for studying 
mRNA and protein levels using quantitative real-time PCR 
(QRT-PCR) and Western blotting, respectively. As shown in 
Fig. 1 A, the mRNA levels of TRAF6 were significantly up- 
regulated in tibial anterior (TA) muscle of mice subjected to de-
nervation, cancer cachexia, or diabetes. Consistent with mRNA 
levels, the protein levels of TRAF6 were also found to be in-
creased in TA (contains predominantly fast-type fiber) and  

further indicates that these two pathways may function in a co-
ordinated manner to augment protein degradation in different 
atrophy conditions (Mammucari et al., 2007; Zhao et al., 2007; 
Doyle et al., 2010).

Nuclear factor B (NF-B) is a proinflammatory tran-
scription factor that regulates the expression of a large number 
of genes, including those involved in skeletal muscle proteoly-
sis and fibrosis (Kumar et al., 2004). Increased activation of NF-B 
has been consistently observed in skeletal muscle in different 
types of atrophy (Li et al., 2008). One of the important mecha-
nisms by which NF-B induces muscle atrophy is through up-
regulation of MuRF1 (Cai et al., 2004; Mourkioti et al., 2006). 
In addition to NF-B, several other signaling pathways have 
also been found to contribute to loss of skeletal muscle mass  
in catabolic conditions. Activation of p38 MAPK and AMP- 
activated protein kinase (AMPK) stimulates atrophy by aug-
menting the expression of MAFbx and MuRF1 (Li et al., 2005; 
Krawiec et al., 2007; Romanello et al., 2010), whereas c-Jun  
N-terminal kinase (JNK) has been implicated in the activation 
of caspases in atrophying skeletal muscles (Supinski et al., 
2009). Moreover, the activation of AMPK and NF-B may also 
stimulate muscle proteolysis through enhancing the activity of 
autophagy–lysosomal system (Meley et al., 2006; Criollo et al., 
2010a,b; Romanello et al., 2010). However, the proximal sig-
naling events leading to the activation of various proteolytic 
systems in different types of atrophy remain enigmatic. It re-
mains unknown whether the activation of various catabolic 
pathways is regulated through upstream activation of a common 
signaling network or if they are regulated through independent 
mechanisms in skeletal muscle in atrophy conditions.

TNF receptor–associated factors (TRAFs) comprise a 
family of conserved adaptor proteins involved in activation of 
various signaling cascades. Among known proteins of this fam-
ily, TNF receptor adaptor protein 6 (TRAF6) has several dis-
tinct features that are not shared by other members of TRAF 
family (Lee and Lee, 2002; Chung et al., 2007). TRAF6 (along 
with TRAF2) is also an important E3 ubiquitin ligase, which in 
association with the dimeric ubiquitin-conjugating enzyme 
Ubc13/Uev1A promotes the unique Lys-63–linked poly-ubiquitin 
chains, rather than the conventional Lys-48–linked poly-ubiquitin 
chains that target proteins for degradation (Pickart, 2001;  
Lamothe et al., 2007a; Mukhopadhyay and Riezman, 2007). 
Studies in the recent past have established that TRAF6  
is central to the activation of many signaling pathways including 
NF-B, MAPK, and phosphatidylinositol 3-kinase (PI3K)/Akt 
in response to cytokines and microbial products (Chen, 2005; 
Lamothe et al., 2007a,b; Yamashita et al., 2008; Yang et al., 
2009). Of note is the discovery that among all known TRAFs, 
only TRAF6 interacts with scaffold protein p62/Sequestosome 1, 
which is involved in regulation of autophagy and trafficking  
of proteins to the proteasome (Seibenhener et al., 2004; Wooten 
et al., 2005; Moscat et al., 2007; Nakamura et al., 2010). More 
recently, it has been found that TRAF6 promotes the Lys-63–
linked ubiquitination of Beclin-1, which is critical for the induc-
tion of autophagy, in response to Toll-like receptor 4 signaling 
(Shi and Kehrl, 2010). Because many of these signaling pathways 
and proteolytic systems, activated through TRAF6-dependent 

http://www.jcb.org/cgi/content/full/jcb.201006098/DC1
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expression and autoubiquitination of TRAF6 are stimulated in 
skeletal muscle in settings of atrophy.

Muscle-specific depletion of TRAF6 does 
not cause any overt phenotype in mice
To investigate the role of TRAF6 in skeletal muscle, we developed 
a conditional TRAF6 gene inactivation strategy based on the  
Cre–LoxP system. TRAF6flox/flox (TRAF6f/f) mice were crossed with 
muscle creatine kinase (MCK)-Cre mice in which Cre-mediated 
recombination occurs in postmitotic myofibers but not in satellite 
cells (Brüning et al., 1998). The design of targeting construct to 
generate muscle-specific TRAF6 knockout (TRAF6mko henceforth) 

soleus (contains both slow- and fast-type fibers) in all the three 
models of atrophy studied (Fig. 1, B and C).

Because TRAF6 is an E3 ubiquitin ligase that undergoes 
lysine-63–linked autoubiquitination in response to cytokines 
and microbial products (Lamothe et al., 2007a,b), we also in-
vestigated whether TRAF6 is ubiquitinated in skeletal muscle 
under the conditions of atrophy. Protein extracts prepared from 
control, and denervated TA muscles were immunoprecipitated 
with TRAF6 antibody followed by Western blotting using ubiq-
uitin antibody. A marked increase in ubiquitinated TRAF6 pro-
tein was noticeable in denervated skeletal muscle compared 
with control muscle (Fig. 1 D). These observations suggest that 

Figure 2.  Generation of skeletal muscle–specific TRAF6 knockout mice. (A) Strategy for the generation of TRAF6mko mice. TRAF6f/f mice were generated 
by homologous recombination of a 15-kb DNA fragment containing a 5.5-kb-long homologous (LH) fragment, loxP site, 2-kb TRAF6 exon, 1.4-kb stop 
cassette, loxP site, 1.5-kb IRES-YFP, and 1.5-kb short homologous (SH) fragment. These mice were crossed with MCK-Cre mice to delete the floxed exon. 
(B) Representative photomicrographs of the semiquantitative reverse polymerase PCR gels showing reduced expression of TRAF6 in TA muscle of TRAF6mko 
mice compared with TRAF6f/f or C57BL6 mice. The levels of IRES and GAPDH were comparable between TRAF6f/f and TRAF6mko mice. (C) Western blot 
analysis of TRAF6, TRAF3, TRAF4, TAB1, and tubulin protein levels showed depletion of TRAF6 only in skeletal muscle of TRAF6mko mice.
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denervation-induced loss of soleus, TA, and GA muscle weight 
was significantly rescued in TRAF6mko compared with TRAF6f/f 
mice (Fig. 3 B). We next performed H&E staining on TA and 
soleus muscle sections of control and denervated TRAF6f/f and 
TRAF6mko mice and quantified fiber CSA. Interestingly, fiber 
CSA was significantly preserved in TA (Figs. 3, C and D) and 
soleus (Figs. 3, E and F) muscle of TRAF6mko mice compared 
with littermate TRAF6f/f mice upon denervation. Furthermore, 
force production in isometric contraction was significantly 
higher in denervated soleus muscle of TRAF6mko mice com-
pared with TRAF6f/f mice (Fig. 3 G).

Inhibition of TARF6 prevents proteolysis in 
denervated skeletal muscle
Skeletal muscle atrophy can occur due to enhanced proteolysis, 
reduced protein synthesis, or both (Jackman and Kandarian, 2004; 
Glass, 2005). We investigated the possibility of whether TRAF6 
affects myofibril proteolysis or if it represses expression of spe-
cific muscle proteins in denervated skeletal muscle. Sham- 
operated or denervated TA muscles were isolated from TRAF6f/f 
and TRAF6mko mice, and muscle extracts made were used to mea-
sure the levels of specific muscle proteins by Western blotting. 
As shown in Fig. 4 A, the levels of MyHCs were considerably re-
duced in denervated TA muscle compared with sham-operated 
TRAF6f/f mice. Interestingly, the denervation-induced loss of 
MyHC was rescued in TRAF6mko mice (Fig. 4 A). Quantification 
of band intensities from immunoblots confirmed that the levels 
of MyHC were significantly higher in denervated TA muscle of 
TRAF6mko mice compared with TRAF6f/f mice (Fig. 4 B). Consis-
tent with a previously published study (Matsuda et al., 1984), we 
found that the protein levels of tropomyosin were increased in de-
nervated muscle, though there was no major difference in the levels 
of tropomyosin in denervated muscle of TRAF6mko mice com-
pared with TRAF6f/f mice (Fig. 4 A). We also did not find any sig-
nificant difference in the levels of many other muscle proteins 
such as troponin, neuronal nitric oxide synthase (nNOS), laminin, 
-dystroglycan, dystrophin, utrophin, and sarcomeric -actin in 
control and denervated skeletal muscle of TRAF6f/f and TRAF6mko 
(Fig. 4 A). These data are in agreement with previously published 
findings that muscle wasting involves degradation of only select 
muscle proteins (Acharyya et al., 2004; Mittal et al., 2010).

To further determine whether increased levels of MyHC 
in denervated skeletal muscle of TRAF6mko compared with 
TRAF6f/f mice were a result of its reduced degradation or in-
creased expression, we measured mRNA levels by QRT-PCR. 
Interestingly, there was no significant difference between mRNA 
levels of MyHC between control and denervated TA muscle  
of TRAF6f/f and TRAF6mko mice (Fig. 4 C). Collectively, these 
results indicate that the inhibition of TRAF6 prevents the proteo-
lytic degradation of MyHC without affecting its expression  
in denervated skeletal muscles.

TRAF6 is required for the activation 
of ubiquitin–proteasome and autophagy 
systems in denervated skeletal muscles
The ubiquitin–proteasome system is the major pathway that 
causes the degradation of muscle proteins in various atrophying 

mice is described in Fig. 2 A and in a published article (Kobayashi 
et al., 2003). The breeding strategy for generation of TRAF6mko 
and littermate TRAF6f/f mice is depicted in Fig. S2 A. Depletion of 
TRAF6 in skeletal muscle tissues was assessed by semiquantitative 
reverse-transcription PCR using TRAF6 exon 7, internal ribosome 
entry site (IRES), and glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) primers. A significant reduction in TRAF6 transcript 
levels in skeletal muscle was noticeable in TRAF6mko mice, whereas 
levels of IRES and GAPDH were comparable between C57BL6 
(wild-type), TRAF6f/f, and TRAF6mko mice (Fig. 2 B). By perform-
ing Western blotting, we also measured protein levels of TRAF6  
in skeletal muscle and other tissues of 6-wk-old TRAF6f/f and 
TRAF6mko mice. As shown in Fig. 2 C, the protein levels of TRAF6 
were considerably reduced in gastrocnemius (GA) and TA muscle 
of TRAF6mko compared with TRAF6f/f mice. There was no major 
difference in the levels of TRAF6 in other tissues (e.g., heart, liver, 
and spleen). Furthermore, the expression of some other TRAFs  
(e.g., TRAF3 and TRAF4) and an adapter protein TAB1 did not 
change in skeletal muscle and other tissues of TRAF6mko and 
TRAF6f/f mice, which indicated depletion of TRAF6 specifically in 
skeletal muscle of TRAF6mko mice (Fig. 2 C).

TRAF6mko pups were viable, born in the expected Mendelian 
ratio, and indistinguishable from their littermate TRAF6f/f mice. 
There was no significant difference in overall body weight or 
individual muscle tissue weights between littermate TRAF6f/f and 
TRAF6mko mice (unpublished data). At the age of 10 d (young) and 
8 wk (adult), we analyzed muscle tissues of TRAF6f/f and TRAF6mko 
mice. Hematoxylin and eosin (H&E) staining of muscle section 
and histomorphometric analysis showed that the fiber CSA was 
comparable in TRAF6f/f and TRAF6mko mice (Fig. S2, B and C). 
Depletion of TRAF6 in skeletal muscle did not affect the count of 
fibers per unit area in young or adult mice (Fig. S2 D).

Measurement of serum levels of creatine kinase (CK) in 
TRAF6f/f and TRAF6mko mice showed no significant difference, 
which suggests that depletion of TRAF6 does not cause any 
overt myopathy in mice (Fig. S3 A). We also investigated 
whether TRAF6 regulates the composition of oxidative (type I, 
slow-type) and glycolytic (type II, fast-type) fibers in skeletal 
muscle of mice. Staining of soleus muscle section with both 
anti–myosin heavy chain (MyHC) type I and anti-MyHC type II 
followed by counting of each type of fiber showed that deple-
tion of TRAF6 does not affect fiber composition in skeletal 
muscle of mice (Fig. S3 B). Finally, we also found that specific 
muscle force produced in isometric contractions was similar in 
TRAF6f/f and TRAF6mko mice (Fig. S3 C). These observations 
suggest that TRAF6 depletion does not produce any overt  
phenotype in differentiated muscle of mice.

Depletion of TRAF6 rescues  
denervation-induced muscle atrophy
Left hind limb muscles of 3-mo-old TRAF6f/f and TRAF6mko 
mice were denervated by transecting sciatic nerve, whereas the 
right hind limb was sham-operated. Gross analyses 14 d after 
denervation showed that the loss of GA muscle was considerably 
reduced in TRAF6mko mice compared with TRAF6f/f mice  
(Fig. 3 A). We also measured wet weights of different muscles 
(soleus, TA, and GA) from tendon to tendon. Interestingly,  

http://www.jcb.org/cgi/content/full/jcb.201006098/DC1
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have been found to be highly expressed in atrophying muscles 
(Bodine et al., 2001; Gomes et al., 2001). To determine whether 
TRAF6 is involved in expression of MAFbx and MuRF1, we 
measured their transcript levels in denervated skeletal muscle 
using QRT-PCR technique. In agreement with published reports 
(Bodine et al., 2001; Gomes et al., 2001), mRNA levels of both 
MAFbx and MuRF1 were found to be drastically increased in 

conditions (Solomon and Goldberg, 1996; Cao et al., 2005). 
Previous studies have reported enhanced expression of several 
components of the ubiquitin–proteasome system and an in-
crease in the amounts of ubiquitinated proteins in different 
muscle-wasting conditions, including denervation (Solomon 
and Goldberg, 1996; Cao et al., 2005). Among several markers 
of muscle atrophy, two atrogenes, MAFbx/Atrogin-1 and MuRF1, 

Figure 3.  Ablation of TRAF6 prevents denervation-induced muscle loss in mice. 3-mo-old TRAF6f/f and TRAF6mko mice were denervated by transection 
of sciatic nerve. (A) Arrows point to GA muscle 14 d after denervation. (B) TA, GA, and soleus muscle were isolated tendon to tendon from TRAF6f/f and 
TRAF6mko mice 14 d after denervation (n = 8 per group), and their wet weight was measured. (C) H&E-stained sections of TA muscle of TRAF6f/f and 
TRAF6mko mice 14 d after denervation. Bars, 50 µm. (D) Quantification of mean fiber CSA of TA muscle in TRAF6f/f and TRAF6mko mice 14 d after dener-
vation (n = 8 in each group). (E) Representative H&E-stained sections of soleus muscle of TRAF6f/f and TRAF6mko mice. Bars, 20 µm. (F) Quantification of 
fiber CSA in soleus muscle in TRAF6f/f and TRAF6mko mice after denervation (n = 8 in each group). (G) Denervation-induced loss in absolute muscle force 
production in isometric contraction was measured in soleus muscle of TRAF6f/f (n = 4) and TRAF6mko (n = 4) mice at the indicated frequencies. Error bars 
represent SD. *, P < 0.05 (values significantly different from denervated muscle of TRAF6f/f mice).
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sought to determine whether TRAF6 affects autophagy in de-
nervated skeletal muscle. To answer this question, we compared 
the mRNA levels of major autophagy-related genes LC3B,  
Beclin1, and Gabarapl1, which are reported to be significantly 
up-regulated in denervated muscles (Zhao et al., 2007). Our  
results showed that the mRNA levels of LC3B, Beclin1, and 
Gabarapl1 were significantly reduced in denervated skeletal mus-
cle of TRAF6mko mice compared with TRAF6f/f mice (Fig. 5 B).  
In agreement with their mRNA levels, the protein levels of 

denervated TA muscles compared with sham-injured control 
muscle (Fig. 5 A). Interestingly, mRNA levels of MAFbx and 
MuRF1 were significantly down-regulated in denervated mus-
cle of TRAF6mko mice compared with TRAF6f/f, which suggests 
that TRAF6 regulates the expression of these two atrogenes in 
denervated skeletal muscle (Fig. 5 A).

Accumulating evidence suggests that autophagy–lysosome-
mediated proteolysis also contributes to degradation of muscle 
protein during atrophy (Zhao et al., 2007; Sandri, 2010). We next 

Figure 4.  Depletion of TRAF6 prevents degradation of specific muscle proteins in denervated skeletal muscle. (A) Representative immunoblots for MyHC, 
tropomyosin, troponin, nNOS, dystrophin, -dystroglycan, sarcomeric -actin, laminin, and tubulin in TA muscle 10 d after denervation. Black lines indicate 
that intervening lanes have been spliced out. (B) Fold change in protein levels of MyHC in TA muscle of TRAF6f/f (n = 4) and TRAF6mko (n = 4) mice after 
denervation. (C) Fold change in mRNA level of MyHC in TA muscle of TRAF6f/f (n = 4) and TRAF6mko (n = 4) mice upon denervation. Error bars represent SD. 
*, P < 0.05 (values significantly different from TRAF6f/f mice). Black lines indicate that intervening lanes have been spliced out.
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of TRAF6f/f and TRAF6mko mice by transmission electron 
microscopy. As shown in Fig. 5 D, sham-operated skeletal mus-
cle of both TRAF6f/f and TRAF6mko mice contained well-organized 
myofibrillar structure, and normal subsarcolemmal and inter-
myofibrillar distribution of mitochondria (indicated by black 

MuRF1, LC3B, and Beclin1 were also found to be reduced  
in denervated muscle of TRAF6mko compared with TRAF6f/f 
mice (Fig. 5 C).

To further ascertain whether depletion of TRAF6 rescues 
autophagy, we analyzed control and denervated skeletal muscle 

Figure 5.  TRAF6 is required for the activation of the ubiquitin–proteasome and autophagy systems in denervated skeletal muscle. 3-mo-old TRAF6f/f and 
TRAF6mko mice were subjected to denervation for 10 d, and TA muscles were isolated for biochemical analyses. (A) Transcript levels of MAFbx and MuRF1 
(measured by QRT-PCR assays) were significantly lower in denervated TA muscle of TRAF6mko mice compared with TRAF6f/f mice. (B) The expression levels 
of autophagy-related genes LC3B, Beclin1, and Gabarapl1 were also significantly reduced in denervated TA muscle of TRAF6mko mice compared with 
TRAF6f/f mice. Error bars represent SD. *, P < 0.05 (values significantly different from those of denervated TA muscle of TRAF6f/f mice). (C) Representative 
immunoblots presented here demonstrate reduced protein levels of MuRF1, LC3B, and Beclin1 in denervated TA muscle of TRAF6mko mice compared with 
TRAF6f/f mice. Black lines indicate that intervening lanes have been spliced out. (D) Analyses of longitudinal sections of control and denervated TA muscle 
of TRAF6f/f and TRAF6mko mice using transmission electron microscopy. Black arrows point to subsarcolemmal mitochondrial distribution, blue arrows point 
to intermyofibrillar mitochondria, white arrows point to autophagosomes, pink arrows point to autophagic vacuoles, and red arrows point to mitochondria 
being engulfed by autophagosome. Bar, 1 µm.
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and blue arrows), with no evidence of autophagosome forma-
tion. In contrast, denervated muscle of TRAF6f/f mice showed 
disorganization of mitochondria in intermyofibrillar as well as 
subsarcolemmal space and a drastic increase in autophagic vac-
uole formation (Fig. 5 D, white arrows) and fusion of mitochon-
dria with autophagosome membrane (red arrows). Interestingly, 
all these characteristics of muscle atrophy and autophagy were 
considerably reduced in denervated muscle of TRAF6mko mice 
(Fig. 5 D). Collectively, these results suggest that TRAF6 is 
involved in the activation of both ubiquitin–proteasome and 
autophagy systems in denervated skeletal muscle.

TRAF6 mediates the activation of JNK, 
p38 MAPK, and AMPK in denervated 
skeletal muscle
Recent findings have identified several signaling pathways that 
regulate skeletal muscle mass in both hypertrophy and atrophy 
conditions (Glass, 2005, 2010). Because TRAF6 is a major 
adaptor protein involved in activation of various cell signaling 
pathways, we next investigated whether TRAF6 functions 
through the activation of specific signaling proteins in atrophy-
ing skeletal muscle. Control and denervated TA muscle from 

TRAF6f/f and TRAF6mko mice were isolated, and muscle ex-
tracts were analyzed by in vitro kinase assays and Western blot-
ting using antibodies that determine phosphorylated or total 
levels of specific proteins. Our results showed that denervation 
augments the kinase activity and phosphorylation of JNK1/2 
(Fig. 6 A) and p38 MAPK (Fig. 6 B) in skeletal muscle of mice. 
Importantly, we found that the depletion of TRAF6 was suffi-
cient to block the activation of JNK1/2 (fold change in kinase 
activity: TRAF6f/f, 15.83 ± 0.41, vs. TRAF6mko, 12.11 ± 0.10) 
and p38 MAPK (fold change in kinase activity: TRAF6f/f, 10.76 ± 
0.74, vs. TRAF6mko, 7.31 ± 0.40) in denervated muscles.  
In addition, we also found that the phosphorylation of AMPK as 
well as its kinase activity were significantly inhibited (fold 
change in kinase activity: TRAF6f/f, 4.15 ± 0.24, vs. TRAF6mko, 
2.57 ± 0.39) in denervated skeletal muscle of TRAF6mko com-
pared with TRAF6f/f mice (Fig. 6 C). Because JNK, p38 MAPK, 
and AMPK are linked with skeletal muscle atrophy (Li et al., 
2005; Supinski et al., 2009; Romanello et al., 2010), their re-
duced activation in denervated skeletal muscle of TRAF6mko 
suggests that TRAF6 might be mediating skeletal muscle atro-
phy through the downstream activation of these kinases in re-
sponse to denervation.

Figure 6.  Activation of different signaling proteins in denervated muscle of TRAF6f/f and TRAF6mko mice. Protein extracts prepared from control or 7-d 
post-denervated muscle of TRAF6f/f and TRAF6mko mice were used for in vitro kinase assays or Western blotting. (A) Representative gel pictures show kinase 
activity, and phosphorylated and total JNK1/2 protein levels in control and denervated TA muscle of TRAF6mko and TRAF6f/f mice. (B) Kinase activity and 
phosphorylated and total p38 MAPK levels in TA muscle of TRAF6mko and TRAF6f/f mice. (C) Gel pictures showing levels of phosphorylated and total AMPK 
protein in TA muscle of TRAF6mko and TRAF6f/f mice (top). Kinase activity of AMPK (bottom) was measured using a commercially available kit. Error bars 
represent SD. *, P < 0.05 (values significantly different from those of denervated TA muscle of TRAF6f/f mice). Black lines indicate that intervening lanes 
have been spliced out. (D) Kinase activity and phosphorylated and total Akt protein levels in TA muscle of TRAF6mko and TRAF6f/f mice. (E) Phosphorylated 
and total mTOR protein levels in TA muscle of TRAF6mko and TRAF6f/f mice. D, denervated; KA, kinase assay; S, sham operated.
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in denervated skeletal muscle. Sham and denervated TA muscle 
were isolated from TRAF6f/f and TRAF6mko mice, and nuclear 
extracts were analyzed for NF-B activity by an electrophoretic 
mobility shift assay (EMSA). The denervation-induced activa-
tion of NF-B in skeletal muscle was inhibited in TRAF6mko 
mice compared with TRAF6f/f mice (Fig. 7, A and B). Further-
more, transcriptional activation of NF-B measured after electro
porating an NF-B reporter plasmid (Fig. 7 C) and the levels  
of phosphorylation of NF-B subunit p65 (Fig. 7 D) were also 
significantly inhibited in denervated muscle of TRAF6mko mice 
compared with TRAF6f/f mice. This suggests that TRAF6 is re-
quired for the activation of NF-B upon denervation.

We have recently reported that TNF-like weak inducer 
of apoptosis (TWEAK) cytokine is a major mediator of  

Interestingly, levels of kinase activity and/or phosphory
lation of Akt and mTOR, which are involved in anabolic path-
ways (Glass, 2005, 2010), were similar in denervated muscle of 
TRAF6f/f and TRAF6mko mice (Fig. 6, D and E). These results 
suggest that TRAF6 mediates the activation of selective path-
ways, especially those involved in catabolic mechanisms in de-
nervated muscles.

TRAF6 is involved in denervation-induced 
activation of NF-B in skeletal muscle
Accumulating evidence suggests that NF-B is a major tran-
scription factor, the activation of which causes severe muscle 
wasting in response to diverse stimuli (Li et al., 2008). We in-
vestigated whether TRAF6 plays a role in activation of NF-B 

Figure 7.  TRAF6 is required for the activation of NF-B transcription factor in denervated skeletal muscle. (A) DNA-binding activity of NF-B measured by 
EMSA in TA muscle of TRAF6f/f and TRAF6mko mice 10 d after denervation. A representative EMSA gel from three independent experiments is presented.  
(B) Quantification of fold change in DNA-binding activity of NF-B in TA muscle of TRAF6f/f (n = 6) and TRAF6mko (n = 6) mice. (C) Fold change in NF-B re-
porter gene activity (normalized using Renilla luciferase) in TA muscle of TRAF6f/f and TRAF6mko mice in response to denervation. (D) Western blot analyses 
of the phosphorylated and total form of p65 protein in TA muscle of TRAF6f/f and TRAF6mko mice. (E) Western blot analysis of Fn14 protein in TA muscle of 
TRAF6f/f and TRAF6mko mice 4 d after denervation. (F) TRAF6+/+ and TRAF6/ MEF were treated with 100 ng/ml TWEAK for the indicated time intervals, 
and the activation of NF-B was studied by EMSA. A representative EMSA gel from two independent experiments is presented. (G) Fold change in NF-B 
reporter gene activity (normalized using Renilla luciferase) in TRAF6+/+ and TRAF6/ MEFs measured after 24 h of 100 ng/ml TWEAK treatment. Error 
bars represent SD. D, denervated; S, sham-operated. *, P < 0.01 (values significantly different from denervated TA muscle of TRAF6f/f mice).
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transcription factors (Li et al., 2005; Krawiec et al., 2007;  
Supinski et al., 2009; Glass, 2010; Romanello et al., 2010). The 
initial events that trigger the activation of one or multiple sig-
naling pathways in the conditions of atrophy or hypertrophy re-
main poorly defined. Our study has identified TRAF6 as a major 
upstream regulator of skeletal muscle atrophy in response to 
both physiological (e.g., denervation) and pathological (e.g., 
cancer cachexia) stimuli. Although it remains unknown what 
elicits the expression and autoubiquitination of TRAF6 in  
atrophying muscle, it was of interest to note that proliferating 
myoblasts express high levels of TRAF6, which is considerably 
reduced after their differentiation into myotubes (Fig. S1). 
Therefore, it appears that the reduced expression of TRAF6 in 
differentiated muscle could be a mechanism to prevent the activa-
tion of various catabolic pathways under normal conditions.  
In contrast, elevated levels of TRAF6 in undifferentiated myoblasts 
or in skeletal muscle of young animals is consistent with published 
findings that TRAF6 may be required for the proliferation and 
differentiation of muscle progenitor cells during skeletal muscle 
development (Chung et al., 2007; Zapata et al., 2007).

Skeletal muscle atrophy, in different catabolic conditions, in-
volves the downstream activation of the ATP-dependent ubiquitin–
proteasome system (Solomon and Goldberg, 1996). It has  
been found that in almost all muscle-wasting conditions, the ex-
pression of two muscle-specific E3 ubiquitin ligases, MAFbx 
and MuRF1, which label the target proteins for degradation by 
26S proteasome, is highly up-regulated (Bodine et al., 2001; 
Gomes et al., 2001; Cao et al., 2005). Moreover, a few sub-
strates that MAFbx and MuRF1 target in atrophying skeletal 
muscle have now been identified (Kedar et al., 2004; Tintignac 
et al., 2005; Clarke et al., 2007, 2009). The present study suggests 
that one of the mechanisms by which TRAF6 induces degradation 
of muscle protein is through augmenting the expression of  
both MAFbx and MuRF1 in denervated skeletal muscle (Fig. 5 A). 
Furthermore, our results demonstrating that the degradation of 
MyHC is significantly blocked in denervated skeletal muscle of 
TRAF6mko mice (Fig. 4) are in agreement with recent reports 
that MuRF1 targets thick filament proteins including MyHC in 
skeletal muscle (Clarke et al., 2007; Cohen et al., 2009).

Although the exact mechanisms by which TRAF6 aug-
ments the expression of MAFbx and MuRF1 are not clear, it has 
been consistently observed that the activity of TRAF6 is stimulated 
in response to many receptor-mediated events. The N-terminal 
RING domain of TRAF6 is required for its ability to signal by 
functioning as an E3 ubiquitin ligase, which catalyzes the syn-
thesis of a polyubiquitin chain linked through Lys-63 (K63) 
residue in ubiquitin (Deng et al., 2000; Chen, 2005). This auto
ubiquitination of TRAF6 serves as a scaffold to recruit molecules 
required for the activation of kinase complexes such as trans-
forming growth factor –activated kinase 1 (TAK1) and I B 
kinase (IKK; Lamothe et al., 2007a, 2008). The TAK1–TAB2 
(or TAB3) complex that is activated potentially through TRAF6-
dependent ubiquitination can phosphorylate IKK at Ser-177 
and Ser-181 in the activation loop, leading to the activation of 
IKK and subsequently NF-B (Shim et al., 2005). The activated 
TAK1 complex can also phosphorylate members of the MKK 
family, leading to the activation of JNK and p38 kinase  

denervation-induced skeletal muscle atrophy in mice (Mittal  
et al., 2010). Normal skeletal muscle expresses TWEAK but not 
its receptor Fn14. However, in response to denervation, the ex-
pression of Fn14 goes up dramatically; this allows for TWEAK 
activation of NF-B (Mittal et al., 2010). We first investigated 
whether TRAF6 regulates the expression of Fn14 in response to 
denervation. No major difference was noticed in Fn14 protein 
levels between TRAF6f/f and TRAF6mko mice upon denervation 
(Fig. 7 E). We next asked whether TRAF6 is involved in 
TWEAK-induced activation of NF-B. To answer this question, 
we used TRAF6-deficient mouse embryonic fibroblasts (MEFs). 
Interestingly, TWEAK-induced increases in DNA-binding  
activity (Fig. 7 F) and transcriptional activation of NF-B  
(Fig. 7 G) were significantly inhibited in TRAF6/ MEFs com-
pared with TRAF6+/+, which indicates that TRAF6 is required 
for the activation of NF-B in response to TWEAK.

Depletion of TRAF6 prevents skeletal 
muscle wasting in response  
to tumor growth
Tissue loss is a common consequence in cancer cachexia  
(Acharyya and Guttridge, 2007). To understand whether TRAF6 
plays any role in cancer cachexia and subsequent muscle loss, 
TRAF6mko and TRAF6f/f mice were injected with LLC cells in 
the left flank. Although no significant difference was observed 
in tumor growth in these two mice, skeletal muscle of TRAF6f/f 
mice showed a significant reduction in fiber CSA 14 d after  
inoculation with LLC cells (Fig. 8, A and B). Surprisingly, fiber 
CSA in LLC-bearing TRAF6mko mice was almost completely 
preserved, which indicates that the TRAF6 mediates the loss of 
muscle mass in response to tumor growth (Fig. 8 B). Though 
the molecular basis of cachexia is not yet fully resolved, a ma-
jority of factors that induce cachexia involve the activation of 
NF-B at the distal end of their signaling cascade (Li et al., 
2008). This has been corroborated by the finding that the inhibi-
tion of NF-B prevents tumor-induced muscle loss in mice (Cai 
et al., 2004). We investigated whether TRAF6 functions through 
the activation of NF-B in this model of cancer cachexia. Our 
results showed a significant inhibition in DNA-binding activity 
of NF-B in skeletal muscle of LLC-bearing TRAF6mko mice 
compared with TRAF6f/f mice (Fig. 8 C). Furthermore, the ex-
pression of MuRF1, LC3B, and Beclin1 was blocked in LLC-
injected TRAF6mko compared with TRAF6f/f mice; this indicates 
that, similar to denervation, inhibition of TRAF6 prevents  
tumor-induced activation of ubiquitin–proteasome and autophagy–
lysosomal systems in skeletal muscle (Fig. 8 D).

Discussion
The results of the present study indicate a novel role of TRAF6, 
formerly known as an E3 ubiquitin ligase with involvement in 
several signaling pathways, in upstream regulation of muscle 
atrophy. More recently, understanding about the intracellular 
signaling pathways governing skeletal muscle mass in response 
to both atrophy and hypertrophy stimuli has taken a quantum 
leap, though most of the recent investigations were focused on 
studying the role of various effector kinases and downstream 
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Figure 8.  Depletion of TRAF6 prevents tumor-induced muscle loss in mice. LLC cells (2 × 106 cells in 100 µl saline) were injected in the left flank 
of TRAF6f/f and TRAF6mko mice. Control mice received 100 µl of saline only. (A) TA muscles were isolated from control and tumor-bearing mice after  
14 d and analyzed by staining with H&E. Representative photomicrographs presented here demonstrate that fiber CSA was preserved in TRAF6mko mice  
(n = 7) compared with TRAF6f/f mice (n = 6). Bars, 20 µm. (B) Quantification of mean fiber CSA in TA and soleus muscle of TRAF6f/f and TRAF6mko mice 
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and autophagosome formation (Fig. 5 D), as well as the activa-
tion of AMPK (Fig. 6 C), which is known to induce the expres-
sion of several autophagy-related genes (e.g., LC3B and Bnip3), 
and the E3 ligases MuRF1 and MAFbx through the activation  
of FoxO3 transcription factor in skeletal muscle (Mammucari  
et al., 2007; Zhao et al., 2007; Romanello et al., 2010). Although 
mitochondrial fission has been suggested as an initial event to 
activate the autophagy pathway in skeletal muscle (Romanello 
et al., 2010), it has been recently demonstrated that TRAF6 
causes the Lys-63–linked ubiquitination of Beclin1 (the mam
malian homologue of yeast Atg6), which is essential for  
autophagosome formation in response to Toll-like receptor 4 
(TLR4) signaling (Shi and Kehrl, 2010). Whether TRAF6 stim-
ulates autophagosome formation through augmenting mito-
chondrial fission or if it directly regulates the expression and 
activity of the components of autophagy–lysosomal pathway is 
an area of research for future investigation.

We further investigated the contribution of TRAF6 toward 
muscle loss in cancer cachexia. Earlier studies have underlined 
the importance of inflammatory cytokines and tumor-derived 
factors as mediators of muscle loss in both animal models and 
advanced stages of cancer patients (Späte and Schulze, 2004; 
Argilés et al., 2005; Acharyya and Guttridge, 2007). Using 
transgenic mice expressing a constitutively active mutant of 
IKK, Cai et al. (2004) have previously demonstrated that the 
stimulation of the NF-B pathway is sufficient to cause severe 
muscle loss in mice. Furthermore, their study also showed that 
muscle-specific overexpression of a super–repressor mutant of 
IB (inhibitor of NF-B) significantly rescued muscle loss in 
response to tumor growth in mice (Cai et al., 2004). The present 
study provides convincing evidence that TRAF6 is an upstream 
regulator of LLC-induced muscle loss, NF-B activation, and 
MuRF1 expression (Fig. 8). Interestingly, although NF-B was 
found to regulate only the expression of MuRF1 (Cai et al., 
2004), our results indicate that TRAF6 also regulates the  
expression of autophagy-related genes (e.g., LC3B and Beclin1) 
in skeletal muscle of LLC-bearing animals (Fig. 8 D). Further-
more, the almost complete inhibition of LLC-induced ex-
pression of MuRF1, LC3B, and Beclin1 in skeletal muscle  
of TRAF6mko mice compared with control mice is consistent 
with major amelioration in muscle atrophy in TRAF6mko mice 
(Fig. 8, A and B).

The results of the present study suggest that though a sig-
nificant inhibition in muscle atrophy was observed in models of 
both denervation and cancer cachexia, depletion of TRAF6 re-
sulted in more drastic improvement in fiber CSA in skeletal 
muscle of LLC-bearing mice. A better rescuing effect in the 
cancer cachexia model compared with denervation could be  
attributed to the fact that cancer cachexia involves systemic in-
flammation, and proinflammatory cytokines are some of the 
most important mediators of muscle wasting in a cancer-bearing 

(Moriguchi et al., 1996; Hanafusa et al., 1999; Wang et al., 
2001). Interestingly, recent studies suggest that the activation of 
NF-B in skeletal muscle up-regulates the expression of MuRF1 
in response to a variety of catabolic stimuli, including denerva-
tion and tumor growth (Cai et al., 2004; Mourkioti et al., 2006; 
Li et al., 2008; Mittal et al., 2010). Furthermore, there are also 
published studies suggesting that the p38 MAPK augments the 
expression of MAFbx in response to inflammatory cytokines 
and bacterial products (Li et al., 2005; Doyle et al., 2010). Be-
cause depletion of TRAF6 in skeletal muscle blocked the acti-
vation of both NF-B and p38 MAPK in denervated skeletal 
muscle (Figs. 6 B and 7), it is likely that TRAF6 augments the 
expression of MuRF1 and MAFbx through the activation of  
NF-B and p38 MAPK, respectively, by stimulating the activity 
of TAK1 signalosome. The present study also provides novel 
evidence that the TWEAK-Fn14 dyad, a major regulator of  
denervation-induced skeletal muscle atrophy (Mittal et al., 2010), 
stimulates NF-B activation through the recruitment of TRAF6 
(Fig. 7, F and G).

In addition to the ubiquitin–proteasome system, the  
autophagy–lysosomal pathway has also been implicated in myo-
fibril degradation in various atrophying conditions (Zhao et al., 
2007; Sandri, 2010). Though it was initially considered as an 
important mechanism for removal of ubiquitinated protein ag-
gregates and cytoplasmic organelles under the conditions of 
stress, recent evidence indicates that the activation of this path-
way may also be a protective mechanism for muscle fibers in 
the conditions of atrophy (Zhao et al., 2007; Masiero et al., 
2009; Sandri, 2010). Mitochondria are one of the most impor-
tant organelles that undergo alterations in their content, shape, 
and function in conditions of muscle wasting (Figueiredo et al., 
2008; Gamboa and Andrade, 2010). More recently, it has been 
found that the mitochondrial fission is a prerequisite for skeletal 
muscle atrophy in response to starvation or after overexpression 
of FoxO3, and that the autophagy–lysosomal system is the  
major mechanism for the removal of disintegrating mitochondria 
in these conditions (Romanello et al., 2010). The removal of 
leaky mitochondria, releasing pro-apoptotic factors such as cyto
chrome c and apoptosis-inducing factor, may protect cells by 
preventing activation of apoptosis (Hamacher-Brady et al., 
2007; Mizushima and Levine, 2010; Romanello et al., 2010). 
The protective role of autophagy in skeletal muscle in catabolic 
conditions has also been highlighted by a recent study demon-
strating that muscle-specific depletion of Atg7, an important 
component of the autophagy–lysosomal system, led to more se-
vere myopathy in conditions of denervation (Masiero et al., 
2009). This suggests that physiological autophagy may be re-
quired for muscle homeostasis, whereas its overstimulation in 
atrophying muscle may contribute to muscle proteolysis (Sandri, 
2010). Intriguingly, our findings revealed that the inhibition of 
TRAF6 dramatically reduces mitochondrial disorganization 

after 14 d of tumor inoculation (n = 6 in each group). (C) Analysis of DNA-binding activity of NF-B in TA muscle of control and LLC-inoculated TRAF6f/f  
(n = 4) and TRAF6mko mice (n = 4). A representative EMSA gel is presented. (D) QRT-PCR analysis of mRNA levels of MuRF1, LC3B, and Beclin1 in TA 
muscle of TRAF6mko and TRAF6f/f mice in response to LLC growth (n = 6 in each group). Error bars represent SD. *, P < 0.01 (values significantly different 
from TRAF6f/f mice inoculated with LLC).
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Effectene transfection reagent according to the protocol suggested by the 
manufacturer (QIAGEN). Transfection efficiency was controlled by cotrans-
fection of cells with Renilla luciferase-encoding plasmid pRL-TK (Promega). 
After treatment with TWEAK, specimens were processed for luciferase ex-
pression using a Dual luciferase assay system with reporter lysis buffer per 
the manufacturer’s instructions (Promega). Luciferase measurements were 
made using a luminometer (Berthold Detection Systems).

Histology and morphometric measurements
Hind limb muscles (soleus and TA) of mice were removed, frozen in isopen-
tane cooled in liquid nitrogen, and sectioned in a microtome cryostat. For 
the assessment of tissue morphology or visualization of fibrosis, 10-µm-thick 
transverse sections of muscles were stained with H&E, and staining was visual-
ized (without any imaging medium) at room temperature on a microscope 
(Eclipse TE 2000-U) using a Plan 10×, NA 0.25 PH1 DL or Plan-Fluor ELWD 
20×, NA 0.45 Ph1 DM objective lens, a digital camera (Digital Sight  
DS-Fi1), and NIS Elements BR 3.00 software (all from Nikon). The images 
were stored as JPEG files, and image levels were equally adjusted using 
Photoshop CS2 software (Adobe). Fiber CSA was analyzed in H&E-stained 
soleus or TA muscle sections. For each muscle, the distribution of fiber CSA 
was calculated by analyzing 200–250 myofibers using NIS Elements BR 
3.00 software (Nikon) as described previously (Mittal et al., 2010).

Transmission electron microscopy
Control and denervated TA muscle isolated from TRAF6f/f and TRAF6mko 
mice were fixed in 3% glutaraldehyde in 0.1 M cocodylate buffer over-
night followed by fixing in 1% cocodylate-buffered osmium tetroxide. The 
tissue was dehydrated through a series of graded alcohols, and embedded 
in LX-112 plastic (Ladd Research Industries). Longitudinal sections (80 nm) 
were cut using an ultramicrotome (LKB) and stained with uranium acetate 
and lead citrate. Samples were analyzed using a transmission electron 
microscope (CM 12; Philips) operating at 60 kV. The pictures were cap-
tured at 8,800× magnification using a 3.2 megapixel digital camera 
(Sia-7C; Kodak) at room temperature. No imaging medium was used to 
visualize the pictures, and images were stored as JPEG files. Image levels 
were equally adjusted using Photoshop CS2 software.

RNA isolation and QRT-PCR
Isolation of total RNA and QRT-PCR were performed using a method that 
has been described previously (Dogra et al., 2006, 2007). In brief, RNA 
was extracted from homogenized tissues using TRIzol reagent (Invitrogen) 
and an RNeasy Mini kit (QIAGEN) according to the manufacturer’s instruc-
tions. The quantification of mRNA expression was performed using the 
SYBR Green dye method on a 7300 Sequence Detection system (Applied 
Biosystems). 1 µg of purified RNA was used to synthesize first strand cDNA 
with a reverse transcription system using an oligo (dT) primer (Applied  
Biosystems) and Omniscript reverse transcription kit (QIAGEN). The first 
strand cDNA reaction (0.5 µl) was subjected to real-time PCR amplification 
using gene-specific primers. The sequence of the primers used is described 
in Table S1.

Approximately 25 µl of reaction volume was used for the real-time 
PCR assay that consisted of 2× (12.5 µl) Brilliant SYBR Green QPCR Mas-
ter mix (Applied Biosystems), 400 nM of primers (0.5 µl each from the 
stock), 11 µl water, and 0.5 µl of template. The thermal conditions con-
sisted of an initial denaturation at 95°C for 10 min followed by 40 cycles 
of denaturation at 95°C for 15 s, annealing and extension at 60°C for  
1 min, and, for a final step, a melting curve of 95°C for 15 s, 60°C for  
15 s, and 95°C for 15 s. All reactions were performed in duplicate to re-
duce variation. Data normalization was accomplished using the endoge-
nous control (-actin), and the normalized values were subjected to a 
2Ct formula to calculate the fold change between the control and experi-
mental groups.

Immunoprecipitation and Western blotting
Levels of different proteins in skeletal muscle were determined by perform-
ing immunoblotting as described previously (Kumar and Boriek, 2003; 
Mittal et al., 2010). In brief, tissues were washed with PBS and homoge-
nized in Western blot lysis buffer A (50 mM Tris-Cl, pH 8.0, 200 mM 
NaCl, 50 mM NaF, 1 mM DTT, 1 mM sodium orthovanadate, 0.3% IGE-
PAL, and protease inhibitors). Approximately 100 µg of protein was re-
solved on each lane on 10–12% SDS-PAGE, electrotransferred onto 
nitrocellulose membrane, and probed using anti-TRAF6 (1:1,000; Milli-
pore), anti-TRAF3 (1:1,000; Santa Cruz Biotechnology, Inc.), anti-TRAF4 
(1:1,000; Santa Cruz Biotechnology, Inc.), anti-TAB1 (1:1,000; Cell Sig-
naling Technology), anti-phospho p65 (1:500; Cell Signaling Technology), 
anti-p65 (1:1,000; Santa Cruz Biotechnology, Inc.), anti-phospho-JNK1/2 

host (Späte and Schulze, 2004; Argilés et al., 2005; Acharyya 
and Guttridge, 2007). Interestingly, several cytokines and  
tumor-derived factors require TRAF6 for the downstream acti-
vation of various cell signaling pathways such as NF-B and 
MAPK, which were also activated in atrophying skeletal muscle 
(Chung et al., 2007; Lamothe et al., 2007b; Zapata et al., 2007). 
In contrast, denervation-induced muscle atrophy does not involve 
any systemic inflammation, though it was recently demon-
strated that the TWEAK-Fn14 dyad is one of the important  
mediators of muscle loss under conditions of denervation 
(Jackman and Kandarian, 2004; Mittal et al., 2010). Although  
a significant amelioration in muscle atrophy was observed, 
the denervation-induced muscle loss was also not completely 
blunted in TWEAK-KO mice (Mittal et al., 2010). Therefore, it 
is possible that muscle atrophy in response to denervation also 
involves some other uncharacterized factors that function inde-
pendent of TRAF6. Nevertheless, the present study provides 
strong evidence that TRAF6 is central regulator of major pro-
teolytic pathways in different types of atrophy.

In summary, the broad benefits of TRAF6 blockade in 
skeletal muscle raise novel and exciting possibilities for thera-
peutic approaches for the treatment of muscle wasting diseases 
in humans.

Materials and methods
Animal protocols
A detailed protocol for the generation of floxed TRAF6 (TRAF6f/f) mice has 
been described previously (Kobayashi et al., 2003). C57BL6 and MCK-
Cre (strain B6.FVB (129S4)-Tg (Ckmm-cre) 5 Khn/J) were obtained from 
Jackson ImmunoResearch Laboratories, Inc.

Sciatic denervation was performed by anesthetizing the mice with an 
intraperitoneal injection of Avertin (2,2,2,-tribromoethanol), shaving the left 
hind quarters, making a 0.5-cm incision 0.5 cm proximal to the knee on 
the lateral side of the right leg, separating the muscles at the fascia and lifting 
out the sciatic nerve with a surgical hook or forceps, removing a 2–3-mm 
piece of sciatic nerve, and finally closing the incision with surgical sutures.

Skeletal muscles from diabetic mice were provided by S. Srivastava 
(Diabetes and Obesity Center, University of Louisville, Louisville, KY). Dia-
betes was induced in 6-wk-old male C57BL6 mice by repeated low-dose 
STZ (55 mg/kg/d for six consecutive days, i.p.) treatment as described 
previously (Baba et al., 2009). Mice treated with vehicle only (0.05 mM 
sodium citrate, pH 4.5) served as controls. 1 wk after the last injection of 
STZ, blood was collected from the tail vein. All the STZ-injected mice had 
blood glucose >400 mg/dL. Mice were sacrificed 5 d after measuring the 
blood glucose levels. For the cancer cachexia model, LLC cells (2 × 106 
cells in 100 µl saline; American Type Culture Collection) were injected sub-
cutaneously into the flanks of 3-mo-old mice as described previously (Cai 
et al., 2004). Mice were weighed daily and sacrificed 14 d after injection 
to study muscle atrophy.

For studying NF-B reporter gene activity, TA muscle was electro-
porated with pNF-B-Luc (Takara Bio Inc.) and pRL-TK (Promega) following 
exactly same protocol as described previously (Mittal et al., 2010). All ex-
perimental protocols with mice were approved in advance by the Institu-
tional Animal Care and Use Committee at University of Louisville.

Cell culture
C2C12 cells (a myoblastic cell line) were obtained from American Type 
Culture Collection. These cells were grown in DME containing 10% FBS.  
To induce differentiation, the cells were incubated in differentiation medium 
(2% horse serum in DME) for 96 h as described previously (Dogra et al., 
2006, 2007). TRAF6+/+ and TRAF6/ MEFs were cultured in DME with 
10% FBS. The cells were plated in 6-well tissue culture plates before treat-
ment with recombinant TWEAK protein (R&D Systems) for measurement of 
DNA-binding activity of NF-B by EMSA.

For NF-B reporter gene assays, cells plated in 24-well tissue culture 
plates were transfected with pNF-B-Luc plasmid (Takara Bio Inc.) using  

http://www.jcb.org/cgi/content/full/jcb.201006098/DC1
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on 7.5% native polyacrylamide gel using buffer containing 50 mM Tris, 
200 mM glycine, pH 8.5, and 1 mM EDTA. The gel was dried, and the  
radioactive bands were visualized and quantitated by a PhosphorImager 
(GE Healthcare) using ImageQuant TL software.

Skeletal muscle functional analysis
The skeletal muscle force production in isometric contraction was performed 
as described previously (Li et al., 2009; Mittal et al., 2010). In brief, soleus 
muscle from control or denervated hind limb of mice was rapidly excised 
and placed in Krebs-Ringer solution. The muscle was mounted between a 
Fort25 force transducer (World Precision Instrumentation) and a micro
manipulator device in a temperature-controlled myobath (World Precision 
Instrumentation). The muscle was positioned between platinum wire stimu-
lating electrodes and stimulated to contract isometrically using electrical 
field stimulation (supramaximal voltage, 1.2-ms pulse duration) from a 
Grass S88 stimulator (Grass Technologies). In each experiment, muscle 
length was adjusted to optimize twitch force (optimal length, Lo). The muscle 
was rested for 15 min before the tetanic protocol was started. The output of 
the force transducer was recorded in computer using LABORATORY-TRAX-4 
software. To evaluate a potentially different frequency response between 
groups, tetani were assessed by sequential stimulation at 25, 50, 75, 100, 
150, 200, and 300 Hz with 100 s rest in between.

Statistical analysis
Results are expressed as mean ± SD. The Student’s t test or analysis of vari-
ance was used to compare quantitative data populations with normal distri-
butions and equal variance. A value of P < 0.05 was considered statistically 
significant unless otherwise specified.

Online supplemental material
Fig. S1 shows how the expression levels of various TRAFs change during 
differentiation of C2C12 myoblasts and how TRAF6 protein levels are af-
fected in skeletal muscle of mice of different ages. Fig. S2 shows the breed-
ing strategy used for generation of TRAF6f/f and TRAF6mko mice and the 
initial characterization of skeletal muscle of 10-d- and 8-wk-old TRAF6f/f 
and TRAF6mko mice. Fig. S3 examines the serum levels of CK and the pro-
portion of slow- and fast-type fibers and ex vivo force production in soleus 
muscle of TRAF6f/f and TRAF6mko mice. Table S1 describes the sequence of 
the primers used. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.201006098/DC1.
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