
RESEARCH ARTICLE

Heterogeneous run-and-tumble motion

accounts for transient non-Gaussian super-

diffusion in haematopoietic multi-potent

progenitor cells

Benjamin Partridge1, Sara Gonzalez Anton2,3, Reema Khorshed2, George AdamsID
2,3,

Constandina Pospori2,3, Cristina Lo Celso2,3*, Chiu Fan LeeID
1*

1 Department of Bioengineering, Imperial College London, South Kensington Campus, London, United

Kingdom, 2 Department of Life Sciences, Imperial College London, South Kensington Campus, London,

United Kingdom, 3 Sir Francis Crick Institute, London, United Kingdom

* c.lo-celso@imperial.ac.uk (CLC); c.lee@imperial.ac.uk (CFL)

Abstract

Multi-potent progenitor (MPP) cells act as a key intermediary step between haematopoietic

stem cells and the entirety of the mature blood cell system. Their eventual fate determination

is thought to be achieved through migration in and out of spatially distinct niches. Here we

first analyze statistically MPP cell trajectory data obtained from a series of long time-course

3D in vivo imaging experiments on irradiated mouse calvaria, and report that MPPs display

transient super-diffusion with apparent non-Gaussian displacement distributions. Second,

we explain these experimental findings using a run-and-tumble model of cell motion which

incorporates the observed dynamical heterogeneity of the MPPs. Third, we use our model

to extrapolate the dynamics to time-periods currently inaccessible experimentally, which

enables us to quantitatively estimate the time and length scales at which super-diffusion

transitions to Fickian diffusion. Our work sheds light on the potential importance of motility in

early haematopoietic progenitor function.

I. Introduction

The haematopoietic system is responsible for the generation of billions of new blood cells

daily. This considerable feat is orchestrated from the bone marrow whose constituent blood

cells are organized into a hierarchical lineage tree, atop of which reside haematopoietic stem

cells (HSCs). HSCs have two defining properties; self-renewal—the ability to replenish their

own numbers, and multi-potency—the potential to differentiate into any given blood cell type.

Downstream of HSCs lie multi-potent progenitor cells (MPPs), which act as an intermediary

between HSCs and mature blood cells. Their successive proliferation and differentiation

amplifies cell numbers to enable a small pool of HSCs to achieve a staggering output of mature

blood cells [1].
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To achieve tissue homeostasis and to properly respond to stress and infection cell division

and differentiation must be tightly regulated. The motility of haematopoietic stem and progen-

itor cells (HSPCs) is emerging as an unexpected component to these regulations [2]. Therefore,

a detailed understanding of the spatial organization and dynamics underpinning the relation-

ship between HSPCs and their environment is crucial. Intravital microscopy has been a key

experimental technique that directly probes this relationship [3, 4]. This is of special clinical

interest in the irradiated state, due to the importance of radiation therapy in conditioning the

bone marrow prior to transplantation when treating malignancies of the blood.

In parallel development, the diffusive properties of migrating organisms have been the sub-

ject of intense interest within the statistical physics community [5, 6]. A common characteris-

tic amongst such systems is a non-linear, power-law scaling of the mean square displacement

(MSD) with time. This phenomenon stands in contrast to the linear relationship expected in

the ‘typical’ case of Fickian diffusion. This ‘anomalous’ diffusion—described as super-diffusion

(sub-diffusion) in cases where the MSD growth exceeds (falls below) the linear case—has been

postulated to influence a variety of biological processes spanning virtually all biological length-

scales [7–21]. Two recent intravital imaging studies have examined the dynamical behavior of

HSPCs in their native, steady-state environment and found that i) progenitor cells display

enhanced motility relative to HSCs, and ii) temporal heterogeneity within HSC trajectories,

where the dynamical behavior alternated between periods of a confined random walk and pro-

cessive motion [2, 4]. There are a limited number of prior works investigating the migratory

behavior of transplanted HSCs [22, 23], and to our knowledge a quantitative analysis of the dif-

fusive properties of haematopoietic MPPs in an irradiated setting has yet to have been

undertaken.

In this article, we first report on a statistical analysis of cell trajectory data taken from 3D in
vivo imaging experiments of haematopoietic multi-potent progenitor cells in the irradiated

bone marrow cavity of murine calvaria (Fig 1). Many of the cell trajectories are observed over

long time periods atypical of 3D in-vivo bone marrow imaging experiments, with 44% of tra-

jectories having a length greater than 3 hours and 17% having a length of greater than 6 hours.

We demonstrate that the cells display transient non-Gaussian super-diffusion over time-scales

of biological interest. We then explain this observation using a data-driven run-and-tumble

Fig 1. (a) Haematopoietic multi-potent progenitor cells (green) and the local micro-environment in an irradiated bone marrow cavity taken from a

time-lapse in vivo imaging experiment (grey: bone; blue and purple: autofluorescence). (b) 3D reconstruction of a MPP trajectory extracted from the

same set of experiments.

https://doi.org/10.1371/journal.pone.0272587.g001
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(RTM) model which takes into account heterogeneity in the dynamics of the ensemble. We

found that the incorporation of heterogeneity into our RTM is necessary and sufficient to

explain the non-Gaussian super-diffusive behavior. We extrapolate the dynamics to time-peri-

ods currently inaccessible to time-lapse imaging experiments which enables us to quantita-

tively estimate the time and length scales at which super-diffusion transitions to Fickian

diffusion. These estimates will be integral to understanding how stem and MPP cell motility

influence the regulations of blood cell generation due to the recognized importance of spatial

organization in controlling the function of the haematopoietic stem cell niche.

II. Results

A. Multi-potent progenitor cells display non-gaussian super-diffusion

The cell trajectory data presented were extracted from a series of in-vivo imaging experiments

in which labeled multi-potent progenitor cells expressing membrane-bound green fluores-

cence protein (GFP) purified from the bone marrow of donor mice are transplanted into mye-

loablative recipient mice and their three-dimensional positions followed using confocal

microscopy two days after radiation therapy for time periods ranging from 18 to 525 minutes

with three-minute intervals between subsequent frames (see Materials and methods). In

Fig 1(a) we show a maximum z-projection still frame depicting a typical configuration of such

an experiment with a few haematopoietic MPP cells (green) and the local micro-environment.

A representation of an extracted MPP trajectory is shown in Fig 1(b).

The standard indicator of anomalous diffusion is a power-law scaling of the mean square

displacement

hjrðtÞj2i / ta ð1Þ

where the angular brackets indicate an ensemble average. An exponent of α> 1 indicates

super-diffusion, which is the regime of interest here. The underlying mechanism responsible

for this result depends upon the nature of the stochastic process generating the motion. For

instance, a continuous-time random walk in which the displacement of random walker mov-

ing at a fixed speed is given by

rðtÞ ¼
XT

t¼0

DrðtÞ ð2Þ

where Δr are run lengths represented by random variables distributed according to P(Δr, t). In

the limit of large T, assuming independent run lengths with finite variance, the Central Limit

Theorem (CLT) dictates that the distribution Prob(r, t) of the ensemble (also known as the

propagator) will converge to a Gaussian distribution with a second moment that scales

linearly with time. Super-diffusion occurs when the assumptions of the CLT are violated. Mod-

els with heavy-tailed step length distributions, such as Levy walks [24], violate the finite vari-

ance assumption. Whilst models with persistent correlation, such as the Elephant walk [25,

26], violate the assumption of statistically independent displacements. Furthermore, a number

of studies [9, 11, 12] have shown empirically that a useful investigative tool is the scaling prop-

erty

Probðr; tÞ ¼ t� bF
r
tb
� �

ð3Þ

where F is generally non-Gaussian and β> 0.5.
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Due to the limited amount and length of trajectory data typically collected during in vivo
imaging experiments direct access to the ensemble averaged MSD is not possible. Thus in

order to improve the statistical properties of the estimator the time-averaged mean square dis-

placement is computed instead (TAMSD) [5].

d
2

i ðDÞ ¼
1

T � D

Z T� D

0

jrðt þ DÞ � rðtÞj2dt ð4Þ

The subscript i indicates the individual cell in question and the over-script bar the time

average. This quantity may then be further averaged over all N tracks

hd
2
ðDÞi ¼

1

N

XN

i¼0

d
2

i ðDÞ: ð5Þ

In Fig 2 we present the evidence for transient MPP super-diffusion. Fig 2(a) shows the the

power-law scaling (plotted in log-log scale) of the TAMSD averaged over all cells. In this

figure we have taken a maximum lag-time of two and a half hours, and to ensure a reasonable

statistical convergence for later time points we have used tracks of three hours or more in

length. An ordinary least-squares fit yields a gradient of α = 1.22, indicative of a super-diffusive

scaling.

In Fig 2(b) we plot the probability distributions of the re-scaled variable η = δx/Δβ for vari-

ous lag times Δ, where δx = x(t + Δ) − x(t); x(t) being the x-coordinate of a given cell at time t.
The value of the exponent β was determined to be 0.72 using a procedure described in Materi-

als and Methods (Fig 6). A similar result was observed for the y-coordinate, however, the z-

coordinate showed a lesser value of 0.59—this is likely an artifact of the limited field of view in

the z-direction, a common limitation of 3D intravital imaging experiments. The resulting

curve-collapse demonstrates the super-diffusive scaling property expressed in Eq (3) over a

three hour time window. It is also of note that shape of the distributions appears to be

Fig 2. Multi-potent progenitor cells display transient non-Gaussian super-diffusion. (a) Time-averaged mean square displacement trajectories for

each cell of track length greater than 3 hours (blue curves) along with the average over all cells (black curve). A linear fit (red curve) yields a super-

diffusive exponent of α = 1.22. (b) Curve collapse of the distribution of the re-scaled variable η = δx/Δβ, where δx = x(t + Δ) − x(t), for 6 different lag

time intervals Δ. The value of the exponent β is estimated to be 0.72 using a procedure described in Sec. IV.. For standard Fickian diffusion it is expected

that α = 1 and β = 0.5.

https://doi.org/10.1371/journal.pone.0272587.g002
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distinctly non-Gaussian, a characteristic also quantified in Materials and Methods (see Figs 7

and 8).

B. Run and tumble model explains transient super-diffusion

To explain the apparent transient super-diffusion displayed by the MPP population we imple-

ment a run and tumble (RTB) model of cell motility. RTB models have been successful in the

dynamical description of a variety of motile organisms including bacteria E. coli and Salmo-

nella [27, 28], and the eukaryotic unicellular alga Chlamydomonas [29, 30]. A random walker

undergoes intermittent linear ‘runs’ of length r for a time-interval Δt before re-orientating its

direction by angle θ and proceeding to embark on another run. In the simplest case r and Δt
are related through a fixed speed V. This case would not provide a faithful representation of

our data-set due to internal heterogeneity within the cell trajectories. Our model requires the

specification of the run length distribution f(r), the turn angle distribution h(θ), and the run

time distribution g(Δt).
To avoid the arbitrary imposition of a parametric model onto the data-set we take a data

driven approach, in which the relevant distributions specifying the model correspond to

empirical distributions constructed from the MPP data-set. This allows for the avoidance of

model error in our inference. We discuss the details of our approach in Materials and Meth-

ods, while we briefly describe our procedure here. The empirical distributions are constructed

by coarse-graining each trajectory to include points with a threshold value of at least 7.2

microns (approximately one cell diameter) separation. The threshold value was determined as

described in Materials and Methods. This procedure is done to remove short-range, transient

fluctuations in the cell centroid position unrelated to translocations of the entire cell body.

Small changes to the threshold value do not significantly alter the results. Displacements

between points on these coarse-grained trajectories enable the definition of run length, run

time, and turn angle distributions. In Materials and Methods, we further implement the more

elaborate Bayesian method of [31] to complement and to confirm the results of the minimal

RTB model presented herein.

We simulate a trajectory using the following procedure which is described in detail in Mate-

rials and Methods:

1. Assign average run length r , run time t and average turn angle y.

2. Draw from scaled run length distribution f ðr=rÞ and multiply by r to obtain current run-

length.

3. Draw from scaled turn angle distribution gðy=yÞ and multiply by y to obtain current turn

angle.

4. Draw from scaled run time distribution hðDt=DtÞ and multiply by t to obtain current run-

time.

5. Update time and position variables and return to 2.

Note that our model incorporates the observed inter-track heterogeneity. This is manifested

via significant inter-trajectory variation in the mean run length and run-time and mean turn

angle. We account for this by drawing from scaled empirical distributions. For example, each

experimental run-time interval is scaled by the average for the corresponding cell trajectory.

These dimensionless values are then aggregated across all trajectories to obtain the model

empirical distribution function. In other words, for each trajectory we have a set of run times

{Δt1, Δt2, . . ., ΔtT} and an associated mean run-time Dt . For each simulated track we assign a
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Dt from the list of empirical mean run-times and then generate (dimensionless) samples from

the distribution hðDt=DtÞ. We then obtain a true run-time in minutes through multiplication

by the corresponding scale factor Dt . Run length and angular heterogeneity was incorporated

by applying the same procedure. Heterogeneous diffusion processes have been implicated in

the emergence of non-Gaussian displacement distributions [31–35]. Fig 3 shows that our data-

driven model accounts for the super-diffusive behavior observed in the data. In Materials and

Methods we demonstrate that the ensemble of simulated trajectories display non-Gaussian dis-

placement distributions similar to those computed from the data.

Beyond explaining the experimental findings, our simulation model also enables us to

investigate MPP dynamics at timescales inaccessible to intravital microscopy experiments. The

curve is the result of simulating 51 trajectories, one for each average run-time calculated from

the trajectory data, for 30000 minutes, and the average taken using a maximum lag-time of

1500 minutes, an order of magnitude greater than the empirical data. We can infer by inspec-

tion of this result that the transition to Fickian diffusion takes place at around the 100-200

minute mark. If we refer to the most exploratory cell in Fig 2(a) we can then infer an approxi-

mate upper limit to the spatial region covered by the persistent motion to be at least 100μm or

around 20 cell diameters in length.

Fig 3. Comparison of simulation results and experimental data. Ensemble averaged TAMSD curves for experimental (black)

and simulation (orange) alongside the line of diffusion (red dashed), which is included as a guide to the eye. The simulation data

has been extended into a region inaccessible to experimentation in which a crossover to diffusion is observable. Error bars are too

small to be visible.

https://doi.org/10.1371/journal.pone.0272587.g003
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III. Discussion

A. Heterogeneity

We have demonstrated that the haematopoietic multi-potent progenitor cells display transient

super-diffusion which can be explained by a run-and-tumble model incorporating one neces-

sary and sufficient feature: heterogeneity between cell tracks. The heterogeneity present within

the cell motion is notable, and in line with the phenotypic and functional heterogeneity

observed in the biological literature [36]—there is significant variation in the average run-time

and turn-angle for each cell, evidently giving rise to a spectrum of diffusivities.

Our results did not show any evidence to suggest that the transient super-diffusion

observed in the MPP trajectory data could be attributed to heavy-tailed run length distribu-

tions, precluding a Levy Walk style model. Instead, incorporation of heterogeneity in run-

length, turn-angle, and run-time sufficiently re-capitulated the experimental TAMSD.

Indeed, heterogeneity has been implicated as an important factor contributing to the anom-

alous statistical behavior in populations of motile cells [5, 31, 37]. A number of theoretical and

empirical studies have emerged demonstrating that the canonical indicators of super-diffu-

sion; namely a scaling of the mean square displacement�tα with α> 1 and non-Gaussian dis-

placement distributions can originate from simple models of heterogeneous persistent cell

motion [31, 35, 37, 38].

In particular, mathematical models incorporating heterogeneity have found particular use

in explaining the so-called “Brownian yet non-Gaussian diffusion” in systems displaying a nor-

mal linear scaling of the mean square displacement with time, while having non-Gaussian step

width distributions [33, 34, 39–41]. It is noted [34] that this is facilitated by the lack of a strict

separation of time-scales between the slowly varying heterogeneity and the onset of Fickian

diffusion.

Pertinently, heterogeneity has also been postulated as a putative mechanism for super-diffu-

sivity over long times in experimental tracking of ensembles of motile cells [31, 32, 35, 37, 38,

42, 43]. This stands as an alternative to the Lévy walk model, which postulates a power law step

length distribution, with uniformly distributed turn angles between steps [8, 44–46]. This

point is highlighted in a recent paper [38] where the authors compare a heterogeneous run-

and-tumble model to a Lévy walk model as a mechanism for explaining the experimentally

observed super-diffusive scaling of mouse fibroblast cells. The authors conclude that heteroge-

neous run and tumble motion provided a superior explanation for the observed super-diffu-

sive scaling.

Heterogeneity in the dynamical behavior of motile cells has numerous causes. Some of

these are internal to the cell, reflecting variation in the transcriptional states of the underlying

genome which pertain to cellular motility. Others are induced by environmental differences

in the cells immediate surroundings, giving rise to a spatially dependent diffusion coefficient

D(r). The latter scenario is especially relevant in in-vivo settings such as the bone marrow cav-

ity, which as a physical medium is known for its complex heterogeneity. In in-vitro settings,

environmental heterogeneity is directly controlled for, hence it is more natural to assume that

each cell trajectory is generated by an identical probabilistic model. Following Ref. [35], it is

therefore useful to outline two limiting cases which categorize heterogeneity within a cell

population.

1. Temporal heterogeneity. Temporal heterogeneity refers to statistical inhomogeneity

with a single observed cell trajectory, and is typically manifested as stochastic alternation

between different dynamical modes. For example, periods of inactivity where the cell centroid

is effectively stationary are followed by bursts of motility. A recent paper on 2D super-diffusive

behavior observed in a population on motile ameoba [11] noted this characteristic in their
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motion. During periods of relative inactivity the sampled positions of the cell centroid will not

represent true translocations of the entire cell, but fluctuations of the centroid position caused

by transient cell surface membrane fluctuations, which themselves are likely to be driven by

re-arrangements of the underlying cellular cytoskeleton. Fig 4(a) shows an example of an MPP

trajectory along with its corresponding displacement time-series in (b). Qualitatively one may

discern periods of very slow diffusion, followed by stretches of persistent motion.

2. Cellular heterogeneity. Cellular heterogeneity reflects time-independent, inter-cell var-

iation in the statistical behavior of the cell trajectories. The origin of such variation is likely due

to variation in the environment within a given bone marrow cavity. This can be explained

through variation in the mean run time, and variation in the mean turn angle (as shown in the

insets of Fig 12(b)–12(d) in Materials and methods). Such inter-cell variation accounts for the

significant spread in TAMSD curves shown in Fig 2(a).

B. Transition to Fickian diffusion

Our model-facilitated extrapolation point to an upper limit on the range of influence of the

directed motion of MPPs within the bone marrow cavity of irradiated murine calvaria. We

infer this limit from the cross-over to Fickian diffusion of the simulated TAMSD. The high

value of the upper limit is surprising in part because it spans several multiples of cell diameter,

suggesting that persistent motion may play a significant role in determining the biophysical

properties of early stage bone marrow tissue regeneration. A key concept within haematopoie-

tic stem cell biology is that of a niche—a distinct anatomical compartment within the bone

marrow whose cellular constituents directly regulate cell fate. Whilst our study makes no direct

connection between potential niches in the bone marrow and MPP motility, it may be reason-

able to suggest that the persistent motility observed could serve as a stochastic mechanism

through which progenitor cells are able to re-locate to regions within close proximity to poten-

tial niches.

Fig 4. Temporal heterogeneity. (a) shows an example coarse-grained track (red) superimposed onto it’s original (blue) in which each subsequent pair

of points are separated by 3 minute intervals. Visually it appears as though periods of low motility and persistence are followed by more exploratory

periods displaying persistent motion. During periods of lessened motility sampled displacements may not faithfully represented true translocation of

entire cell; the coarse-graining procedure described in Sec. IV lessens the effect of this heterogeneity. The displacement length time-series of the original

track is shown for the same trajectory in (b).

https://doi.org/10.1371/journal.pone.0272587.g004
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In summary, we have employed a data-driven RTM to explain the non-Gaussian, super-dif-

fusive dynamics of MPP observed in long time-course 3D in vivo imaging experiments on irra-

diated murine bone marrow, and used our model to quantify the temporal and spatial ranges

in which these anomalous features are present. Interesting future directions will be to connect

these anomalous dynamics to bone marrow regeneration, niche organization, and

homeostasis.

IV. Materials and methods

A. Experimental description

Bone marrow 3D intravital imaging experiments aim to selectively track the positions of cells

in a given subset of the haematopoietic lineage tree in order to observe their dynamical behav-

ior. Such information is crucial to a complete understanding of the processes which underpin

haematopoietic stem and progenitor cell (HSPC) biology; allowing insight into cell motility,

cell division and apoptosis, and their relation to the bone marrow micro-environment.

Haematopoietic stem cells (HSCs) and multi-potent progenitor cells (MPPs) are defined

operationally through their ability to provide long- and sort-term reconstitution capacities,

respectively, to the haematopoietic tissue. However, identifying HSCs using such a definition

requires the use of serial transplantation assays, clearly limiting the ability to perform experi-

ments to visualize HSCs and related populations in-vivo. Instead, we identify haematopoietic

cell populations phenotypically using cell surface marker proteins. For example, haematopoie-

tic progenitors may be identified by selecting populations of cells lacking the expression of a

cocktail of cell surface markers associated with terminal differentiation—termed lineage nega-

tive (Lin-). This population may then be enriched further for markers associated with self-

renewal capacity and multi-potency.

To visualize haematopoietic progenitor cells in-vivo using confocal or multi-photon

microscopy, cells must be fluorescently labeled. There exist a number of strategies through

which this is possible. The experiments from which the data used in this letter was extracted

transplant and fluorescently labeled multi-potent progenitor (MPP) cells into an irradiated

recipient. Fluorescent haematopoietic cells are extracted from mice genetically modified to

express a florescent protein in their haematopoietic cells. Such cells are then purified into a

rare population of multi-potent progenitor cells using fluorescence activated cell sorting to

identify their associated cell surface markers. Fig 5 shows a schematic of this process.

1. Mice. All animal work was conducted as regulated by the UK Home Office, under proj-

ect licence PP9504146 approved by the Imperial College’s Animal Welfare and Ethical Review

Body (AWERB) committee and the UK Home Office. Recipient mice are irradiated using two

doses of 5.5Gy of γ-radiation three hours apart. This procedure is to condition the mice to

Fig 5. Experimental setup. Schematic showing the experimental setup used to generate the data used in this article. Bone marrow harvested from

transgenic donor mice expressing a fluorophore protein in their haematopoietic cells is purified using fluorescence activated cell sorting (FACS) to

produce a sub-set of bone marrow cells highly enriched for multi-potent progenitors (MPPs). These cells are then transplanted into syngeneic recipient

mice and imaged using confocal microscopy two days after the transplantation.

https://doi.org/10.1371/journal.pone.0272587.g005
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make them receptive of HSPC engraftment. The mice are then culled at the end of the experi-

ment (within 2-4 days from irradiation and HSPC administration) using cervical dislocation

as required by the Home Office Schedule 1 of the Animals (Scientific Procedures) Act 1986,

amended 2012.

2. Cell sorting. The following set of cell surface markers were used to identify MPP cells:

Lineage-, c-Kit+, Sca-1+, CD150-, CD48+. A ‘+’ sign preceding the marker name indicates

that the cell population is enriched for that particular marker, likewise a ‘-’ sign indicates

depletion.

• Lin-: a cocktail of markers indicating terminally differentiated haematopoietic cells, namely

CD3, CD4, CD8, B220, CD11b, Gr-1, and Ter119.

• Stem cell antigen Sca1+.

• Stem cell growth factor cKit+.

• CD48+ and CD150-.

3. Microscopy. Laser scanning confocal microscopy (LSCM) was used to record time-

lapse images of the motion of MPP cells observed at various fixed positions within the calvar-

ium bone marrow. Imaging commenced two days after transplantation was performed.

4. Data acquisition. After the time-lapse images were recorded the central positions of

the cell were extracted in a semi-automated fashion using IMARIS software.

B. Details of statistical analysis

1. Sensitivity analysis of curve collapse. The value of the exponent β in Eq (3) in Sec.

IIA was determined to be 0.72 using the following procedure. For each value of the lag times

Δ = {3, 6, 15, 30, 60, 120}(mins), we compute the Wasserstein distance l(u, v): The Wasserstein

distance for two random variables with CDFs U and V is given by

lðu; vÞ ¼
Z 1

� 1

jU � Vj dudv : ð6Þ

The value of the exponent β is chosen as the one which minimizes the maximum value of

l(u, v) among the distributions. The result is displayed in Fig 6, from which a clear minimum

at β = 0.72 can be observed, which is the value used to produce the curve collapse in Fig 2(b).

2. Quantification of non-gaussianity. Following on from the method of [11, 12] we

attempt to quantify the non-Gaussian nature of the MPP displacement distributions over sev-

eral lag times Δ. To do this, for lag-times Δ = {3, 6, 15, 30, 60, 120} mins we plot distributions

of the lagged x-displacement δx = x(t + Δ) − x(t) for all values t 2 [0, T − Δ] where T is the tem-

poral length of a given track. We include all tracks long enough to produce at least one value of

δx for the largest lag time Δmax = 120 mins. Using maximum likelihood estimation (MLE)

(implemented using SciPy [47]), we then estimated the parameters of a generalized Gaussian

distribution

f ðdx; g; sÞ ¼
g

2s2Gð1=gÞ
expðjdx=sjgÞ ð7Þ

where σ is the scale parameter of the distribution, and Γ(x) the Gamma function, required for

proper normalization of the distribution. The shape parameter γ dictates the tailedness of the

distribution—the greater it’s value the more likely there is to be larger displacements. For γ = 2

the standard normal distribution is recovered, for γ = 1 a Laplacian distribution is realized.
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The results of this analysis are shown in Fig 7, with the solid red line representing the MLE fits.

The fit for the shape parameter γ reveals a spectrum of values all less than one, with a slight

increasing trend over time. We also include the maximum likelihood estimates for a Gaussian

distribution, plotted as a dashed black curve. Upon inspection, it is clear that the Gaussian dis-

tribution provides a poor fit at all values of lag time Δ, while the generalized Gaussian, through

incorporation of a shape parameter γ, seemingly provides the minimal extension necessary for

a good fit.

Further to this, we also computed the non-Gaussianity parameter [5]

GðDÞ ¼
d

d þ 2
�
hd

4
ðDÞi

hd
2
ðDÞi

2
� 1 ð8Þ

where

d
4
ðDÞ ¼

1

T � D

Z T� D

0

jrðt þ DÞ � rðtÞj4 dt ð9Þ

Fig 6. Optimization of scale exponent using Wasserstein distance. The maximum value of the Wasserstein distance

computed pairwise between the empirical cumulative distribution functions of the re-scaled variable η = δx/Δβ where δx = x(t +

Δ) − x(t), for each lag time Δ = {3, 6, 15, 30, 60, 120} mins used in the analysis. A clear minimum of this statistic is observed at a

value of β = 0.73, which is the value used in Fig 2(b). All cells with track lengths greater than or equal to 120 mins were used in

this analysis.

https://doi.org/10.1371/journal.pone.0272587.g006
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and d
2
ðDÞ is the TAMSD (4). This quantity is effectively a time-averaged version of the excess

kurtosis of a probability distribution, with G = 0 for a Gaussian and G> 0 for a lepo-kurtotic

fat tailed distribution, e.g., a Laplacian distribution. We display the results of this analysis,

computed for the data used in Fig 2(a), in Fig 8. We see that for small lag-times there is a pro-

nounced departure from the expected result for a Gaussian distribution, G(Δ) then decays to

approximately zero. Fig 8, together with the results presented in Fig 7, provides strong evi-

dence for the non-Gaussian nature of the underlying dynamical process generating the MPP

motion. A notable point is that the convergence of G(Δ) to the Gaussian value of G = 0 occurs

prior to the cross over to Fickian diffusion identified in Sec. II B. There has been substantial

interest in the converse case, so-called “non-Gaussian yet Fickian diffusion”: It is noted in [34]

that slowly varying, heterogeneous fluctuations can lead to non-Gaussian displacement distri-

butions, with a time-scale which persists to a time comparable to the cross-over to Fickian dif-

fusion. This is not the case for the MPP dynamics as it appear that the crossover time to

Gaussian behavior, τgauss, (as judged by the decay of G(Δ) in Fig 8) is around 30 mins, whereas

the crossover time to Fickian diffusion τfick, as discussed later, is around 150 mins.

3. Fig 2(b) for Y and Z displacements and confinement in the Z-direction. The curve

collapse presented in Fig 2(b), used the re-scaled variable η = δx/Δβ. Where δx represents the

x-displacement, Δ the time-lag, and β the scale exponent determined via the procedure

described above. In Fig 9 we re-plot this for the y and z coordinates, this time using the nota-

tion Zy ¼ dy=D
by and likewise for the z-coordinate.

The distributions for the y-coordinate are similar to that observed for δx, with βy estimated

to be 0.76. For the z displacement, the result was less convincing, the scale exponent βz was cal-

culated to be 0.59. The reason for this anomaly is likely due to the fact that motion in the z-

Fig 7. Non-Gaussian displacement distributions. x-displacement distributions for six different lag times Δ = {3, 6, 15, 30, 60, 120} mins, where δx = x(t +

Δ) − x(t) for all time points t 2 [0, T − Δ] where T is the length of the track. Cells included in this analysis have track lengths greater than or equal to 120

mins. Maximum likelihood fits for both a generalized Gaussian distribution (red line) and a standard Gaussian distribution (broken black line) are shown.

The shape parameter γ for the generalized Gaussian fit is shown along with the lag time Δ in the top left of each plot.

https://doi.org/10.1371/journal.pone.0272587.g007
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Fig 8. Non-gaussianity parameter. The non-Gaussianity parameter G(Δ) shown for lag-times of up to one hour. At short

times the departure from Gaussian behavior is significant, while longer times show a relaxation to the expected result for

Gaussian processes G = 0.

https://doi.org/10.1371/journal.pone.0272587.g008

Fig 9. Curve collapse for y and z displacement distributions. (a) A repeat of the Fig 2(b) for the re-scaled y-displacement Zy ¼ dy=D
by , where we have

determined β = 0.76. Figure (b) shows a the same plot for the z-displacement where this time βz = 0.59. The ηy distributions reproduce well the result in

Fig 2(b), however the same cannot be said of ηz, which we attribute to sampling bias caused by a limited field of view in the z-direction.

https://doi.org/10.1371/journal.pone.0272587.g009
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direction appears to be confined. This could be due to the following experimental constraint:

There is a limited field of view in the z direction. Light from the confocal microscope is only

able to penetrate down to fixed depth within the calvarium, therefore cells possessing a high

degree of motility along z-axis will leave the field of view early on in the imaging window.

Overall, we note that longer tracks generically belong to one of two categories; 1) motile

cells which by chance happen to be moving pre-dominantly in the xy-plane, and 2) less motile

cells unlikely to be able to leave the field of view during the observation time. We demonstrate

this observation in Figs 10 and 11. Dividing the MPP population into two categories based on

the trajectory averaged turn angle y demonstrates that the TAMSD in Fig 2(a) is dominated by

a group of 37 (out of 51) persistent cells (y < 1:5) which, as demonstrated in Fig 11(a), remain

largely confined to motion within the xy-plane during the observation window. This may be

contrasted with the other group of 14 less persistent cells, whose mean square displacement is

impaired in all directions as shown in Fig 11(b).

C. Model description

1. Trajectory coarse-graining. An arbitrary CTRW may be defined through the specifica-

tion of three distributions: the run length distribution f(r), the turn angle distribution g(θ), and

the run time distribution h(Δt). Here we interpret a run to be undertaken at constant velocity,

Fig 10. Time-averaged mean square displacement. We label the TAMSD of more (θ< 1.5) and less (θ� 1.5) persistent cells with

green and blue respectively. The corresponding averages over all cells within the more/less persistent groups are shown by the

black triangles/circles, along with least-squares fit lines in red which yield exponents of 1.27 for the y < 1:5 group, and 0.78 for

y � 1:5.

https://doi.org/10.1371/journal.pone.0272587.g010
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as opposed to a wait-time followed by a discontinuous jump. Many models following this pre-

scription are also known as run-and-tumble (RTB) models, which typically have a Poissonian

distributed run-time between subsequent uniformly distributed angular displacements. RTB

models are heavily used in the description of the motion of bacteria. The simplest case of such

a model would have r and Δt related through a fixed speed v. For our data-set we will define a

variable velocity model using the empirical cumulative distribution functions computed

directly from the data.

The empirical distributions are constructed by first applying a coarse-graining transforma-

tion to the trajectory. This involves including positions on the trajectory with at least R
microns of separation from their previous position, where R is a threshold length-scale deter-

mined from the data. Given a track, which is a sequence of position vectors representing the

cell centroid {rt} observed at discrete times t 2 {0, 1, 2, . . ., T} we extract a coarse-grained

representation, which is an ordered subset of the original� {0, 1, 2, . . ., T} such that the initial

time-point is always included and subsequent points are iteratively found as the first proceed-

ing time point which satisfies the criterion |Δrt D(r) − Δrt D(r) − Δt|> R. Between each pair of

subsequent points on the track, we can therefore define a run length r and an associated run

time Δt, and a turn angle θ as the polar angle between two subsequent run vectors

cos yt ¼
rt � rtþDt
jrtj � jrtþDtj

: ð10Þ

We show a schematic of this process in Fig 12(a).

This is a heuristic procedure done to remove short-range, transient fluctuations unrelated

to genuine movements of the entire cell body. Without this coarse-graining procedure, our

simple RTB model will not reproduce the mean square displacement of the experimental tra-

jectories. The Bayesian approach of Metzner et al. [31] provides an elegant way to perform a

similar coarse-graining procedure that is adaptive to the data, but our simple cut-off procedure

also suffices and has the advantage that it is simple to implement (albeit while losing informa-

tion pertaining to the short-range movements of the cell body.)

Fig 11. Confinement in the z-direction. For all cells used in the TAMSD calculation there exists the appearance of a confinement effect in the z-
direction due to the limited field of view in this direction. By dividing the cells into two populations based on their average turn angle, we can identify a

group of (a) more persistent cells which by chance happen to moving in the xy-plane, and (b) generally less motile cells which do not migrate

sufficiently in any direction to leave the field of view.

https://doi.org/10.1371/journal.pone.0272587.g011
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The threshold value R was determined by minimizing the root sum of the squared error

between the simulated and experimental TAMSD.

2. Empirical distributions. Using the coarse-grained tracks we are able to construct

empirical distributions representing the run-length, run-time, and turn angle distributions

required to specify the run and tumble model. However, as previously demonstrated, the MPP

trajectories display significant cellular heterogeneity. This observation must therefore be incor-

porated into our model to faithfully reproduce the experimental statistical analysis. We do this

by re-scaling each trajectory’s run lengths, turn angles, and wait times by their corresponding

mean values r; y;Dt and aggregating into dimensionless scaled run-length f ðr=yÞ, scaled turn

angle gðy=yÞ and scaled run-time hðDt=DtÞ empirical distribution functions. Histogram plots

of the model distributions are shown in Fig 12(b)–12(d).

3. Model algorithm. For each simulated cell trajectory we initially assign an empirical

mean run-length, run-time and turn angle from one the associated 51 MPP trajectories used

in the analysis. The algorithm proceeds by drawing dimensionless samples from the re-scaled

empirical distributions, for example f ðr=rÞ, and then multiplying the result with the corre-

sponding mean value ri to obtain the actual value.

Fig 12. Coarse-grained trajectory. a) Schematic of three subsequent points along a coarse grained trajectory. The first point to have at least 7.2 microns

displacement from the previous location is included in the coarse-grained trajectory. The distributions of the scaled run lengths (b), scaled turn angles

(c), and scaled run time (d) are shown, with their respective distributions of the mean run length per track, etc, shown in the insets.

https://doi.org/10.1371/journal.pone.0272587.g012
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As our data analysis and model are three-dimensional, two angles are required to specify

a given direction. Assuming a spherical co-ordinate system, we have defined the turn angle θ
between two subsequent runs as the polar angle between the two associated run displacement

vectors. We assume no chirality, therefore when updating the position of a simulated trajectory

we assign a random azimuthal angle ϕ.

For each simulated cell trajectory we iteratively generate samples of the three relevant ran-

dom variables (r, θ, Δt) from the corresponding scaled distributions obtained experimentally

(Fig 12(b)–12(d)), and update the position of cell using the scheme described below, until the

prescribed temporal track length has been generated. To produce Fig 3 we used linear interpo-

lation to produce a track of simulated positions separated by evenly spaced three minute inter-

vals. This interpolated trajectory could then be used to calculate the TAMSD and compare the

model to the empirical data.

4. Trajectory position update scheme. Given a current position xt and previous cell posi-

tion xt� Dt0 we wish to obtain the updated position xt + Δt after a run defined by run length r, turn

angle θ, and run time Δt. We define run displacement vector rt ¼ xt � xt� Dt0 and associated unit

vector r̂t ¼ rt=jrtj which specifies the polar axis of a reference frame centred on the point xt.

We then use the Gram-Schmidt procedure to obtain two orthogonal unit basis vectors

(e1, e2) that are also orthogonal to rt. The new position of the trajectory is then

xtþDt ¼ xt þ r cos yr
t þ r sinðyÞðcosð�Þe1 þ sinð�Þe2Þ; ð11Þ

for an azimuthal angle ϕ θ [0, 2π) drawn from a uniform distribution. This procedure is iter-

ated until the required temporal track length is generated, which in Fig 2(b) is 30000 minutes

per track.

5 Model displacement distributions. Fig 3 demonstrates that our model reproduces the

scaling of the TAMSD. However, it is also informative to ask to what extent the model repro-

duces the non-Gaussian displacement distributions observed in the experimental data. In

Fig 13 we show a reproduction of Fig 7: the distributions of the variable δx = x(t + Δ) − x(t) for

increasing lag times Δ. Interestingly, although the non-Gaussian form is still present—as

reflected in the maximum likelihood fits—the distributions become progressively more Gauss-

ian with increasing lag time. This trend does not occur to the same extent in the experimental

data: the experimental distribution p(δx;Δmax = 120 mins) is still distinctly non-Gaussian with

a shape parameter γ< 1. One possible explanation for this discrepancy is that our coarse

graining procedure has significantly reduced the likelihood of observing short length displace-

ments at longer lag times. In other words, we have smoothed out the effects of temporal het-

erogeneity within the track, thus reducing the contribution of the short-length cell centroid

fluctuations observed for a given cell during a period of stationarity.

D. Analysis of heterogeneity using superstatistical Bayesian method

1. Notation. In this section we use the following notation; we denote a collection of ran-

dom variables {X0, X1, . . ., XT} representing a discrete time stochastic process as X0:T and the

corresponding observed values of this process in lower case notation as x0:T. For continuous

random variables we write the probability density of observing a given realization of the pro-

cess as

pðx1:TÞdx1:T ¼ PrðX1 2 ðx1; x1 þ dx1Þ ; : : : : : ; XT 2 ðxT; xT þ dxTÞÞ ð12Þ

2. Model specification. To demonstrate and quantify the nature of the heterogeneity pres-

ent within the MPP trajectories we implement the Bayesian procedure of Ref. [31] in which
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cell motion is described hierarchically using a super-statistical model. In this context, the term

super-statistics refers to models in which a low-level process representing the dynamics over

short spatio-temporal scales, has slowly varying intensive parameters (for example tempera-

ture) controlled by a high-level process [48, 49]. It has been demonstrated that the super-posi-

tion of these two (or more) statistics can lead to systems with stationary states characterized by

non-Gaussian fat-tailed probability distributions [50]. The method of Ref. [31], while inspired

by this idea, is not completely faithful to it as there is not a strict separation of time-scales

between the high level process. To account for rapid changes in motility parameters, regime

changes where the cells transitions from a period of inactivity to higher motility, manifested by

allowing for abrupt discontinuous jumps in parameter values are allowed. Specifically, Metz-

ner et al. in Ref. [31] describe cell motion using a discrete-time persistent random walk, or

AR-1 process

vt ¼ qtvt� 1 þ atnt ð13Þ

with time varying persistence qt 2 [−1, 1] and activity at 2 R, and nt is a Gaussian noise term

with unit variance. These parameters are viewed as random variables evolving according to a

time-independent high-level process. This process is modeled through a transform K of the

parameter probability distribution.

3. Bayesian inference algorithm. The inference algorithm is based on one of the most

extensively used mathematical models for analysis of time series with time dependent states—

the Hidden Markov Models (HMM) [51]. HMMs consider an observed discrete time-series as

Fig 13. Model x-displacement distributions. Reproduction of Fig 7 for the simulated data. As in Fig 7 we show x-displacement distributions for six

different lag times Δ = {3, 6, 15, 30, 60, 120} mins, where δx = x(t + Δ) − x(t) for all time points t 2 [0, T − Δ] where T is the length of the track. Each plot

shows a maximum likelihood fit for both a generalized Gaussian distribution (red line) and a standard Gaussian (broken black line). The shape

parameter γ for the generalized Gaussian fit is shown along with the lag time Δ in the top left of each plot. Again in each case we see that the generalized

Gaussian provides a superior fit, however, unlike the experimental data the Gaussian provides a progressively better fit with increasing lag time Δ.

https://doi.org/10.1371/journal.pone.0272587.g013
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a collection of random variables Y1:T = {Y1, Y2, . . ., YT} indexed by a time index t whose values

are conditionally independent when given the value of a hidden state Xt. The correlation struc-

ture of the observed time-series is encoded in the hidden state variables as a Markov process.

In our case, the observed variables correspond to the velocity data v1:T, and the hidden state

the time-varying parameters θt = (at, qt). We wish to estimate the value of a latent parameter θt
= (at, qt) given the entire observed time-series v1:T. Therefore, the inference has a naturally

Bayesian interpretation, and is implemented using the forward-backward algorithm for

HMMs [51, 52]. In the description of the forward-backward algorithm for simplicity we

assume that the probability of a given observation depends only on the current value of the

parameter, not on past data points. However, it is readily extended to auto-regressive cases

such as that considered by Metzner et al. [31, 53, 54].

As with other Bayesian methods the parameters θt = (at, qt) are viewed as random variables,

and the data-set of observed velocities v1:T are interpreted as fixed. Bayes theorem is used to

compute their posterior distribution through multiplication of the prior p(θt)—representing

previous knowledge of the parameter distribution—with a factorizable likelihood function

pðv1:T jθtÞ ¼
QT

t¼0
Lt; where Lt≔ p(vt|θt) is the one-step likelihood function. The normalization

factor p(v1:t) is referred to as the model evidence and represents the relative likelihood that the

data-set was generated by the model

pðθtjv1:TÞ ¼
pðv1:T jθtÞ pðθtÞ

pðv1:TÞ
ð14Þ

for which it is possible to re-write as

pðθtjv1:TÞ ¼
pðv1:t; vtþ1:T jθtÞ pðθtÞ

pðv1:TÞ
ð15Þ

¼
pðv1:t; θtÞ pðvtþ1:TjθtÞ

pðv1:TÞ
: ð16Þ

Despite the somewhat cumbersome notation, the forward-backward algorithm results from

repeated application of the chain rule for joint probability distributions and the conditional

independence relations assumed by the model, in our case Markovian parameter dynamics.

Denoting the state space of possible parameter values as Θ

pðθt; v1:tÞ ¼

Z

θ2Y
pðθt; θt� 1; v1:tÞdθt� 1 ð17Þ

¼

Z

θ2Y
pðvt; v1:t� 1; θt; θt� 1Þdθt� 1 ð18Þ

¼

Z

θ2Y
pðvtjθtÞpðv1:t� 1; θt; θt� 1Þdθt� 1 ð19Þ

¼

Z

θ2Y
pðvtjθtÞpðv1:t� 1; θt� 1Þpðθtjθt� 1Þdθt� 1 ð20Þ

recognizing that the term p(vt−1, θt−1) is the joint parameter and data distribution for the
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previous time point αt−1(θt−1). The function α therefore obeys the following recursion relation

atðθtÞ ¼ pðvtjθtÞ

Z

pðθtjθt� 1Þat� 1ðθt� 1Þdθt� 1 ð21Þ

¼ Lt KF½at� 1ðθt� 1Þ� ð22Þ

A similar result may be obtained for the backward recursion for βt(θt) (see [52] for details)

btðθtÞ ¼

Z

θ2Y
pðθtþ1jθtÞpðvtþ1jθtþ1Þbtþ1ðθtþ1Þdθtþ1

¼ KB½Ltþ1btþ1�

returning to Eq (15) we are now able to write in the form

Posterior / Likelihood� Prior

¼ Lt � KF½at� 1�KB½Ltþ1btþ1�

¼ Lt � PrFt � Pr
B
t

where we have represented the integrals over the parameter space as integral transforms KF

and KB with kernels p(θt|θt−1) and p(θt+1|θt). If the parameter dynamics are time-reversible

Fig 14. Schematic of superstatistical Bayesian method. Given an experimental time-series and an observation likelihood function L, which we assume

here to be of the form of the Gaussian AR-1 process described in Sec. IVD2, it is possible to compute the posterior distribution of the time-varying

activity at and persistence qt parameters using a modified, discretized version of the forward-backward algorithm for hidden Markov models. The

posterior parameter distribution is obtained through multiplication of the grids representing the likelihood Lt and the forward and backward priors PrFt
and PrBt obtained using the recursion relations presented in Sec. IVD3. Point parameter estimates ŷt can be obtained from this posterior, typically

through the mean or the mode. The subsequent priors in the forward and backward direction are computed independently using the ad-hoc

transformation K.

https://doi.org/10.1371/journal.pone.0272587.g014
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then KF = KB. We can therefore view the prior as the product of two independently obtained

forward and backward priors PrF and PrB which have incorporated all information from the

data in both directions of time converging onto time t.
4. Adapted implementation of Metzner et al. Metzner et al. used a grid-based imple-

mentation of the above algorithm [31], in which the parameter state space Θ is discretized over

a 200 × 200 rectangular grid. Starting from a uniform prior the forward and backward recur-

sions are run independently from time-points t + 2 and T respectively. The parameter bounds

are qt 2 (−1, 1) and at 2 (0, amax) where the limit amax is data-set dependent. Apart from the

discrete approximation which facilitates computational efficiency and allows for a direct esti-

mation of the model evidence; the key advantage of this technique is to generalize the integral

transform K of the forward and backward priors α and β to allow for a more general class of

transformations. In cases where there is no prior knowledge regarding the form of the parame-

ter dynamics, it is preferred to keep the transformation K as general as possible, as to encapsu-

late both the gradual and potentially abrupt parameter changes, while not relying on a specific

functional form. This process is shown graphically in Fig 14. The likelihood function Lt is

approximated directly from the data and multiplied with priors. Following Ref. [31] we use a

two step process to transform the parameters; firstly, to account for possible abrupt parameter

Fig 15. Results of Bayesian analysis for example trajectory. (a) Shows an example MPP trajectory color coded according to the value of the

persistence parameter q at that time. Figure (b) shows the time-averaged mean posterior distribution. Figures (c) and (d) show the time evolution of the

posterior mean of the activity parameter a and persistence parameter q respectively.

https://doi.org/10.1371/journal.pone.0272587.g015
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changes, a minimum probability pmin is assigned to each point of the grid. Secondly, to account

for gradual changes in parameter values, we apply a uniform convolution to the parameter

grid with box of radius R.

5. Results of Bayesian analysis. To fix the value of the hyper-parameters pmin and R con-

trolling the high-level parameter transformation, we select the values of pmin and R which max-

imize the model evidence p(v1:T), evaluated by summing the (un-normalized) posterior

density over all points of the grid. The model evidence provides a quantitative measure of the

likelihood that the data was generated by the model. The discrete sum approximates the inte-

gral

pðv1:Tjpmin;RÞ ¼
Z

θ2Y
pðθ1:T ; v1:Tjpmin;RÞ �

X

ij

pðθij; v1:T jpmin;RÞ � Dθ ð23Þ

where we use the indices ij to represent the points of the discretized parameter grid and Δθ rep-

resents the voxel size of the grid. We also note that the results presented herein are not overly

sensitive to variation of these hyper-parameters, however, we use the model evidence maxi-

mum maximization criteria as means to fix their value. This is a form of what is known as

empirical Bayes in the mathematical statistics literature.

In Fig 15 we show the result of this analysis applied to a particular trajectory from the

ensemble of MPP tracks. For each posterior Pot we compute the means of both the activity and

persistence parameters, along with their 50 percent credible regions, shown in Fig 15(c) and 15

(d). In Fig 15(a) we annotate a trajectory according to the inferred persistence parameter

Fig 16. Results of Bayesian analysis for entire ensemble of MPPs. 2D histogram plot of time varying activity and persistence

parameters at and qt collated over all MPP tracks.

https://doi.org/10.1371/journal.pone.0272587.g016
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values. Visually, it is clearly seen that the algorithm is able to pick out periods of persistent

motion interspersed with periods of low activity and persistence. The time-averaged posterior

distribution shown in Fig 15(b) provides further insight into the motion of cell over the entire

trajectory; for this particular track we see that there exists three distinct modes, one low activity

anti-persistent, one low-activity persistent, and one high activity.

Repeating this analysis for the entire ensemble of MPP tracks, we observe a large spread in

the values of the at and qt, shown in the histogram plot in Fig 16.
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