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Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder with unclear etiology. Some genes may be pleiotropi-
cally or potentially causally associated with PCOS. In the present study, the summary data-based Mendelian randomization 
(SMR) method integrating genome-wide association study (GWAS) for PCOS and expression quantitative trait loci (eQTL) 
data was applied to identify genes that were pleiotropically associated with PCOS. Separate SMR analysis was performed 
using eQTL data in the ovary and whole blood. Although no genes showed significant pleiotropic association with PCOS after 
correction for multiple testing, some of the genes exhibited suggestive significance. RPS26 showed the strongest suggestive 
pleiotropic association with PCOS in both SMR analyses (β[SE]=0.10[0.03], PSMR=1.72×10−4 for ovary; β[SE]=0.11[0.03], 
PSMR=1.40×10−4 for whole blood). PM20D1 showed the second strongest suggestive pleiotropic association with PCOS in 
the SMR analysis using eQTL data for the whole blood and was also among the top ten hit genes in the SMR analysis using 
eQTL data for the ovary. Two other genes, including CTC-457L16.2 and NEIL2, were among the top ten hit genes in both 
SMR analyses. In conclusion, this study revealed multiple genes that were potentially involved in the pathogenesis of PCOS.

Keywords Polycystic ovary syndrome · Pleotropic association · Expression quantitative trait loci · Summary Mendelian 
randomization

Abbreviations
BPA  bisphenol A
eQTL  expression quantitative trait loci
GWAS  genome-wide association study
HEIDI  heterogeneity in dependent instruments
mQTL  DNA methylation quantitative trait loci
IR  insulin resistance

MR  Mendelian randomization
PCOS  polycystic ovary syndrome
QoL  quality of life
SMR  summary data-based Mendelian randomization
T2D  type 2 diabetes

Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine 
disorder that often occurs in women of childbearing age, 
often accompanied by insulin resistance (IR) and obesity 
[1]. According to the revised Rotterdam 2003 criteria [2], 
PCOS is diagnosed when two of the following three criteria 
are present: (1) oligo- or an-ovulation, (2) clinical and/or 
biochemical signs of hyperandrogenism, and (3) polycys-
tic ovaries on ultrasound. As a highly prevalent endocrine 
disorder, PCOS affects 5–13% of reproductive-aged women 
and more than 10% of adolescent girls [3–6]. PCOS is asso-
ciated with a variety of consequences, such as reproductive 
issues, metabolic abnormalities, and psychological disorders 
[7]. Furthermore, more than half of the PCOS patients suf-
fer from infertility [8], and infertile women and adolescent 
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girls with PCOS were reported to have reduced quality of 
life (QoL) [9–11].

PCOS is a multifaceted disease, and previous studies have 
found its association with genetic factors [12], environmen-
tal factors such as exposure to Bisphenol A (BPA) [13], and 
life style factors such as smoking [14]. However, the exact 
etiology of PCOS remains to be elucidated. More studies 
are needed to further explore the pathological mechanisms 
underlying PCOS to facilitate diagnosis and treatment of this 
common and jeopardizing disease.

Genetics play an important role in the pathogenesis of 
PCOS. Previous twin studies demonstrated that genetics 
explained more than 70% of PCOS pathogenesis [15]. Mul-
tiple genome-wide association studies (GWAS) conducted 
on Han Chinese, Korean, and European populations have 
identified a few genetic variants in association with PCOS, 
such as single-nucleotide polymorphisms (SNPs) in/near 
FSHR, THADA [16], YAP1, HMGA2 [17], KHDRBS3 [18], 
FSHB, GATA4/NEIL2 [19], ERBB4/HER4, and RAD50 [20]. 
However, biological interpretation of the identified genetic 
variants in the etiology of PCOS remains largely unclear. It 
is likely that the genetic variants identified in GWAS could 
exert their effects on diseases/disorders via gene expression 
because many of them are located in non-coding regions 
[21]. Therefore, exploring the relationship between genetic 
variation and gene expression can help better understand the 
regulatory pathways underlying the pathogenesis of PCOS.

Mendelian randomization (MR) is a method for explor-
ing potentially causal association between an exposure and 
an outcome by using genetic variants as the instrumental 
variables (IVs) for exposure [22–24]. Compared with tra-
ditional statistical methods used in the association studies, 
MR can reduce confounding and reverse causation and is 
becoming increasingly popular in the exploration of etio-
logical mechanisms [25, 26]. A novel analytical framework 

through a summary data-based MR (SMR) approach inte-
grating cis- expression quantitative trait loci (cis-eQTL, i.e., 
genetic variants near a gene that explain the variance of the 
expression level of the gene [27]) or cis- DNA methylation 
QTL (cis-mQTL, i.e., CpG sites near a gene that explain 
the variance of the methylation level of the CpG site [28]) 
and GWAS data was recently proposed [29]. This method 
has been employed in identifying gene expressions or DNA 
methylation loci that are pleiotropically or potentially caus-
ally associated with various phenotypes, such as severity 
of COVID-19, major depression, and Alzheimer’s disease 
[30–32], implying that it is a promising tool to explore genes 
that are pleiotropically associated with complex traits.

In this paper, the SMR method integrating summarized 
GWAS data for PCOS and cis- eQTL data were applied to 
prioritize genes that are pleiotropically/potentially causally 
associated with PCOS.

Materials and Methods

This study utilized SMR method integrating GWAS sum-
mary results for PCOS and eQTL data in ovary and blood. 
All the data were publicly available. The analytic process of 
the present study is illustrated in Fig. 1.

Data Sources

eQTL Data

In the SMR analysis, cis-eQTL genetic variants were used as 
the instrumental variables (IVs) for gene expression. SMR 
analysis were performed using eQTL data in ovary because 
ovary is directly involved in PCOS. Analysis using eQTL 

Fig. 1  Flow chart for the SMR analysis. A SMR analysis using eQTL 
data from ovary and B SMR analysis using eQTL data from blood. 
eQTL, expression quantitative trait loci; GWAS, genome-wide asso-

ciation studies; LD, linkage disequilibrium; PCOS, polycystic ovary 
syndrome; SMR, summary data-based Mendelian randomization; 
SNP, single nucleotide polymorphisms
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data from blood were also conducted as blood might reflect 
hormonal or metabolic traits associated with PCOS. The 
eQTL data were obtained from the V7 release of the GTEx 
summarized data. Detailed information regarding sample 
acquisition and treatment were provided elsewhere [33]. 
The summarized data included 85 participants for ovary 
and 338 participants for blood [34]. The eQTL data can be 
downloaded at https:// cnsge nomics. com/ data/ SMR/# eQTLs 
ummar ydata.

GWAS Data for PCOS

The GWAS summarized data for CCT were provided by 
a recent genome-wide association meta-analysis of PCOS 
[35]. The results were based on meta-analyses of seven 
cohorts of European descent, including a total of 10,074 
PCOS cases and 103,164 controls. Details of the study par-
ticipants and design of the study can be found in the paper 
published previously [35]. Diagnosis of PCOS was based 
on the NIH criteria [36], which was established in 1990 and 
requires hyperandrogenism (HA) and ovulatory dysfunc-
tion (OD), or the Rotterdam Criteria [2] which was estab-
lished in 2003, includes the presence of polycystic ovarian 
morphology (PCOM) and requires the presence of at least 
two of three traits as specified above. The self-report-based 
data from 23andMe, Inc. (Mountain View, CA, USA) were 
excluded. The GWAS summarized data can be downloaded 
at https:// www. repos itory. cam. ac. uk/ handle/ 1810/ 283491.

SMR Analysis

In the SMR analyses, cis-eQTL was used as the instrumental 
variable, gene expression was the exposure, and PCOS was 
the outcome. The analysis was done using the method as 
implemented in the software SMR. SMR applies the prin-
ciples of MR to jointly analyze GWAS and eQTL summary 
statistics to test for pleotropic association between gene 
expression and a trait due to a shared and potentially causal 
variant at a locus. Detailed information regarding the SMR 
method was reported in a previous publication [29]. The 
heterogeneity in dependent instruments (HEIDI) test [29] 
was conducted to evaluate the existence of linkage in the 
observed association. Rejection of the null hypothesis (i.e., 
PHEIDI<0.05) indicates that the observed association could 
be due to two distinct genetic variants in high linkage dis-
equilibrium with each other. The default settings in SMR 
were adopted (e.g., PeQTL <5 ×  10−8, minor allele frequency 
[MAF] > 0.01, removing SNPs in very strong linkage dis-
equilibrium [LD, r2 > 0.9] with the top associated eQTL, 
and removing SNPs in low LD or not in LD [r2 <0.05] with 
the top associated eQTL), and false discovery rate (FDR) 
was used to adjust for multiple testing.

Data cleaning and statistical/bioinformatical analysis 
were performed using R version 4.0.4 (https:// www.r- proje 
ct. org/), PLINK 1.9 (https:// www. cog- genom ics. org/ plink/1. 
9/), and SMR (https:// cnsge nomics. com/ softw are/ smr/).

Results

Basic Information of the Summarized Data

The GWAS summarized data were based on GWAS meta-
analysis of 113,238 subjects (10,074 PCOS cases and 
103,164 controls) [35]. After checking of allele frequencies 
among the datasets and LD pruning, there were about 6.4 
million eligible SNPs included in the final SMR analysis. 
The number of participants for GETx eQTL data in ovary is 
smaller (n=85), compared with that in whole blood (n=385), 
so is the number of eligible probes (1530 vs. 4490). The 
detailed information is shown in Table 1.

Pleiotropic Association with PCOS

Information of the top ten probes using eQTL data for 
the ovary and whole blood was presented in Table  2. 
Although no genes showed significant pleiotropic associa-
tion with PCOS after correction for multiple testing, some 
of genes exhibited suggestive significance. Specifically, 
RPS26 (ENSG00000197728.5) showed the strongest sug-
gestive pleiotropic association with PCOS in both SMR 
analyses (β[SE]=0.10[0.03], PSMR=1.72×10−4 for ovary; 
β[SE]=0.11[0.03], PSMR=1.40×10−4 for whole blood; 
Fig. 2). PM20D1 (ENSG00000162877.8) showed the sec-
ond strongest suggestive pleiotropic association with PCOS 
in the SMR analysis using eQTL data for the whole blood, 
and it was also among the top ten hit genes in the SMR 
analysis using eQTL data for the ovary (β[SE]=0.10[0.03], 
PSMR=2.94×10−3 for ovary;  β[SE]=0.14[0.04], 
PSMR=8.38×10−4 for blood; Fig.  3). Two other genes, 
including CTC-457L16.2  (ENSG00000262319.1; 
β[SE]= −0.2[0.06], PSMR=1.55×10−3 for ovary; β[SE]= 
−0.31[0.09], PSMR=1.07×10−3 for blood; Fig.  4) and 

Table 1  Basic information of the GWAS and eQTL data.

GWAS, genome-wide association studies; QTL, quantitative trait loci

Data source Total number of 
participants

Number of eligible 
genetic variants or 
probes

eQTL data
  Ovary 85 1530
  Whole blood 338 4490

GWAS data 113,238 6,400,755
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NEIL2 (ENSG00000154328.11; β[SE]= −0.2[0.06], 
PSMR=1.02×10−3 for ovary; β[SE]= −0.30[0.10], 
PSMR=2.25×10−3 for blood; Fig. 5), were among the top ten 
hit genes in both SMR analyses.

Discussion

This study integrated GWAS summarized data for PCOS 
and eQTL data in the SMR analysis to explore genes that 
were pleiotropically or potentially causal associated with 
PCOS. It was found that multiple genes were potentially 
involved in the pathogenesis of PCOS. To the best knowl-
edge of the authors, this is the first study to explore genes 

in pleiotropic association PCOS through a Mendelian rand-
omization approach.

In the present study, RPS26 (Ribosomal Protein S26) 
showed the strongest suggestive pleiotropic association 
with PCOS in the SMR analyses using both ovary and blood 
eQTL data (Table 2). RPS26, located on 12q13.2, is a gene 
encoding a ribosomal protein which is a component of the 
40S subunit and belongs to the S26E family of ribosomal 
proteins [37]. Recent research found that RPS26 critically 
regulated T-cell survival in a p53-dependent manner [38]. 
Knockout of RPS26 in mouse oocytes led to retarded fol-
licle development from pre-antral follicles to antral follicles 
and arrested chromatin configurations of the oocytes [39]. 
An earlier study using human ovary cDNA library found 
that RPS26 was downregulated in PCOS ovary, compared 

Fig. 2  Pleiotropic association 
of RPS26 with PCOS. A SMR 
analysis results using eQTL 
data for ovary. B SMR analysis 
results using eQTL data for 
whole blood. Top plot, grey dots 
represent the -log10(P values) 
for SNPs from the GWAS of 
PCOS, with solid rhombuses 
indicating that the probes pass 
HEIDI test. Middle plot, eQTL 
results. Bottom plot, location 
of genes tagged by the probes. 
GWAS, genome-wide associa-
tion studies; SMR, summary 
data-based Mendelian randomi-
zation; HEIDI, heterogeneity in 
dependent instruments; eQTL, 
expression quantitative trait 
loci; PCOS, polycystic ovary 
syndrome
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with the normal human ovary [40]. A recent study examined 
genes in PCOS-associated regions using a Bayesian colocali-
zation approach (Coloc) and found seven genes, including 
RPS26, that harbored potential causal variants accounting 
for approximately 30% of known PCOS signals [41]. These 
findings, together with findings from the present study, sug-
gested that RPS26 might play a critical role in the etiology of 
PCOS and highlighted the potential of this gene as a promis-
ing target for the prevention and treatment of PCOS.

PM20D1 (Peptidase M20 Domain Containing 1) showed 
the second strongest suggestive pleiotropic association with 
PCOS in the SMR analysis using blood eQTL data and was 
also among the top hit genes in the SMR analysis using 
ovary eQTL data (Table 2). PM20D1, located on 1q32.1, is 
a gene encoding a bidirectional enzyme capable of catalyz-
ing both the condensation of fatty acids and amino acids to 

generate N-acyl amino acids and the reverse hydrolytic reac-
tion, thereby regulating energy homeostasis [42]. Mice with 
increased circulating PM20D1 had increased N-acyl amino 
acids in blood and improved glucose homeostasis, and 
PM20D1 knockout in mice resulted in impaired glucose tol-
erance and insulin resistance (IR) [43]. In human adipocytes, 
PM20D1 is one of the most highly upregulated genes by the 
antidiabetic thiazolidinedione drug rosiglitazone, suggesting 
a potential role of this enzyme and/or N-fatty acyl amino 
acids in obesity and diabetes [44]. In addition, PM20D1 
has been found to be associated with various diseases such 
as Parkinson’s disease [45] and Alzheimer’s disease [46]. 
To date, research is scarce on the association of PM20D1 
with PCOS. Given that PCOS is a metabolic disorder that is 
closely related with obesity, IR, type 2 diabetes (T2D), and 
metabolic syndrome [47], it is highly likely that PM20D1 

Fig. 3  Pleiotropic association of 
PM20D1 with PCOS. A SMR 
analysis results using eQTL 
data for ovary. B SMR analysis 
results using eQTL data for 
whole blood. Top plot, grey dots 
represent the -log10(P values) 
for SNPs from the GWAS of 
PCOS, with solid rhombuses 
indicating that the probes pass 
HEIDI test. Middle plot, eQTL 
results. Bottom plot, location 
of genes tagged by the probes. 
GWAS, genome-wide associa-
tion studies; SMR, summary 
data-based Mendelian randomi-
zation; HEIDI, heterogeneity in 
dependent instruments; eQTL, 
expression quantitative trait 
loci; PCOS, polycystic ovary 
syndrome
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could be involved in the etiology of PCOS, and more studies 
are needed to explore the exact roles that PM20D1 plays in 
the pathogenesis of PCOS.

NEIL2 (Nei Like DNA Glycosylase 2) showed the third 
strongest suggestive pleiotropic association with PCOS 
in the SMR analysis using ovary eQTL data and was also 
among the top hit genes in the SMR analysis using whole 
blood eQTL data (Table 2). NEIL2, located on 8p23.1, is 
a gene encoding a member of the Fpg/Nei family of DNA 
glycosylases. The encoded enzyme is primarily involved 
in DNA repair by cleaving oxidatively damaged bases and 

introducing a DNA strand break via its abasic site lyase 
activity [48, 49]. The recent meta-analysis of GWAS on 
PCOS, on which the SMR analysis of the present study 
was based, found that the genetic variant rs804279 in 
GATA4/NEIL2 showed significant association with PCOS 
(OR=1.14, 95% CI: 1.10–1.18; P=3.76×10−12); however, 
significant heterogeneity was observed across the different 
studies [35]. This genetic variant also showed significant 
association with polycystic ovarian morphology and ovula-
tory dysfunction [35]. Another genetic variant rs8191514 in 
NEIL2 was predicted to generate a binding site for twenty 

Fig. 4  Pleiotropic association 
of CTC-457L16.2 with PCOS. 
A SMR analysis results using 
eQTL data for ovary. B SMR 
analysis results using eQTL data 
for whole blood. Top plot, grey 
dots represent the -log10(P val-
ues) for SNPs from the GWAS 
of PCOS, with solid rhombuses 
indicating that the probes pass 
HEIDI test. Middle plot, eQTL 
results. Bottom plot, location 
of genes tagged by the probes. 
GWAS, genome-wide associa-
tion studies; SMR, summary 
data-based Mendelian randomi-
zation; HEIDI, heterogeneity in 
dependent instruments; eQTL, 
expression quantitative trait 
loci; PCOS, polycystic ovary 
syndrome
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transcription factors, and it was in linkage disequilibrium 
with the PCOS-identified genetic variant rs804279 (R2= 
0.4, D′=0.97; P<0.0001) [50]. Moreover, 8p23.1, where 
the NEIL2 is located, is also the region of GATA4 (GATA 
Binding Protein 4), and knock-out of GATA4 led to abnormal 
responses to exogenous gonadotropins and impaired fertil-
ity in mice [51]. It also encompasses the promoter region 
of FDFT1 (Farnesyl-Diphosphate Farnesyltransferase 1), 
a gene encoding farnesyl-diphosphate farnesyl transferase 
that is involved in cholesterol biosynthesis pathway [52], 
thereby influencing testosterone biosynthesis. These find-
ings, together with findings from the present study, highlight 
the importance of this region in association with PCOS.

This study has some limitations. The number of probes 
used in the SMR analyses was limited, and the sample size 
in the eQTL analysis was limited, especially for the eQTL 

data in ovary, which may lead to reduced power in the eQTL 
analysis. Consequently, some important genes implicated 
in PCOS may have been missed. Future SMR studies with 
larger samples for the eQTL analysis are warranted to iden-
tify additional genes underlying the pathogenesis of PCOS. 
The SMR analyses were performed only in participants of 
European ethnicity, and future studies are needed to explore 
whether the findings can be generalized to other ethnicities. 
Moreover, this study only explored gene expression probes 
in association with PCOS, and it is possible that genetic 
variants exert their effect on PCOS through other epigenetic 
mechanisms, such as DNA methylation. More studies inte-
grating multi-omics data are needed to more systematically 
explore the complex mechanisms underpinning PCOS.

In summary, the present SMR study integrating GWAS 
of PCOS and eQTL data revealed that multiple genes were 

Fig. 5  Pleiotropic association 
of NEIL2 with PCOS. A SMR 
analysis results using eQTL 
data for ovary. B SMR analysis 
results using eQTL data for 
whole blood. Top plot, grey dots 
represent the -log10(P values) 
for SNPs from the GWAS of 
PCOS, with solid rhombuses 
indicating that the probes pass 
HEIDI test. Middle plot, eQTL 
results. Bottom plot, location 
of genes tagged by the probes. 
GWAS, genome-wide associa-
tion studies; SMR, summary 
data-based Mendelian randomi-
zation; HEIDI, heterogeneity in 
dependent instruments; eQTL, 
expression quantitative trait 
loci; PCOS, polycystic ovary 
syndrome
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potentially involved in the pathogenesis of PCOS. Some of 
the genes were reported to be involved in the regulation of 
T-cell survival, energy homeostasis, and DNA repair. More 
studies are needed to examine the exact functions of these 
genes in the etiology of PCOS and to explore additional 
genes implicated in the pathogenesis of PCOS.
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