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Myelin oligodendrocyte glycoprotein (MOG), a member of the immunoglobulin (Ig) super-
family, is a myelin protein solely expressed at the outermost surface of myelin sheaths 
and oligodendrocyte membranes. This makes MOG a potential target of cellular and 
humoral immune responses in inflammatory demyelinating diseases. Due to its late 
postnatal developmental expression, MOG is an important marker for oligodendrocyte 
maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for 
experimental autoimmune models for multiple sclerosis (MS). Human studies, however, 
have yielded controversial results on the role of MOG, especially MOG antibodies (Abs), 
as a biomarker in MS. But with improved detection methods using different expression 
systems to detect Abs in patients’ samples, this is meanwhile no longer the case. Using 
cell-based assays with recombinant full-length, conformationally intact MOG, several 
recent studies have revealed that MOG Abs can be found in a subset of predominantly 
pediatric patients with acute disseminated encephalomyelitis (ADEM), aquaporin-4 
(AQP4) seronegative neuromyelitis optica spectrum disorders (NMOSD), monophasic 
or recurrent isolated optic neuritis (ON), or transverse myelitis, in atypical MS and in 
N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. 
Whereas MOG Abs are only transiently observed in monophasic diseases such as 
ADEM and their decline is associated with a favorable outcome, they are persistent in 
multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features 
within these diseases it is controversially disputed to classify MOG Ab-positive cases as 
a new disease entity. Neuropathologically, the presence of MOG Abs is characterized 
by MS-typical demyelination and oligodendrocyte pathology associated with Abs and 
complement. However, it remains unclear whether MOG Abs are a mere inflammatory 

Abbreviations: AA, amino acids; Ab, antibody; ADEM, acute disseminated encephalomyelitis; AQP4, aquaporin-4; BN, 
brown Norway; CNS, central nervous system; CSF, cerebrospinal fluid; DA, dark agouti; EAE, experimental autoimmune 
encephalomyelitis; HLA, human leukocyte antigen; Ig, immunoglobulin; MBP, myelin basic protein; MHC, major histocompat-
ibility complex; MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum 
disorders; ON, optic neuritis; TM, transverse myelitis.
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bystander effect or truly pathogenetic. This article provides deeper insight into recent 
developments, the clinical relevance of MOG Abs and their role in the immunpathogen-
esis of inflammatory demyelinating disorders.

Keywords: myelin oligodendrocyte glycoprotein, demyelination, autoantibodies, inflammation, MOG

MOLeCULAR STRUCTURe AND 
FUNCTiON OF MYeLiN 
OLiGODeNDROCYTe GLYCOPROTeiN 
(MOG)

Myelin oligodendrocyte glycoprotein is a minor myelin com-
ponent, with a length of 245 amino acids (AA) and a molecular 
weight of 26–28 kDa. It is only present in mammals and has a 
highly conserved nucleotide and AA structure within different 
species (1). The human MOG gene is located at chromosome 6 
within the human leukocyte antigen (HLA) gene locus, whereas 
the mouse MOG gene is located on chromosome 17 within the 
major histocompatibility complex (MHC) gene locus (2). MOG 
is exclusively expressed in the central nervous system (CNS) on 
the surface of myelin sheaths and oligodendrocyte processes 
(1–3). MOG expression starts at the onset of myelination and is 
therefore a potential differentiation marker for oligodendrocyte 
maturation (4). The function of MOG is not yet fully understood, 
but its molecular structure and its extracellular immunoglobulin 
(Ig) domain indicate a possible function as a cell surface receptor 
or cell adhesion molecule (5). MOG belongs to the Ig superfam-
ily, with a single extracellular immunoglobuline variable (IgV) 
domain, one transmembrane domain, one cytoplasmic loop, a 
membrane-associated region, and a cytoplasmic tail (6). Fifteen 
different alternatively spliced isoforms have been detected in 
humans. Full-length variants alpha 1 and beta 1 are found in fetal 
stages, whereas alternative variants are expressed in later postnatal 
stages (1, 6). It has been shown, that these isoforms are localized 
on the cell surface, in the endoplasmic reticulum, in the endocytic 
system, or can be found in a secreted form. The secreted form 
could have important effects triggering autoimmunity if released 
into the cerebrospinal fluid (CSF) and then drained into the 
periphery. The cytoplasmic tail of MOG determines the intracel-
lular localization of the various splice forms and could play a 
role in intracellular signaling (6). The cross-linking of antibodies 
(Abs) reactive with the extracellular domain of MOG resulted in 
the activation of intracellular signaling cascades resulting in sur-
vival signals, changes of cytoskeletal stability, and cellular stress 
responses (7). MOG is highly homologous to butyrophilins which 
are expressed in mammary glands (8) and might cause autoim-
munity by molecular mimicry (9). Furthermore, a sequence 
homology of MOG AA 35–55 (MOG35–55) to medium-sized neu-
rofilament leads to the activation of MOG35–55 specific T cells (10).

Myelin oligodendrocyte glycoprotein has been implicated 
to be the cellular receptor for Rubella virus (11), as a ligand for 
DC-SIGN on antigen-expressing cells (12), and as a receptor for 
nerve growth factor (13). The interaction of DC-SIGN and MOG 
along with its correct glycosylation might keep myeloid antigen-
presenting cells (APC) in an immature and tolerogenic state and 

thereby prevent autoimmunity (12). However, the inactivation of 
mouse MOG by gene targeting resulted in no clinical or histologi-
cal abnormalities (14, 15).

Whereas the biological function of MOG is still not clear, 
its topology at the surface of myelin and oligodendrocytes and 
its special characteristics predict MOG to be a very important 
target of autoantibodies and cell-mediated immune responses in 
inflammatory demyelinating diseases. Initially, MOG was dis-
covered as a dominant target of autoantibodies (they so called it  
M2 antigen) after immunization of guinea pigs with CNS tissue  
(16, 17). Numerous studies have then established an important 
role of MOG as autoantigen for T and B cell responses in experi-
mental models and inflammatory demyelinating diseases.

AUTOiMMUNe ReSPONSeS AGAiNST 
MOG iN ANiMAL MODeLS

The first indications that humoral factors also contribute to 
demyelination have been described in 1947 by Kabat et al. who 
observed a demyelinating effect after immunization of rhesus 
monkeys with heterologous rabbit or homologous brain tissue 
(18). In 1968, it was noted that sera from guinea pigs sensitized 
with whole CNS preparations have a demyelinating effect in vitro 
(19). The first indication that MOG Abs might be pathogenic 
followed about 10 years later when it was observed that guinea 
pigs immunized with the M2 protein developed Abs with demy-
elinating activity in vitro (20, 21). Then, it was shown that the 
monoclonal MOG-specific Ab 8–18C5 induces demyelination 
in Lewis (LEW) rats with experimental autoimmune encepha-
lomyelitis (EAE) (4, 22), that guinea pigs immunized with M2 
show demyelinated lesions in their CNS, and that the M2 protein 
is identical to MOG (16). It soon became clear that MOG Abs 
may be pathogenic in a large number of additional species 
(Table 1) (23). Further characterizations of MOG revealed that 
this protein is found in the oligodendrocyte membrane with a 
large N-terminal extracellular IgG V-like domain (8) and that 
N-terminal domain (AA 1–125) is responsible for the formation 
of demyelinating Abs (23, 24). Studies in marmoset monkeys 
and mice clarified that pathogenic Abs recognize conformational 
epitopes on the extracellularly exposed MOG domain (25–27) 
and that strain specific differences in mounting such anti-con-
formational Ab responses correlate with exacerbation of diseases 
(28, 29). Epitopes for encephalitogenic T cells for many different 
strains of mice and for LEW rats are found on the extracellular 
domain of MOG (30–33), but also in its transmembrane region 
(34, 35) (Table 2).

Immunizations of LEW rats with MOG activates MOG1–20- and 
MOG35–55- specific T cells which are only poorly encephalitogenic 
(24) and induces MOG-specific Abs which cause formation of 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TAbLe 1 | The effects of myelin oligodendrocyte glycoprotein (MOG)-specific antibodies (Abs).

Reference Year Findings

Trotter et al. (36) 1986 Myelin-specific Abs trigger macrophage-mediated demyelination
Linington and Lassmann (17) 1987 Ab-mediated demyelination in a chronic relapsing experimental autoimmune encephalomyelitis (EAE) in guinea pigs

Schluesener et al. (37) 1887 Monoclonal MOG Abs induced fatal relapses in a model of chronic relapsing-remitting EAE in SJL mice and enhanced acute 
EAE in Lewis (LEW) rats with increased inflammation and demyelination

Lassmann et al. (22) 1988 Demyelination occurs in a synergistic way between cellular (T cells) and humoral immune mechanisms

Linington et al. (4) 1988 MOG Abs augment demyelination in a myelin basic protein (MBP) T cell-mediated EAE model in LEW rats

Kerlero de Rosbo et al. (38) 1990 Monoclonal MOG Abs together with complement lead to demyelination and MBP loss in brain cells

Scolding and Compston (39) 1991 Abs mediate macrophage-dependent phagocytosis of oligodendrocytes in vitro

Vass et al. (40) 1992 MOG Ab-mediated demyelination is intensified by interferon-gamma

Linington et al. (41) 1992 Abs prevent tolarization effect of repeatedly induced MBP-T cell-mediated EAE and enhances demyelination

Piddlesden et al. (42) 1993 Ab-mediated demyelination is dependent on complement recruiting ability and independent on its epitope recognition

Genain et al. (43) 1995 MOG Abs facilitate demyelination in MOG-induced EAE in common marmosets

Johns et al. (44) 1995 MOG Abs lead to degradation of MBP and increased myelin protease activity

Ichikawa et al. (45) 1996 MOG35–55 encephalitogenic in LEW rats and a potential target for Ab-mediated demyelination

Menon et al. (46) 1997 Ab induced MBP loss and myelin destabilization by neutral proteases in human myelin

Van der Goes et al. (47) 1999 Abs to MOG play a crucial role for the phagocytosis of myelin by macrophages in vitro

Von Budingen et al. (25) 2002 Ab pathogenicity in marmosets is dependent on their ability to bind on conformational epitopes

Marta et al. (48) 2003 Ab cross-linking on oligodendrocyte cultures leads to the formation of lipid rafts and to a reconstitution of MOG

Bourquin et al. (28) 2003 Generation of pathogenic Abs to conformational MOG in H-2b mice is dependent on genes encoded within the major 
histocompatibility complex

Von Budingen et al. (49) 2004 EAE phenotype in marmosets correlates with the availability of conformational MOG Abs resulting in typical multiple sclerosis-
like disease pattern. In addition Abs to MOG peptides lead to focal disease pattern in brain stem and spinal cord. MBP 
T cell-mediated EAE animals showed no demyelination when injected with MOG peptides. By contrast, conformational MOG 
Abs were more pathologic as controls

Marta et al. (26) 2005 Human but not rat MOG-induced B cell-dependent EAE in MOG primed C57BL/6 mice and Abs of hMOG immunized mice 
only lead to EAE formation in B cell-deficient mice. Pathogenic Abs react to conformational intact and glycosylated antigen only

Zhou et al. (50) 2006 Patient-derived MOG Abs enhance demyelination in rat EAE models

Urich et al. (51) 2006 Ab-mediated demyelination is FcR independent but completely relies on complement activation

Jagessar et al. (52) 2008 Increased Ab-dependent demyelination in marmosets immunized with murine myelin compared to myelin lacking MOG

Harrer et al. (53) 2009 Complement induced demyelination in a murine ex vivo model

Ohtani et al. (54) 2011 Ab titer against conformational MOG are directly associated with EAE activity and demyelination in EAE rats

Mader et al. (55) 2011 Human MOG Abs lead to complement activated cytotoxicity in HEK293A cells

de Graaf et al. (27) 2012 Correct refolding of MOG increases its pathogenicity by generating conformation-dependent MOG Abs

Dale et al. (56) 2014 Oligodendrocytes incubated with purified human MOG IgG lead to organizational disturbances of the thin filaments and 
microtubule cytoskeleton

Saadoun et al. (57) 2014 Patient-derived MOG IgG lead to complement-independent myelin changes and altered expression of axonal proteins, but 
did not trigger inflammation or cellular death

Flach et al. (58) 2016 MOG Abs boost EAE by activation of effector T cells

Kinzel et al. (59) 2016 MOG Abs are able to trigger spontaneous EAE in mice harboring endogenous MOG-specific T cells in the absence of B cells
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the severity of clinical disease (62). For further experiments, 
rats were selected which carried the most permissive MHC class 
II haplotype for the induction of MOG-specific autoimmune 
reactions, but differed in their non-MHC background genes. 
When these animals were sensitized with MOG, they mounted 
anti-MOG T  cell and B  cell responses, but showed differences 
in the maturation of these responses (62). Cumulatively, these 
data suggested that the MHC haplotype influences the degree 
of disease susceptibility, the clinical course, the recruitment of 
MOG-specific immunocompetent cells, and the CNS pathology, 
while non-MHC genes strongly influence the maturation of the 
anti-MOG response (62). A similar effect was also seen in human 
HLA DR4 transgenic mice which indicated that HLA DR shaped 
the anti-MOG response in both, humans and mice (88).

focal small demyelinating lesions (24). In contrast to LEW rats 
are brown Norway and dark agouti rat strains highly susceptible 
to MOG-induced EAE (87). Different MHC haplotypes and non-
MHC background genes modify the anti-MOG immune response 
(70, 75). This important information derived from EAE studies in 
MHC congenic LEW rats, i.e., in rats with different MHC class II 
alleles on the genetic background of LEW rats. Upon immuniza-
tion with MOG, these animals either develop early onset acute 
lethal disease with extensive demyelinating plaques, chronic 
and/or relapsing types of disease, or do not show any evidence 
of clinical and histological disease, depending on the MHC class 
II haplotype present (62). Moreover, the MOG-induced T  cell 
proliferation and interferon-gamma production, and the degree 
of MOG-specific B cell responses and Ab titers correlated with 
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TAbLe 2 | T cell responses against myelin oligodendrocyte glycoprotein (MOG) in experimental autoimmune encephalomyelitis (eAe) animal models.

Reference Year Finding

Linington et al. (33) 1993 MOG peptide (MOG44–53) specific T cells induce atypical EAE in Lewis (LEW) rats
Amor et al. (30) 1994 Epitope MOG1–22, MOG43–57, and MOG134–148 induce clinically and pathological relevant EAE, however, mild effects in AB/H 

mice. Epitope MOG92–106 is highly encephalitogenic in SJL mice

Adelmann et al. (24) 1995 N-terminal domain (MOG1–125) leads to demyelination in LEW rats, T cells reactive to epitope MOG1–20 and MOG35–55 are only 
weakly encephalitogenic in EAE model

Kerlero de Rosbo et al. (31) 1995 Mild pathological signs were detected by inducing MOG35–55 in PL/J mice

Mendel et al. (32) 1995 MOG35–55 induces highly reproducible EAE in C57BL/6J and C3H.SW (H-2b) mice

Devaux et al. (60) 1997 Severe EAE with truncated human MOG (1–120) in SJL and (PLJ × SJL) F1 mice, encephalitogenic T cell proliferation 
against epitope MOG92–106

Slavin et al. (61) 1998 Relapsing-remitting disease course in NOD/Lt mice (H-2g7) and chronic paralytic disease course in C57BL/6 mice after 
injection of MOG35–55

Weissert et al. (62) 1998 Major histocompatibility complex (MHC) haplotype influences the degree of disease susceptibility, recruitment of MOG-
specific immune cells, and pathology in MOG-induced EAE rats

Storch et al. (63) 1998 Immunization with MOG antigen in rats is able to mimic classical multiple sclerosis (MS) as well and variants such as optic 
neuritis (ON), Devic’s and Marburg’s disease

Encinas et al. (64) 1999 Active immunization with MOG35–55 induces relapsing-remitting EAE followed by a secondary progression in NOD mice

Raine et al. (65) 1999 MOG-induced EAE in marmosets lead to vesicular disruption and production of antigen-specific autoantibodies similar to 
MS

Abdul-Majid et al. (66) 2000 MOG79–96 is highly encephalitogenic in DBA/1 mice, including macrophage infiltration and demyelination

Kerlero de Rosbo et al. (67) 2000 rhMOG-EAE induced marmosets with different MHC background showed proliferative T cell responses against epitopes 
MOG4–20, MOG35–50, and MOG94–116

Bourquin et al. (68) 2000 MOG-DNA vaccination lead to severe EAE

Brok et al. (69) 2000 Human MOG peptide MOG14–36 is highly encephalitogenic in marmosets (presented by a common class II Caja-
DRB*W1201 molecule)

Weissert et al. (70) 2001 MOG91–114 immunization lead to clinical and histopathological EAE signs in LEW.1AV1 and LEW.1N rats

Bettelli et al. (71) 2003 Development of spontaneous ON in T cell receptor (MOG35–55) transgenic C57BL/6 mice

Delarasse et al. (14) 2003 MOG-deficient mice are resistant to rat MOG-induced EAE and developed a mild pathological phenotype after 
immunization of whole myelin. However, B- and T cell responses against the extracellular domain and peptides of MOG 
were not altered compared to wild-type mice, indicating MOG being resistant to the induction of immune tolerance

Sun et al. (72) 2003 CD8+ MOG-specific T cells recognize H-2Db dimers coupled with encephalitogenic peptide MOG40–54

Smith et al. (73) 2005 Injection of full-length conformational MOG leads to chronic progressive EAE, but released MOG does not induce immunity 
during an ongoing disease in Biozzi ABH mice

Krishnamoorthy et al. (74) 2006 MOG35–55 leads to paralytic EAE and ON in a double-transgenic (IgHMOG and TCRMOG) C57BL/6 line

de Graaf et al. (75) 2008 In LEW.1N, LEW.1AV1, and dark agouti rats, MS-like pathology is mainly determined by presentation of MOG peptides on 
MHC class II molecules

Kap et al. (76) 2008 Cytotoxic T cells specific to epitope MOG34–56 trigger fast progression of rhMOG-induced EAE in marmosets

Matsumoto et al. (77) 2009 MOG91–108 is an encephalitogenic epitope able to induce mild T cell-mediated EAE but does not elicit Abs against the 
epitope or MOG in LEW.1AV1 rats

Pollinger et al. (78) 2009 Development of relapsing-remitting EAE in TCR (MOG92–106) transgenic SJL/J mice

Bettini et al. (79) 2009 CD8+ T cell dominant epitope MOG37–46 lead to mild form of EAE

York et al. (80) 2010 MOG-specific CD8+ T cells are able to ameliorate CD4+ driven EAE

Anderson et al. (81) 2012 CD4+ and CD8+ T cell driven EAE in transgenic MOG35–55 specific T cell mouse line (1C6)

de Graaf et al. (27) 2012 Correct refolding of MOG increases its encephalogenicity by enhancing its processing or/and presentation on MHC 
molecules

Jagessar et al. (82) 2012 MOG34–56 specific cytotoxic T cells are key regulators for gray and white matter demyelination in marmosets

Delarasse et al. (34) 2013 Transmembrane regions MOG113–127 and MOG120–134 and second hydrophobic domain MOG183–197 are found to be 
immunogenic and pathogenic in C57BL/6 (H-2b)

Ortega et al. (83) 2013 CD8+ cells reactive to MOG35–55 attenuate EAE severity in an adaptive CD4 T cell-mediated EAE model in C57BL/6 mice

Haanstra et al. (84) 2013 rhMOG (1–125) induces EAE in non-human primates

Shetty et al. (35) 2014 T cells directed to an encephalitogenic transmembrane domain (MOG110–132) induced clinical EAE, inflammation, and 
demyelination

Curtis et al. (85) 2014 Injection of rat immunoglobuline variable of MOG together with incomplete Freud’s adjuvant lead to atypical EAE in LEW 
rats and Macaca species

Herrera et al. (86) 2014 MOG35–55 induced EAE in C57BL/6 mice lead to lesions along the optic chiasm

4

Peschl et al. MOG As Target in Inflammatory Demyelinating Diseases

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 529

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TAbLe 3 | The role of b cells in experimental autoimmune encephalomyelitis (eAe) animal models.

Reference Year Findings

Hjelmstrom et al. (92) 1998 B cell-independent demyelination in myelin oligodendrocyte glycoprotein (MOG)-induced EAE mice

Litzenburger et al. (89) 1998 MOG-specific B cells accelerate and exacerbate EAE, but are not able to induce spontaneous disease or demyelination without 
induced EAE

Stefferl et al. (87) 1999 Major histocompatibility complex (MHC) and MHC-linked effects can influence the antibody response and thereby disease severity 
in MOG-induced EAE

Lyons et al. (90) 1999 B-cell-deficient mice immunized with MOG35–55 induced EAE but not mice immunized with recombinant full-length MOG

Forsthuber et al. (88) 2001 MOG peptide 97–108 is the immunodominant human leukocyte antigen (HLA)-DR4-restricted T cell epitope in transgenic mice 
and is presented by human B cells expressing HLA-DR4 (DRB1*0401)

Lyons et al. (91) 2002 MOG-specific B cells and serum reconstitute the ability for inducing inflammatory EAE effects in B cell-deficient mice

Fillatreau et al. (93) 2002 IL-10 production of B cells regulate type 1 immunity and play a key role in EAE recovery

Svensson et al. (96) 2002 B cell-deficient mice with different genetic backgrounds (C57BL/10 and DBA/1) immunized with MOG1–125 showed decreased 
demyelination but inflammation was not affected

Bettelli et al. (97) 2006 TCRMOG × IgHMOG mice develop severe EAE, with inflammatory lesions in the spinal cord and optic nerves

Pollinger et al. (78) 2009 Transgenic mice expressing MOG92–106 specific T cells expand endogenous MOG-specific B cells, producing conformational, 
(epitope independent) Abs, and enhancing demyelinating EAE in a relapsing-remitting EAE model

Molnarfi et al. (94) 2013 MOG-specific B cells play a critical role in the EAE pathogenesis due to its function as an antigen-presenting cells

Parker Harp et al. (95) 2015 B cells directly interact with dendritic cells and enhance CD4 driven EAE severity in mice

Flach et al. (58) 2016 MOG-specific B cells accelerate MOG T cell driven EAE inflammation and disease severity
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Further knowledge about the role of B cells in MOG-induced 
CNS inflammation derived from transgenic mice (Table 3). Mice 
were genetically engineered to express the heavy chain from 
the monoclonal anti-MOG Ab 8–18C5 described above, paired 
with endogenous Ig light chains (89). These animals had many 
MOG-reactive B cells in their immune repertoire and had titers 
of anti-MOG Abs in their circulation. And yet, they remained 
completely healthy until they were challenged with MOG. 
Then, they developed EAE with higher incidence, severity, and 
earlier onset compared to their non-transgenic counterparts (89). 
Further studies using B  cell-deficient mice showed that B  cells 
are required for EAE induction using the MOG protein, but are 
dispensable when the encephalitogenic MOG peptide is used for 
EAE induction (90–92). These studies also revealed that B cells 
are needed for the recovery from EAE, by the production of IL-10 
and expression of CD40 (93). The role of B cells in promoting 
EAE was further confirmed by using transgenic mouse lines in 
which MHC class II products were knocked-out in B cells, or in 
which B cells were able to express MOG-specific B cell receptors 
on their surface, but were unable to secrete MOG-specific Abs 
(94). This and several other studies (see Table 3) revealed that 
B  cells can act as APC, and that they can sufficiently promote 
pro-inflammatory T cell activation and spontaneous EAE onset 
(91, 94, 95). In another study, in which MOG-specific B cells and 
T cells were actively transferred into an intact immune repertoire 
of C57BL/6J mice, MOG-specific B cells were shown to aggravate 
CNS inflammation and EAE disease course. These results were 
further confirmed by using human MOG positive serum Abs, 
reproducing the same disease accelerating effects (58). Hence, 
both B cells and myelin-specific Abs can independently activate 
T  cells and thus increase the risk of an autoimmune mediated 
inflammation of the CNS (59).

Also spontaneous models of MOG-induced CNS disease 
were highly informative for deciphering the role of anti-MOG 

responses in autoimmune disease. These models were based on 
the transgenic expression in mice of MOG-specific T cell recep-
tors, either alone (71, 78) or in combination with MOG-specific 
B cell receptors (74, 97) and gave striking results:

The overexpression of MOG-specific T cell receptors in trans-
genic C57/BL6 (71) or SJL (78) mice lead to spontaneous optic 
neuritis (ON) in more than 30% of all animals and rendered the 
animals hyper-susceptible to the induction of ON in response 
to sensitization with suboptimal amounts of MOG (71), or to a 
severe spontaneous relapsing-remitting EAE with episodes often 
altering between different CNS compartments in more than 60% 
of all male, and more than 80% of all females within 160 days 
after birth (78). In these animals, the transgenic T cells expanded 
MOG-specific B cells from the endogenous immune repertoire, 
which produced pathogenic autoantibodies binding to a confor-
mational epitope on native MOG protein (78). Overexpression of 
MOG-specific T cell receptors in NOD mice led to MOG-specific 
CD4+ and CD8+ T cell responses at the same time (79). These 
animals revealed that CD8+ MOG-specific T cells may be weakly 
encephalitogenic (79) and are able to regulate and attenuate CD4+ 
driven immune responses by modulating APC functions and 
reducing CD4+ T cell responses (80, 83).

Mice genetically engineered to express MOG-specific recep-
tors on T and B cells (74, 97) showed a class switch of MOG Abs 
to an IgG1 subtype, and spontaneously developed inflammatory 
demyelinating CNS disease (74, 97). Most interestingly, spontane-
ous development of disease in these animals crucially depended 
on the presence of commensal microbiota in the gut (98).

Although many seminal observations on MOG-reactive T and 
B cell responses derive from murine EAE models, it is important 
to know that in these animals, large lesions with myelin loss are 
mainly caused by axonal degeneration with secondary demyelina-
tion, while primary demyelination is sparse (99, 100). Therefore, 
it is necessary to also study MOG autoreactivity in the marmoset 
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(Callithrix jacchus), in which MOG-induced EAE resembles 
human demyelinating diseases more closely (100–102). When 
these animals are immunized with the recombinant IgV domain 
of rat MOG, they developed lesions which were very similar to 
chronic multiple sclerosis (MS) plaques with mononuclear cell 
infiltrates, primary demyelination, and astrogliosis (103), even at 
the ultrastructural level (65). Moreover, some animals developed a 
progressive form of EAE, which was triggered by cytotoxic effector 
memory T cells and further promoted demyelination in the gray 
matter (76, 82). As seen before in mice and rats, the marmoset 
CD4+ T cell response against MOG may cover several different 
epitopes, only one of which is highly encephalitogenic (104).

Cumulatively, these animal models revealed that

•	 autoimmune responses to MOG can be induced in many dif-
ferent species

•	 the susceptibility to MOG is determined by MHC- and non-
MHC genes

•	 anti-MOG responses typically involve CD4+ T cells and com-
plement-fixing Abs of the IgG1 subtype

•	 the MOG-specific T cell repertoire contains T cells specific for 
several different T cell epitopes which vary between different 
species and substrains dependent on the MHC haplotype

•	 not all MOG-specific T cells are encephalitogenic
•	 MOG-specific B cells have Ab-dependent and Ab-independent 

effects on tissue damage
•	 different types of anti-MOG Abs exist, but only those recog-

nizing conformational epitopes on the extracellular domain of 
MOG are pathogenic

•	 MOG-specific autoantibodies in the circulation specific for 
such conformational epitopes are harmless, unless these Abs 
gain access to the CNS via an opened blood-brain barrier in 
an inflammatory environment

•	 MOG-specific Abs can cross-react with other proteins like 
butyrophilin

•	 the extent of demyelination caused by anti-MOG Abs depends 
on MHC-dependent and MHC-independent factors.

CLiNiCAL ReLevANCe OF MOG Abs  
iN DeMYeLiNATiNG DiSeASeS

As outlined above, MOG is one of the best-studied autoantigens 
for experimental autoimmune models for MS. Attempts to trans-
late these findings into the human disease have yielded contro-
versial results, especially with regard to MOG Abs as a prognostic 
biomarker in MS (105, 106) [reviewed in Berger et  al. (107)]. 
These results were caused by the use of inappropriate methods 
(e.g., immunoblotting, ELISA) and antigens (recombinant 
human MOG produced in Escherichia coli, MOG peptides) to 
determine disease-specific MOG Abs. However, with improved 
detection methods using correctly folded and glycosylated MOG 
protein expressed in mammalian cells for radioimmunoassays, 
flow cytometry, and immunofluorescence, MOG Abs were found 
in a subset of predominantly pediatric patients with acute dis-
seminated encephalomyelitis (ADEM), aquaporin-4 (AQP4) 
seronegative neuromyelitis optica spectrum disorders (NMOSD), 
monophasic or recurrent isolated ON, or transverse myelitis 

(TM), in atypical MS, brainstem encephalitis, and N-methyl-d-
aspartate receptor-encephalitis with overlapping demyelinating 
syndromes, but rarely in classical MS (50, 55, 56, 108–176). Since 
low-titer MOG Abs are often found in MS patients and controls, 
most of these studies have used either a “high-titer” cut-off or 
an IgG1 secondary Ab to increase specificity. Like many other 
autoantibodies, e.g., to AQP4, MOG Abs are therefore only pre-
sent in rare diseases indicating widely established immunological 
tolerance to most autoantigens.

These findings, however, raise the important question whether 
MOG Abs are associated with a specific clinical phenotype like 
AQP4 Abs are associated with NMOSD (177). We have therefore 
reviewed the literature and compared all studies, which have 
analyzed the presence of MOG Abs in inflammatory demyeli-
nating disorders (MS, ADEM, and AQP4 Ab seronegative and 
seropositive NMOSD) in comparison with a control group of 
patients with other neurological disorders or healthy controls. 
Results from these studies are shown in Table 4 and Figure 1. We 
have identified 26 studies which fulfilled these criteria (50, 55, 
56, 109–116, 119, 121, 126, 130, 132, 134, 137, 141, 147, 148, 152, 
156, 158, 165, 174). Only 13 of these studies included a control 
group with 50 or more individuals and only 5 studies included 
more than 100 controls (Table  4). Further, many patients and 
controls were repeatedly analyzed in some studies and therefore 
we decided not to include a statistical analysis of the reviewed 
publications. The specificity of these studies was calculated using 
the frequency of MOG Abs in other neurological disorders or 
healthy controls determined by the methods shown in Table 4. 
The overall specificity of these studies was 98.5% [95% confidence 
interval (CI) 97.8–99] and thus 1.5% (range 0–6%) of all con-
trols were seropositive for MOG Abs (Table  4; Figure  1). The 
sensitivity of these studies was calculated using the frequency of 
MOG Abs in inflammatory demyelinating disorders determined 
by the methods shown in Table 4. The presence of MOG Abs in 
MS was analyzed in 23/26 studies and the overall sensitivity for 
MS was 5.1% (95% CI 4.2–6.1) and thus 5.1% (range 0–46.7%) 
of all MS patients were seropositive for MOG Abs. The highest 
frequency of MOG Abs within MS patients was found in pediatric 
MS patients and in one of the initial studies not using a high-titer 
cut-off. Therefore, it can be concluded that MOG Abs are rare in 
MS, particularly in adult MS, but are still found in a few patients 
in several studies. Since MOG Abs are associated with MS-like 
neuropathology (136, 149, 167, 172, 178, 179), they might play a 
role in pathophysiology in these patients and therefore the cur-
rent practice to use MS as a negative control group for MOG Abs 
(141) should be regarded with caution. The presence of MOG Abs 
in ADEM was analyzed in 13/26 studies and the overall sensitivity 
for ADEM was 36.4% (95% CI 31.4–41.7; range 17.7–47.4%) and 
thus ADEM was the most frequent clinical presentation associ-
ated with MOG Abs. Again, the frequency of MOG Abs was 
highest in pediatric patients. Since the 26 studies used different 
clinical criteria for NMOSD, we reviewed the studies for the pres-
ence of MOG Abs in AQP4 seronegative patients with ON, TM, 
or NMOSD. The presence of MOG Abs in these conditions was 
analyzed in 15/26 studies and the overall sensitivity was 26.9% 
(95% CI 23.9–30.1; range 9.2–63.5%). Finally, the presence of 
MOG Abs in AQP4 seropositive NMOSD was analyzed in 13/26 
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TAbLe 4 | Studies reporting the presence of myelin oligodendrocyte glycoprotein (MOG) antibodies (Abs) in patients with inflammatory demyelinating 
disorders in comparison to a control group of patients with other neurological disorders and/or healthy controls.

Reference Method Patients Multiple 
sclerosis

Acute disseminated 
encephalomyelitis

Aquaporin-4 (AQP4)− 
optic neuritis/transverse 

myelitis/neuromyelitis 
optica spectrum disorders 

(NMOSD)

AQP4+ 
NMOSD

Controls

Lalive et al. (109) FACS ad 1/92 (1%) n.a. n.a. n.a. 1/37 (3%)
Zhou et al. (50) FACS ad 25/210 (12%) n.a. n.a. n.a. 8/187 (4%)
O’Connor et al. (110) RIA ad, ped 3/140 (2%) 13/69 (19%) n.a. n.a. 1/133 (1%)
Brilot et al. (112) FACS ad, ped 0/54 (0%) 8/19 (42%) n.a. n.a 0/73 (0%)
McLaughlin et al. (111) FACS ad, ped 39/385 (10%) n.a. n.a. 0/13 (0%) 6/214 (3%)
Selter et al. (113) FACS ped n.a. 9/19 (47%) n.a. n.a. 0/58 (0%)
Di Pauli et al. (115) IF-HT ad, ped 2/89 (2%) 12/27 (44%) n.a. n.a. 1/105 (1%)
Lalive et al. 2011 (114) FACS ped 1/22 (5%) 3/11 (27%) n.a. n.a. 0/20 (0%)
Mader et al. (55) IF-HT ad, ped 2/71 (3%) 14/33 (42%) 9/23 (39%) 1/75 (1%) 3/101 (3%)
Probstel et al. (116) FACS ad, ped 14/127 (11%) 19/54 (35%) n.a. n.a. 0/63 (0%)
Kitley et al. (119) IF ad 0/75 (0%) n.a. 4/27 (15%) 0/44 (0%) 0/23 (0%)
Rostasy et al. (121) IF-HT ped 1/11 (9%) 13/29 (45%) 7/29 (24%) 0/2 (0%) 0/23 (0%)
Dale et al. (56) FACS ped 7/15 (47%) 11/24 (46%) 13/24 (54%) n.a. 0/24 (0%)
Martinez-Hernandez et al. (134) IF-HT ad 0/64 (0%) n.a. 14/52 (27%) 2/45 (4%) 0/30 (0%)
Ramanathan et al. (130) FACS ad 1/76 (1%) n.a. 9/23 (39%) n.a. 0/52 (0%)
Elong Ngono et al. (132) IF-HT ad 1/16 (6%) n.a. n.a. n.a. 1/24 (4%)
Ketelslegers et al. (147) FACS ped n.a. 10/24 (42%) 4/29 (14%) n.a. 0/44 (0%)
Probstel et al. (137) FACS ad 0/48 (0%) n.a. 4/17 (24%) 0/31 (0%) 0/39 (0%)
Waters et al. (141) IF-IgG1 ad 0/76 (0%) 7/16 (44%) 40/63 (64%) 0/130 (0%) 0/13 (0%)
Fernandez-Carbonell et al. (152) FACS ped 4/45 (9%) 3/7 (43%) 4/14 (29%) 0/2 (0%) 0/23 (0%)
Jarius et al. (174) IF-HT ad, ped 0/139 (0%) n.a. 50/202 (25%) 0/83 (0%) 1/98 (1%)
Kim et al. (148) IF-IgG1 ad 0/29 (0%) 1/6 (17%) 15/163 (9%) 0/49 (0%) 0/72 (0%)
Spadaro et al. (165) FACS ad 5/181 (3%) n.a. n.a. n.a. 0/39 (0%)
van Pelt et al. (158) FACS ad n.a. n.a. 20/61 (33%) 0/41 (0%) 0/8 (0%)
Overall 106/196 (5%) 123/338 (36%) 193/727 (27%) 3/515 (1%) 22/1527 (1%)

The percentage of MOG Ab seropositivity was determined using the methods indicated in the table.
ad, adult; ped, pediatric; n.a., not analyzed; FACS, fluorescence-activated cell sorting; IF, immunofluorescence assay; IF-HT, immunofluorescence assay with high-titer cut-off;  
IF-IgG1, immunofluorescence assay for IgG1 Abs; RIA, radio immunoprecipitation assay.
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studies and the overall sensitivity was 2% (95% CI 1.2–3.4; range 
1.2–3.4%). Thus, the presence of MOG Abs in AQP4 Ab-positive 
NMOSD is in the range of the control group.

In conclusion, these studies revealed that MOG Abs are asso-
ciated with heterogeneous clinical presentations and a younger 
age of onset in human inflammatory demyelinating diseases but 
a clear common clinical phenotype is missing.

The histopathology associated with MOG Abs has been 
described in few patients including NMOSD, atypical demyelina-
tion, CIS, and ADEM (136, 149, 167, 172, 178, 179) (Table 5). All 
cases showed demyelinating lesions with features of MS pattern 
II, with well-demarcated confluent plaques with loss of myelin, 
relative preservation of axons, well-preserved astrocytes, and 
numerous macrophages containing myelin debris. The inflamma-
tory infiltrates were predominantly composed of perivascular and 
parenchymal T-cells and some perivascular B-cells. Moreover, the 
deposition of terminal complement complex C9neo was reported 
indicating complement-dependent cytotoxicity (136, 167). All 
lesions were characterized by well-preserved oligodendrocytes 
that were partly MOG-negative, most likely compatible with 
preoligodendrocytes. Demyelination associated with MOG Abs 
differs from AQP4 seropositive NMOSD that characteristically 
shows loss of astrocytes with deposition of IgG and terminal 
complement complex C9neo, inflammatory infiltrates including 

the presence of neutrophilic and eosinophilic granulocytes, and 
elevated glial fibrillary acidic protein levels in CSF (180).

These similar immunopathological findings compatible with 
MS pattern II supports a humoral immune pathogenesis in 
patients with MOG Abs. Since the histopathological lesion type 
is independent from the clinical presentation the demyelinat-
ing lesions may be included under the term “MOG antibody 
syndrome.”

ePiTOPe ReCOGNiTiON AND SPeCieS 
SPeCiFiCiTY OF HUMAN MOG Abs

As MOG Ab binding has been shown to be dependent on the 
correct folding and glycosylation pattern of their antigen, studies 
were directed toward the binding motifs/epitopes of these Abs 
with the aim to identify specific binding patterns for diseases. 
Mayer and colleagues (122) performed epitope recognition 
studies of MOG Abs from several demyelinating diseases and 
seven distinct binding patterns were found. However, no clinical 
correlation between the binding patterns and different disease 
entities could be shown. Furthermore, these Abs were directed 
against only a single epitope or multiple epitopes and an asso-
ciation between glycosylation and an increased binding capacity 
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are indicated by symbols with error bars (95% confidence intervals). Specificities were calculated using the frequency of MOG Abs in other neurological disorders or 
healthy controls determined by the methods shown in Table 4. Sensitivities were calculated using the frequency of MOG Abs in inflammatory demyelinating 
disorders determined by the methods shown in Table 4.
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could not be detected. The most frequent epitopes were found 
in the CC′-loop and FG-loop of the extracellular IgV domain 
of correctly folded human MOG protein. Within the CC′-loop, 
AA P42 was essential for binding and therefore human MOG 

Abs did not bind either to rodent MOG, which has a serine 
at position 42, or to mutated human MOG P42S (122). These 
findings were confirmed and extended by Sepulveda et al. (166) 
who demonstrated that only a subset of human MOG Abs is also 
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TAbLe 5 | Neuropathological findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibody (Ab)-associated demyelination.

Reference Number of 
cases

Sex, age 
(years)

Clinical presentation Findings

Konig et al. (178) 1 F, 49 RRMS Multiple sclerosis (MS) pattern II; oligodendrocytes in lesion preserved 
(CNPase+; MOG not determined)

Spadaro et al. (136) 1 F, 66 Recurrent myelitis + brainstem 
involvement

MS pattern II; oligodendrocytes preserved (CNPase+; MOG−)

Di Pauli et al. (149) 1 M, 71 Acute disseminated encephalomyelitis 
(ADEM)/acute MS

MOG and aquaporin-4 Ab positive; MS pattern II; oligodendrocytes 
preserved (CNPase+, MOG−)

Jarius et al. (172) 1 F, 63 CIS MS pattern II; oligodendrocytes preserved (CNPase+, MOG+)

Wang et al. (167) 1 F, 67 Neuromyelitis optica spectrum 
disorders

Pattern classification not done; well-demarcated demyelinating lesion 
with preserved axons and astrocytes

Körtvélyessy et al. (179) 2 M, 49 ADEM Intrathecal MOG Ab synthesis; MS pattern II; one patient with 
overlapping features of pattern III (early MAG loss, apoptotic 
oligodendrocytes in addition to complement deposition)

M, 34
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reactive to rodent MOG epitopes as analyzed by cell-based assays 
and tissue immunohistochemistry and this reactivity to rodent 
MOG did not correlate with a specific clinical phenotype. Finally, 
it has been already demonstrated that species differences of 
MOG lead to the activation of different pathogenic mechanisms 
in EAE induced with rodent or human MOG35–55 or recombinant 
MOG (26, 92, 181).

MOG Abs: ePiPHeNOMeNON OR 
iNDiCATive FOR DiSeASe PHeNOTYPe

The animal experiments described above clearly indicated that 
murine MOG Abs can be pathogenic. Furthermore, pathologic 
similarities to ADEM have been shown in transgenic MOG-
IgG mice infected with several neurotrophic encephalitogenic 
viruses, exacerbating virus-induced CNS inflammation. These 
similarities were indicated by clinical defined extensive perivas-
cular infiltrates (mixed inflammatory cell population, e.g., lym-
phocytes, neutrophils, NK cells, and blood born macrophages) 
and perivenous demyelination (182, 183).

By contrast, only four studies aimed to investigate the patho-
genic role of human MOG Abs in vivo. Whereas several studies 
indicated that human MOG Abs can activate complement and 
cellular-dependent cytotoxicity (50, 55, 112) in  vitro, these 
mechanisms were not observed after transfer of human MOG 
Abs to rodents in  vivo: the injection of concentrated serum 
samples from MOG Ab-positive patients into LEW rats with 
EAE did not increase the clinical score of the disease, but led to a 
minor increase in demyelination and axonal loss (50). Intrathecal 
injection of purified human MOG IgG caused reversible brain 
edema and myelin loss with very little complement deposition at 
the lesion site (57).

A different pathogenic mechanism for MOG Abs was pro-
posed in two recent studies (58, 59). In the first study (58), it 
was demonstrated that MOG-specific B cells and their products 
(MOG Abs) activate MOG-specific effector T cells via CNS resi-
dent APC. A similar effect was demonstrated for peripheral APC 
in the second study (59). Both studies emphasize an important 
role for Ab-mediated antigen opsonization and accumulation in 

Fc receptor expressing APCs and subsequent increased antigen 
presentation and activation of specific T cells.

ARe MOG Abs A PRiMARY OR A 
SeCONDARY iMMUNe ReSPONSe?

The findings discussed in the previous chapter raise the important 
question whether human MOG Abs are pathogenic themselves or 
just a epiphenomenal bystander or a secondary immune reaction 
due to previous demyelination (184). An example for a second-
ary immune response was shown in a study using a transgenic 
myelin-specific T cell mice model, which developed spontaneous 
EAE (98). In this model, an interaction between MOG-specific 
T and B  cells is necessary for inflammatory demyelination, 
resulting in the activation of native B  cells by dendritic cells 
presenting MOG peptides in the cervical lymph nodes (78). In a 
gut germ free environment, autoreactive T cell activation failed, 
and therefore the signal cascade for producing autoantibodies 
producing B cells was significantly reduced, but increased after 
microbial re-colonization. One potential mechanism mediating 
the onset of spontaneous EAE is molecular mimicry, activating 
encephalitogenic T  cells, with subsequent inflammation of the 
CNS and second, it leads to an activation of native MOG-specific 
B  cells recruited to the CNS tissue via locally produced MOG 
material or drained into the CNS along peripheral lymph nodes.

But even if MOG Abs would only be a secondary immune reac-
tion they still could be clinically relevant biomarkers such as seen 
in diabetes type I, an autoimmune disease affecting insulin produc-
ing β-cells in the pancreas. Four autoantibodies to insulin (185), 
glutamic acid decarboxylase (186), Islet antigen-2 (187), and zinc 
transporter 8 (188) have been identified as highly specific biomark-
ers to predict this disease. There is more than an 80% probability 
of developing diabetes in children and adolescents, if 2/4 autoan-
tibodies are detected [reviewed in Bonifacio (189)]. However, 
these autoantibodies are not pathogenic itself, but rather indicate 
a disturbed immune activity or an underlying T  cell-mediated 
autoimmune process (190). Similarly, it could be that human MOG 
Abs play only a minor role in the pathophysiology of inflammatory 
demyelination, but are highly specific markers for affected patients.
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CONCLUSiON

In the past years, autoantibodies emerged as important bio-
markers in neurological autoimmune diseases. One of the best 
examples for these biomarkers is AQP4 Abs as diagnostic marker 
for NMOSD. Numerous studies have now established a pos-
sible similar role for MOG Abs that are associated with a very 
heterogeneous age-dependent clinical presentation and MS-like 
neuropathology. The exact pathologic effect of human MOG Abs 
is still unclear and needs to be critically investigated in order to 
clarify the immunopathological role of these Abs.
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