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Abstract: ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of
conserved proteins from bacteria to mammals. In humans, three members of this family are expressed
in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP),
and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but
they are thought to exist primarily as tetramers. They possess overlapping but specific substrate
specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of
ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy
and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome
metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell
signaling and cell control, particularly in cancer. This review presents an overview of the knowledge
on the structure, function, and mechanisms involving these proteins and their link to pathologies. We
summarize the different in vitro and in vivo models existing across the species to study peroxisomal
ABC transporters and the consequences of their defects. Finally, an overview of the known and
possible interactome involving these proteins, which reveal putative and unexpected new functions,
is shown and discussed.
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1. Introduction

ATP-binding cassette (ABC) transporters constitute a superfamily of membrane trans-
porter proteins that actively translocate a wide range of molecules, from simple molecules
(fatty acids (FAs), sugars, nucleosides, and amino acids) to complex organic compounds
(lipids, oligonucleotides, polysaccharides, and proteins) [1]. Transport of substrates is
dependent on the hydrolysis of ATP, which releases energy that can be used to accumulate
substances in the cellular compartments or export them to the outside. ABC transporters
are distributed not only in the plasma membrane of both prokaryotes and eukaryotes, but
also in the membranes of the organelles of eukaryotic cells such as peroxisomes, mitochon-
dria, lysosomes, and endoplasmic reticulum (ER). Based on their amino acid homology
and structural configuration, ABC transporters in humans are classified into seven subfam-
ilies, A to G, comprising a total of 48 ABC transporters, many of which are implicated in
diseases [2]. ABC transporters of subfamily D include four proteins in mammals: ABCD1
[adrenoleukodystrophy protein (ALDP)], ABCD2 [adrenoleukodystrophy-related protein
(ALDRP)], ABCD3 [70 kDa peroxisomal membrane protein (PMP70)], and ABCD4 [per-
oxisomal membrane protein 69 (PMP69)] [3]. ABCD1, ABCD2, and ABCD3 are located
in the peroxisomal membrane. ABCD4 was identified by homology search for ALDP
and PMP70 related sequences in the database of expressed sequence tags, and was ini-
tially considered peroxisomal despite the absence of a membrane peroxisomal targeting
signal [4]. More recently, several studies have demonstrated that ABCD4 resides in the
endoplasmic reticulum and lysosomes, and that its function is associated with cobalamin
metabolism [3,5,6].
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The three human peroxisomal ABC transporters play an important role in the trans-
port of various lipid substrates into the peroxisome for their shortening by β-oxidation
(Figure 1). β-oxidation of FAs is a conserved process of peroxisomes by which acyl groups
are degraded two carbons at a time after being activated to form the corresponding CoA
derivative by a specific acyl-CoA synthetase located at the peroxisomal membrane [7].
The β-oxidation process exists in mitochondria for medium- and long-chain fatty acids
(MCFAs and LCFAs) and is necessary to terminate degradation of octanoyl-CoA coming
from peroxisomes. However, very long-chain fatty acids (VLCFAs, number of carbon
atoms >22) are exclusively β-oxidized into the peroxisome, and this organelle is therefore
essential, especially in the brain [8]. Moreover, polyunsaturated fatty acid (PUFA) synthesis
may require a peroxisomal cycle of β-oxidation, as in the case of docosahexaenoic acid
(DHA, C22:6 n-3) synthesis from its precursor (C24:6 n-3) [9]. It is important to note that
DHA is not only of great value by itself as a component of cell membranes, but is also the
source of eicosanoids associated with several key signaling functions [10].
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Figure 1. Peroxisomal ABC transporters and their involvement in lipid metabolism. Peroxisomal ABC transporters are
represented as homo or heterotetramers with their preferential substrates and their involvement in metabolic routes,
including several enzymatic steps, catalyzed by acyl-CoA oxidase 1 and 2 (ACOX1 and ACOX2), D- and L-bifunctional
protein (D-BP and L-BP), acetyl-CoA Acyltransferase 1 (3-ketoacyl-CoA thiolase, ACAA1), sterol carrier protein 2 (SCPX
thiolase, SCP2), alpha-methylacyl-CoA racemase (AMACR), bile acid-CoA:amino acid N-acyltransferase (BAAT), and
phytanoyl-CoA hydroxylase (PHYH).

Thus, peroxisomal β-oxidation may not be considered a simple catabolic process of
fatty acids. The role of peroxisomal ABC transporters is therefore not restricted to the
catabolic function of peroxisomes, but is fully associated with their various metabolic
functions including synthesis and degradation of lipids, cell signaling, inflammation
control, and redox homeostasis [11–15].



Int. J. Mol. Sci. 2021, 22, 6093 3 of 22

2. Structure, Function, and Mechanism of Transport
2.1. Structure

The general structure of eukaryotic ABC transporters is a four functional unit orga-
nization, comprising two transmembrane domains (TMDs) and two nucleotide binding
domains (NBDs). NBDs bind and hydrolyze ATP to trigger conformational changes in the
TMDs, resulting in unidirectional transport across the membrane [1]. Human peroxisomal
ABC transporters have a half-transporter structure, with only one TMD and one NBD [16].
In 2017, we proposed a structural model of human ABCD1 based on the crystal structure
of the mitochondrial ABC transporter ABCB10, which shows not only the putative struc-
ture of ABCD1 in a membrane context but also the complex intricacy of α-helices that
constitute the whole transmembrane domain (Figure 2) [17]. Therefore, peroxisomal ABC
half-transporters need to homo- or heterodimerize in the peroxisomal membrane in order
to constitute a full, active transporter [18,19].
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Figure 2. Structural model of human ABCD1 (reprinted from [17]). (A) Ribbon representation of the ABCD1 monomer.
TMD helices are numbered from 1 to 6 and rainbow colored from dark blue to red. NBD is in light grey, and intracellular
loops (ICL) 1 and 2 are indicated. (B) Ribbon representation of the ABCD1 homodimer with the two subunits respectively
colored in dark blue and yellow.

Data shows that ABCD1, ABCD2, and ABCD3 are able to interact as homodimers
or heterodimers [20–22], although both ABCD1 and ABCD3 are mainly found as homod-
imers in mammalian peroxisomal membranes [23–25]. Moreover, ABCD1 and ABCD2
homodimers are functional [26,27]. However, the fact that nonfunctional ABCD2 has a
transdominant negative effect on ABCD1 [20] suggests that heterodimers of ABCD1 and
ABCD2 are also functional and can exist within cells and tissues expressing both proteins.
Besides, chimeric proteins consisting of homo- and heterodimers of ABCD1 and ABCD2
are functionally active [19]. Concerning ABCD3, although homodimers and heterodimers
with ABCD1 and ABCD2 have been described [22,23,25,28,29], no data is available about
the functional value of the ABCD3 dimers. Surprisingly, ABCD1 and ABCD3 were found
in different detergent-resistant microdomains [29], implying that these proteins have a
different environment in the peroxisomal lipid bilayer, questioning the biological relevance
of the ABCD1 and ABCD3 heterodimers. Additionally, native PAGE experiments con-
cerning complex oligomerization confirm that ABCD1 and ABCD2 exist predominantly as
homo-tetramers, although both homo- and hetero-tetramers are present [28]. Therefore,
we cannot rule out the possibility that hetero-interaction between ABCD1 and ABCD2
occurs in hetero-tetramers composed of two distinct homodimers rather than in complexes
composed of two heterodimers. Finally, it remains unclear whether the oligomerization of
peroxisomal ABC transporters has any influence on substrate specificity.
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2.2. Substrate Specificity

Since the cloning of the ABCD1 gene in 1993 and its association with X-ALD [30],
ABCD1 function has been attributed to the transport of saturated and monounsaturated
VLCFAs across the peroxisomal membrane for further degradation by β-oxidation. Ac-
cumulation of saturated and monounsaturated VLCFAs indeed occurs in the plasma and
tissues of X-ALD patients, and is used for diagnosis [31,32]. Due to its importance, studies
concerning the structure, function, and defects of ABCD1 have never ceased. Functional
complementation experiments in yeast, functional assays in mammalian cells, especially
cells coming from X-linked adrenoleukodystrophy (X-ALD) patients, and studies using
animal models, mainly knock-out mice, were helpful in clarifying the question of substrate
specificity. The Abcd1 knock-out mice confirmed the human biochemical phenotype, indi-
cating that ABCD1 is indeed involved in the transport of VLCFAs [33–35]. Transfection of
X-ALD skin fibroblasts with ABCD1 cDNA corrected the β-oxidation defect and restored
normal levels of VLCFAs [36,37]. The preference of ABCD1 for saturated FAs was also
confirmed in yeast [26,27].

Cloned by homology using degenerate primers, the ABCD2 gene was shown to code
for ALDRP, the closest homolog of ALDP [38]. Both proteins display overlapping substrate
specificities for saturated and monounsaturated LCFAs and VLCFAs. It explains the cor-
rection of β-oxidation defect in X-ALD fibroblasts in case of ABCD2 overexpression after
transfection [39]. Using transgenic expression of Abcd2 in the Abcd1 knock-out mouse, Pujol
et al. demonstrated that VLCFA accumulation and disease phenotype could be corrected
in vivo [40]. This set the basis for a new therapeutic strategy for X-ALD patients aiming
at inducing ABCD2 expression with pharmacological, hormonal, or nutritional manage-
ment [41,42]. Pharmacological induction of ABCD2 was indeed shown to compensate for
ABCD1 defect in vitro and in rare cases, in vivo, opening the way for clinical trials [43–58].

Functional complementation in yeast model and X-ALD fibroblasts confirmed the
functional redundancy for saturated VLCFAs, but also demonstrated the specific role of
ABCD2 in PUFA transport, especially DHA and its precursor (C24:6 n-3) [26]. Experiments
in mammalian cells confirmed such substrate preference [19,20]. Further studies using the
Abcd2 null mice demonstrated a specific role in MUFA transport, especially for erucic acid
(C22:1 n-9) in adipose tissue [59,60] and an extended role in FA homeostasis [61].

PMP70, the protein coded by the ABCD3 gene, was the first identified peroxisomal
ABC transporter and is the most abundant peroxisomal membrane protein, at least in
hepatocytes [62,63]. Wrongly associated with peroxisome biogenesis [64], ABCD3 is also in-
volved in the transport of various lipids and shows overlapping substrate specificities with
ABCD1 when overexpressed [37,65]. Though, ABCD3 clearly has the broadest substrate
specificity as it is involved in the transport of LCFAs and VLCFAs but also specifically
in the transport of dicarboxylic acids, branched-chain fatty acids, and C27 bile acid in-
termediates such as di- and tri-hydroxy-cholestanoic acid [65–67]. The Abcd3 knock-out
mice indeed revealed a marked accumulation of bile acid intermediates, and ABCD3 was
recently associated with a congenital bile acid defect (CBAS5, see below) [67]. Furthermore,
a more recent study performed on manipulated HEK-293 cell models proved that ABCD3
is required for the transport of MCFAs across the peroxisomal membrane [68].

2.3. Mechanism

Conversion of free FAs into CoA esters constitutes an initial activation step before per-
oxisomal β-oxidation. This reaction is catalyzed by specific acyl-CoA synthetase connected
to the cytosolic side of the peroxisomal membrane [69]. It was proved, using protease
protection assays, that acyl-CoAs but not free FAs bind to the TMD of the transporter [70].
It is therefore only after activation that the fatty acyl-CoAs are transported to the peroxiso-
mal matrix through peroxisomal ABC transporters. Fatty acyl-CoA are captured on the
cytosolic side by the TMD, enhancing the affinity of NBD for ATP. ATP molecules are then
hydrolyzed, thus producing the energy needed to switch the conformation of TMD and
eventually allowing the translocation of substrates from the cytosol into the peroxisomal
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matrix [22,71]. However, the exact mechanism of transport remains controversial. Two
models are commonly considered. The first implies that esterified FAs are delivered directly
to the peroxisomal matrix, whereas in the other model, free FAs are transported into the
peroxisomal matrix after the hydrolysis of acyl-CoAs, which are re-esterified by acyl-CoA
synthetase when in the peroxisomal lumen.

Although the process of cleavage and reactivation of acyl-CoAs seems to be a waste
of energy as two ATP molecules are needed for the activation reaction, such a mechanism
is crucial for the specific permeabilization of the substrates of β-oxidation [18]. Several
studies have been done in an attempt to figure out the correct model for the transportation
mechanism. Early studies on yeast models have demonstrated that fatty acyl-CoAs are
hydrolyzed before being transported. This hydrolysis occurs when acyl-CoAs interacts with
the heterodimer Pxa1p-Pxa2p at the cytosolic side of the peroxisomal membrane [72]. The
peroxisomal ABC transporters would release a free fatty acid that should be re-esterified
inside the peroxisome before its catabolic processing. In addition, intrinsic acyl-CoA
thioesterase activity has been found in COMATOSE (CTS), a homolog of human ABCD1 in
Arabidopsis thaliana, proving again that VLCFA-CoA is hydrolyzed prior to transport [73].
Very recently, the work of Kawaguchi et al. provided further proof of the transport
mechanism [74]. After expressing human His-tagged ABCD1 in methylotrophic yeast,
they directly demonstrated that ABCD1 transports the FA moiety after the hydrolysis of
VLCFA-CoA and that acyl-CoA synthetase is required before the β-oxidation of VLCFA-
CoA within the peroxisomes. When it comes to the fate of the free CoA, they are released
in the peroxisomal lumen, as revealed using isolated peroxisomes from Saccharomyces
cerevisiae [75].

Finally, after their re-esterification, substrates are directly delivered to specific acyl-
CoA oxidases to initiate the β-oxidation process. Peroxisomal acyl-coenzyme A oxidase 1
(ACOX1) catalyzes the first and rate-limiting step of the β-oxidation pathway dedicated
to straight-chain fatty acids, which includes LCFAs, VLCFAs, PUFAs, and dicarboxylic
acids [76]. Other acyl-CoA oxidases also exist, ACOX2 and ACOX3. ACOX2 is specific to
bile acid intermediates [76] whereas the oxidation of branched-chain FAs depends on both
ACOX2 and ACOX3 enzymes [77,78]. Of note, mitochondria catalyze the β-oxidation of
the majority of short, medium, and long chain FAs but not that of VLCFAs [79]. In yeast
and plants, this process of FA β-oxidation occurs exclusively in peroxisomes, whereas in
higher eukaryotes, the catabolism of VLCFAs is initiated solely in the peroxisomes [7,80].

3. Human Diseases
3.1. X-Linked Adrenoleukodystrophy

X-linked adrenoleukodystrophy (X-ALD, OMIM # 300100) is the most frequent per-
oxisomal disorder but is still classified as a rare disease, with an estimated incidence of
1:17,000 [81]. Recent therapeutic successes [82,83], and the feasibility and reliability of a
diagnosis method based on VLCFA quantification from blood spot [84,85], have prompted
some countries to establish systematic screening of newborns. This complex and fatal
neurodegenerative disorder is characterized by a huge clinical variability both in the age
of onset and in the symptoms [31]. The two main forms are the childhood cerebral ALD
(ccALD), characterized by inflammatory demyelination of the central nervous system and
the adult form, called adrenomyeloneuropathy (AMN), consisting of a non-inflammatory,
slowly progressive demyelination affecting the spinal cord and peripheral nerves. X-ALD is
also the main cause of Addison’s disease and adrenal insufficiency may remain the unique
symptom of the disease. Since the disease is linked to chromosome X, boys and men are
the most severely affected patients. Female carriers usually remain quasi asymptomatic or
present only a mild phenotype, but severe forms have also been described [86].

In 1993, using positional cloning, the team of Hugo Moser identified the ABCD1 gene
as being responsible for X-ALD [30]. Mutations in the ABCD1 gene have been found in ev-
ery X-ALD patient and are collected in the X-ALD database (https://adrenoleukodystrophy.
info/ accessed on 1 June 2021). In spite of almost 900 non-recurrent mutations, no genotype-
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phenotype correlation has been described. It is important to note that the majority of
missense mutations affect protein stability and result in the absence of the protein. ABCD1
defect results in the accumulation of VLCFAs, mainly C26:0 and C26:1, which accumulate
as free FAs or in esterified forms in membrane lipids and cholesteryl esters. This accumula-
tion results from the impossibility of their entry into the peroxisome for their degradation
by β-oxidation, but also from an increased endogenous biosynthesis [87]. While the toxicity
of VLCFAs has been recognized [88], the sequence of events leading to neurodegeneration
and inflammation is still debated. Oxidative stress and cellular components, especially
microglial functions, seem to play a major role in the pathogenesis of X-ALD [89–91].

Therapeutic strategies depend on the clinical symptoms of patients. A majority of
X-ALD patients present adrenal insufficiency and require a careful patient follow-up, but
hormone-replacement therapy successfully manages the adrenal defect and prevents a
potentially fatal Addisonian crisis. Hematopoietic stem cell transplantation (HSCT) has
proven efficiency to halt neurological involvement in X-ALD. Since 1990 and the first
success of this therapy [92], allogeneic graft has been indicated for boys with ccALD
at an early stage of the disease when a compatible donor exists. In 2009, autologous
HSCT was demonstrated to be successful to halt cerebral demyelination in two boys
with no compatible donors who received their own genetically corrected stem cells [82].
Lentiviral correction of bone marrow derived stem cells and autologous transplantation
proved effective in 15 patients in 2017 [83]. These promising results suggest that such
a therapeutic strategy may be as effective as allogeneic HSCT. In addition, efforts to
find pharmacological strategies targeting oxidative stress, inflammation, or compensatory
mechanisms (antioxidant cocktail [93], leriglitazone [94], sobetirome [50,54,55]) are still
present. It remains to be evaluated whether such treatments would be useful per se or in
combination with HSCT strategies, at least to delay the onset of neurological concerns and
permit a lengthening of the time window to allow transplantation.

3.2. Congenital Bile Acid Synthesis Defect Type 5

Although mutations were found in the ABCD3 gene of a Zellweger patient [64], further
evidence showed that ABCD3 has no link with peroxisomal biogenesis and is definitively
not associated with Zellweger Syndrome [95]. ABCD3, which presents partial functional
redundancy with ABCD1, has been shown to transport branched-chain FAs, dicarboxylic
acids, and bile acid precursors. A few years ago, the accumulation of peroxisomal C27-bile
acid intermediates DHCA and THCA, as well as VLCFAs, was described in a young Turkish
girl whose parents were consanguineous [67]. The patient presented hepatosplenomegaly
and a severe progressive liver disease and she died of complications after liver transplan-
tation. Patient fibroblasts showed reduced numbers of enlarged peroxisomes, as well as
reduced β-oxidation of pristanic acid, compared to controls. Immunofluorescence con-
firmed the absence of ABCD3 in the peroxisomal membrane. A homozygous truncating
mutation was identified in the ABCD3 gene of the patient, and the disease was named
congenital bile acid synthesis defect (CBAS) type 5 (OMIM # 616278). It should be noted
that CBAS type 1, 2, 3, 4, and 6 are associated with mutations in HSD3B7, AKR1D1, CYP7B1,
AMACR, and ACOX2 respectively. These genes control key reactions in bile acid synthesis
and all the CBAS forms present an autosomal recessive inheritance.

3.3. Peroxisomal ABC Transporters and Cancer

Beyond its recognized role in metabolism and redox homeostasis, the peroxisome is
now increasingly regarded as a signaling platform and a key organelle in cellular metabolic
reprogramming with major consequences on the immune response, cell cycle, and cell
differentiation [12,96]. Elegantly presented in the state of the art of Hlaváč and Souček,
several studies have revealed a significant association between the level of expression
of peroxisomal ABC transporters and various cancers [97]. This suggests a role of these
ABC transporters in cell cycle control, cell differentiation, and tumorigenesis. Downreg-
ulation of peroxisomal ABC transporters has been observed in several cases: ABCD1 in
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melanoma [98] and renal cell carcinoma [99], ABCD2 in breast cancer [100], and ABCD3 in
ovarian cancer [101] and colorectal cancer [102]. Moreover, a lower prognostic value has
been associated with low expression of ABCD1 in ovarian cancer [103] and low expression
of ABCD3 in colorectal cancer [102]. On the contrary, ABCD1 and ABCD3 were found
upregulated in breast carcinoma [104], and a positive correlation was observed between
ABCD3 expression and glioma tumor grades [105]. Recently, VLCFA accumulation was
associated with colorectal cancer [106]. Increased endogenous elongation appears to be
primarily responsible for this observation, but peroxisomal ABC transporters are also likely
involved, and the ability to regulate their expression could potentially represent a thera-
peutic interest in such cancers. Altogether, further studies are required to understand the
link between the transport function and metabolic role of peroxisomal ABC transporters
and the control of cell cycle with regard to the complexity of tumor heterogeneity.

4. Cell, Plant, and Animal Models

Phylogenetic analysis of peroxisomal ABC transporters in eukaryotes shows strong
conservation, highlighting their fundamental and specific role in the cellular functions.
Interestingly, their substrate specificity seems to become more restrictive with the complex-
ification of the biological systems. Although the number of peroxisomal ABC transporters
and their specific functions vary between species, each model of study is of scientific inter-
est and has contributed significantly to the knowledge of peroxisomal ABC transporters.
Here are described the main eukaryote models.

4.1. Yeast

In addition to its convenience for genomic modification, Saccharomyces cerevisiae is a
particularly interesting model for studying the peroxisomal metabolism of lipids, since
it can use FAs as its only carbon source and β-oxidation of FAs of all length takes place
only in peroxisome. The yeast model expresses only two peroxisomal ABC transporters,
called Pxa1p and Pxa2p, which function as a strict heterodimer to import fatty acyl-CoAs
into the peroxisomal matrix [107–109]. Functional assays and functional complementation
experiments of pxa1/pxa2∆ yeast mutants with mammalian peroxisomal ABC transporters
were particularly important in studying their transport mechanism and substrate speci-
ficity [26,65,75].

4.2. Plant

In Arabidopsis thaliana, CTS, the human ABCD1 ortholog, is an integral peroxiso-
mal membrane protein composed of two fused half-size transporters. CTS is involved
in the import of FAs and phytohormone precursors into the peroxisome where they are
β-oxidized [110,111]. The products of this oxidation are involved in the transition from
dormancy to germination, root growth, seedling establishment, and fertility [112]. Ex-
pression of human ABCD1 in A. thaliana CTS mutant cannot restore the germination and
establishment, whereas human ABCD2 only restores the germination phenotype [113].
These results are related to the physiological differences between plants and mammals,
and highlight the differences in substrate specificity between ABCD1 and ABCD2. The
plant model was also very important as it showed for the first time the existence of CTS
in high molecular weight complexes and allowed the study of the transport mechanism,
especially the role of its thioesterase activity [73].

4.3. Nematode

Caenorhabditis elegans is a well-known worm model in neurobiology studies, but the
interest of this model in the field of X-ALD has been shown only very recently. PMP-4 is
one of the five putative peroxisomal ABC transporters identified in C. elegans and is the
ortholog of human ABCD1 and ABCD2. It is mainly expressed in gut and hypodermis, the
main fat storage tissues in the C. elegans. Moreover, hypodermal cells have similarities with
vertebrate glial cells and participate in neuronal migration [114]. PMP-4 deficient worms
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have a normal growth and maturation but show several hallmarks of X-ALD (global VLCFA
accumulation, redox imbalance, axonal damage, motility alteration) [115]. Interestingly,
the number and the size of lipid droplets (LDs) are increased and can be normalized using
a mitochondrial targeted antioxidant. C. elegans is therefore a valuable model to study the
involvement of FA accumulation and oxidative stress in the pathogenesis of X-ALD but
has some limitations since its nervous system is not myelinated.

4.4. Insect

An X-ALD fly model has been generated in Drosophila melanogaster using RNA in-
terfering of dABCD, the ortholog of ABCD1. These flies survive to adulthood but exhibit
a specific brain neurodegenerative phenotype with retinal defects including holes and
loss of pigment cells associated with death of neurons and glia [116]. Interestingly, cellu-
lar targeted disruption of dABCD in neurons, but not in glia, triggers the retinal defects.
The phenotype is indistinguishable from the one observed in bgm (bubblegum) and dbb
(double-bubble) deficient flies [117]. Both bgm and dbb genes code for long/very-long-chain
acyl-CoA synthetases. The shared neurodegenerative features in dABCD and bgm/dbb
deficient flies show that the lipid metabolic pathway is a key component of the X-ALD-like
neurodegenerative disease in Drosophila. More specifically, experiments achieved with bgm
and dbb deficient flies indicate that the loss of metabolites is the cause of neurodegenerative
disease rather than accumulation of substrates (V/LCFAs), as was commonly thought.

4.5. Fish

Zebrafish (Danio rerio) has recently been proved to be a useful model for studying the
pathogenesis of X-ALD. Indeed, Abcd1 (the zebrafish ortholog of ABCD1), is expressed
during development in spinal cord and in the central nervous system especially in the
oligodendrocytes and motor neuron precursors, but also in the interrenal gland (func-
tional equivalent of the adrenal cortex) [118]. Zebrafish Abcd1 mutant models show key
biochemical and nervous system alteration features of X-ALD (increased level of C26:0,
accumulation of cholesterol, hypomyelinated spinal cord, modified development of inter-
renal gland and brain, early alteration of motor behavior, decreased survival, and modified
oligodendrocytes pattern associated with apoptosis). Interestingly, the motor alteration
and the oligodendrocytes pattern can be corrected by human ABCD1 expression. Moreover,
a recent drug screening study showed that chloroquine can improve motor activity in
zebrafish Abcd1 mutant and reduce saturated VLCFA levels [119].

4.6. Rat and Mouse

Various cellular models have been created in rodent species to study the function of
peroxisomal ABC transporters and the consequences of their defect. Considering that the
liver is a platform for peroxisomal lipid metabolism in mammals, the hepatic H4IIEC3
cell line was used to create a specific cell model allowing the inducible expression of a
normal or mutated rat Abcd2 protein fused to green fluorescent protein [120]. It allowed
to precise the substrate specificity of Abcd2 as well as its dimeric status, and even, to
demonstrate for the first time its supradimeric structure. [19,20,28]. To better understand
the role of peroxisomal ABC transporters in the glial cells, models of ALD astrocytes
have been developed. Astrocytes are known to regulate the inflammatory response. In
neurodegenerative diseases, reactive astrocytes secrete inflammatory cytokines, which
allow the permeability of the blood-brain barrier (BBB) to peripheral infiltrating immune
cells. When Abcd1 and/or Abcd2 genes are silenced in mouse primary astrocytes, X-ALD
biochemical hallmarks are present (decreased C24:0 β-oxidation, increased C26:0 level),
but so are redox imbalance and pro-inflammatory features (increased cytokines expression
and nitric oxide production) [121]. These characteristics are inverted by treatment with
Lorenzo oil and increased by a long-term VLCFA treatment showing the link between
VLCFA accumulation and the pro-inflammatory response of these glial cells [122]. These
first results obtained in primary astrocytes led to the development of an immortalized
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astrocyte cell line [123]. This model should be very useful for studying the mechanisms
of astrocyte activation and was used to screen therapeutic compounds such as SAHA, an
HDAC inhibitor that normalizes ROS production as well as iNOS and TNF expression [53].

Microglia is also considered a major player in the X-ALD pathogenesis, especially in
the inflammatory process. To proceed further, Abcd1 and/or Abcd2 deficient microglia cell
lines have been obtained using CRISPR/Cas9 gene editing in the mouse BV-2 cell line [124].
The Abcd1−/−Abcd2−/− cells, generated to avoid masking effects due to functional redun-
dancy, show classical X-ALD biochemical hallmarks (increased levels of saturated and
monounsaturated VLCFAs) but also increased levels of some LCFAs and PUFAs. Like in
brain macrophages from X-ALD patients [125], whorled lipid inclusions, probably corre-
sponding to cholesterol esters of VLCFAs, were observed, making these cells particularly
interesting for modelling the human disease. Further studies using these cell lines, alone or
in co-culture with glial and/or neuronal cells, should bring new insights for understanding
the impact of Abcd1/Abcd2 deficiencies in the microglial function, and could be used for
the screening of pharmaceutical compounds useful to halt chronic inflammation in the
brains of cALD patients.

In order to study the function of peroxisomal ABC transporters and the pathogen-
esis of X-ALD in integrated mammalian models, Abcd1-, Abcd2-, and Abcd3-deficient
mouse models have been generated [33–35,40,67,126]. The Abcd1 knock-out mice show key
biochemical features of X-ALD but develop a late onset progressive neurodegenerative
phenotype involving the spinal cord and sciatic nerves without brain damage [127]. In
the spinal cord, inflammation is observed in old mice and includes microglia and astro-
cyte activation [40]. However, microglia activation seems to occur early, probably from
eight months of age [91]. VLCFA excess would induce an early oxidative stress leading
to mitochondria structural and functional damages as well as an ER stress concomitant
with autophagy disruption [128–132]. Although no cerebral phenotype is observed, Abcd1
knock-out mice can be considered a physiological model of AMN or female myelopa-
thy and can be useful for screening pharmaceutical compounds. Several molecules have
thus been tested and have demonstrated their efficacy, including antioxidant compounds
that have been proven to reverse oxidative stress in vitro and reduce locomotor impair-
ment [133–135]. These hopeful results led to a prospective phase II pilot study that was
carried out for 13 AMN patients treated with a cocktail of antioxidant molecules [93]. The
study showed that biomarkers of oxidative damage and inflammation were normalized
and that patients’ locomotion was improved, paving the way for a hopeful Phase III study.

Even if the mouse model is attractive because of its phylogenic proximity to humans,
it doesn’t reproduce the human brain phenotype of X-ALD. One possible explanation
could be related to species and cell-type differences in the expression levels of ABCD1–3
and functional redundancy issues. Sustaining this hypothesis, a transcriptomic analysis
showed that ABCD2 is not expressed in human microglia and ABCD3 is 1.6-fold more
expressed than ABCD1 [136], whereas in mouse BV-2 microglial cells, Abcd2 is 2.5-fold more
expressed than Abcd1 and Abcd3 is 1.6-fold more expressed than Abcd1 [124]. In addition,
the biochemical and neurological defects observed in the Abcd1 knock-out mice can be
corrected by ubiquitous transgenic expression of Abcd2 [40]. On the contrary, Abcd1/Abcd2
double knock-out mice have an earlier and more severe neurological phenotype associated
with inflammatory T lymphocyte infiltration in the spinal cord [40]. The Abcd2 knock-out
mice also develop progressive motor disabilities specifically involving sensitive peripheral
neurons and spinal cord dorsal and ventral columns and share subcellular abnormalities
with the Abcd1 knock-out mice (axonal degeneration, C26:0 accumulation, oxidative stress,
organelle abnormalities concerning mitochondria, lysosome, endoplasmic reticulum, and
Golgi apparatus). This model also revealed the key role of Abcd2 in adrenals [137] and in
adipose tissue and lipid physiology [59–61].

In contrast to the Abcd1 and Abcd2 knock-out models, the Abcd3 knock-out mice do
not develop peripheral or central neurodegeneration (like ABCD3 deficiency in humans),
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but exhibit hepatomegaly associated with abnormalities in peroxisomal FA metabolism,
which seems to represent a suitable model for CBAS5 [67].

4.7. Human

X-ALD patient skin fibroblasts have, for several years, constituted one of the rare
in vitro models of the disease. In 1980, Moser et al. demonstrated for the first time that the
accumulation of VLCFAs observed in the brain and adrenals of patients is also present in
primary fibroblasts, thus validating this model for X-ALD studies, at least at the biochemical
level [138]. Since then, this cellular model has become a platform for a broad variety of
analyses concerning lipid metabolism, X-ALD diagnosis, functional characterization of
peroxisomal ABC transporters, cellular consequences of ABCD1 deficiency, and screening
of therapeutic compounds. Great scientific advances have emerged from this handy model,
but its skin origin is a limitation in pathogenesis studies. Indeed, the gene regulation and
function in skin fibroblasts are very far from those of neural, glial and microglial cells.

The involvement of peripheral blood mononuclear cells (PBMCs) in the inflammation
feature of X-ALD was early suspected, since PBMCs from X-ALD patients produce higher
levels of inflammatory cytokines than control ones [139,140]. Used in gene therapy, the
CD34+ PBMCs (lymphoid and myeloid progenitors) transduced with normal ABCD1 can
efficiently correct the clinical phenotype of the X-ALD patients [82]. Moreover, AMN
monocytes have a pro-inflammatory expression pattern and, after differentiation into
macrophages, are not able to switch to an anti-inflammatory regenerative state [141]. Abcd2,
whose expression level is extremely low in these cells, could be a therapeutic target [142].
Therefore, human monocytes can be used to study the inflammatory process and identify
compounds capable of inducing ABCD2 expression, correcting VLCFA level, β-oxidation,
and inflammatory features [44,58].

The development of the iPSC (induced pluripotent stem cell) technology offers the
opportunity to study disease-involved cells with a chosen mutation and a phenotype
matching physiology. Several iPSC models have successfully been obtained from skin
fibroblasts of cALD and AMN patients [143–147]. Gene expression profiling shows that
X-ALD iPSCs have differentially expressed genes compared to control iPSCs, among which
some are positively correlated to the severity of the disease (cALD versus AMN) [148].
When iPSCs are differentiated into oligodendrocytes or astrocytes, the VLCFA level is
increased and is higher in cALD differentiated cells than in AMN cells, whereas no VLCFA
accumulation is observed in neurons [144]. iPSC-derived astrocytes show pro-inflammatory
features that also correlate with the severity of the phenotype. The differentiation of
microglia from iPSC also seems to be a promising model, as differentiated microglia show
the main phenotype of primary fetal and adult human microglia including phagocytic and
inflammatory capacity [146]. In addition, cALD iPSCs differentiated in brain microvascular
endothelial cells show impaired BBB function as well as lipid metabolism modifications
and interferon activation [149], and could lead to the study of an important factor of
brain pathogenesis in X-ALD. Altogether, these works show that iPSC-derived brain cells
should allow the study of the pathogenesis of X-ALD in detail, permit the identification of
biomarkers, and screen new therapeutic molecules. Co-culture experiments are expected
to provide new insight into intercellular communication in the brain.

In conclusion, for forty years, enormous progress has been made in the knowledge
of peroxisomal ABC transporters thanks to the development and the use of cell and
animal models. If no model exactly mimics the human X-ALD, there is no doubt that the
new technological developments will offer opportunities to progress in the study of the
role of peroxisomal ABC transporters in the neuronal, glial, and microglial intercellular
communications.

5. Protein Interactions and Unexpected Roles

Physical interaction between peroxisomal ABC transporters and other proteins have
been reported in several studies. Most binding partners are involved in lipid metabolism.
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Here, we propose to review these binding partners for which strong interaction experiments
have been obtained, or for which further investigations are needed to be reliable.

Peroxisomal membrane insertion, substrate binding, transport mechanism, and the
potential novel functions of peroxisomal ABC transporters require protein interactions.
Since their first identification, many efforts have been developed to understand how
peroxisomal ABC transporters are targeted to the peroxisomal membrane. PEX19p, a
cytosolic peroxin, was identified as an interactor of ABCD1, ABCD2, and ABCD3 by using
the yeast two-hybrid system and in vitro GST pull-down assays [150]. In addition to being
involved (in association with PEX3) in the correct peroxisomal targeting of peroxisomal
membrane proteins (PMPs), PEX19p may also function as a protein chaperone to prevent
aggregation of newly synthesized PMPs [151]. It’s worth noting that PEX19p is the only
ABCD2 binding partner that has been reported in the literature, probably due to the fact
that ABCD2 is much less closely studied than ABCD1 and ABCD3 since it is not responsible
for a genetic disease when mutated. To identify potential ABCD2 binding partners, we
used the inducible H4IIEC3 cell model, which expresses ABCD2-EGFP depending on the
presence of doxycycline [28]. We performed quantitative ABCD2 co-immunoprecipitation
assays coupled with tandem mass spectrometry. Differential analysis between cell samples
was done to limit detection of false-positive interactions. The list of potential binding
partners of ABCD2 is given in Table 1 and includes 13 non-redundant proteins exclusively
detected in the positive samples [28]. Only one subunit of the oligosaccharyl transferase
(OST) complex that catalyzes the N-glycosylation of newly translated proteins in the
endoplasmic reticulum was identified as a potential ABCD2 binding partner: the dolichyl-
diphosphooligosaccharide protein glycosyltransferase subunit 2 (RPN2) (Table 1). On
the other hand, RPN2 has also been identified by proteomic analyses in a subclass of
peroxisome expressing ABCD2 [152]. These data are still quite surprising since peroxisomal
ABC transporters, such as most PMPs, are known to be synthesized on free polysomes
and to further insert directly from the cytosol into the peroxisomal membrane. It is worth
noting that an indirect peroxisomal targeting pathway exists via the ER since several PMPs
are found glycosylated [153]. The potential interaction of ABCD2 with the OST complex
involved in N-glycosylation is inconsistent with the absence of routing through the ER
with respect to peroxisomal ABC transporters. Nevertheless, proteomic data leading to
identification is not robust since the protein probability for RPN2 is low (0.7224) (Table 1).

Table 1. List of proteins identified in co-immunoprecipitated ABCD2-EGFP complex by liquid chromatography coupled
with tandem mass spectrometry (modified from [28]).

Protein
Accession Protein Name Protein

Probability Fold Change a

Q9QY44 ABCD2 ATP-binding cassette sub-family D member 2 1 12.42
P97612 FAAH1 Fatty-acid amide hydrolase 1 1 5.02
P11507 AT2A2 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 1 4.71
P07340 AT1B1 Sodium/potassium-transporting ATPase subunit beta 1 2.48
P55159 PON1 Serum paraoxonase/arylesterase 1 1 2.32

D3ZHR2 ABCD1 ATP-binding cassette sub-family D member 1 1 <2
P16970 ABCD3 ATP-binding cassette sub-family D member 3 1 <2
Q7TS56 CBR4 Carbonyl reductase family member 4 1 <2
P11505 AT2B1 Plasma membrane calcium-transporting ATPase 1 1 <2
P16086 SPTN1 Spectrin alpha chain, non-erythrocytic 1 1 <2
Q63151 ACSL3 Long-chain acyl-CoA synthetase 3 0.9997 <2
O88813 ACSL5 Long-chain acyl-CoA synthetase 5 0.9994 <2
P14408 FUMH Fumarate hydratase, mitochondrial 0.8013 <2

P25235 RPN2 Dolichyl-diphosphooligosaccharide—protein
glycosyltransferase subunit 2 0.7224 <2

a Statistical significance was obtained for proteins identified with a fold-change >2.
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Besides the question of routing and peroxisomal targeting, the main putative ABCD2
partners revealed in this study were associated with lipid metabolism. Unsurprisingly,
several binding partners identified have a role in FA activation, which is required on
both sides of the peroxisomal membrane. At the cytoplasmic side of the peroxisomal
membrane, a complex FA synthesis-transport machinery was evidenced by using a multi-
approach method, combining GST pulldown experiments, mass spectrometry (LC/MS),
co-immunoprecipitation assays, and bioluminescence resonance energy transfer (BRET)
measurements [154]. This machinery consists of the binary interaction of ABCD1/3 with
proteins carrying functions associated with FA activation/transport (ACSVL4) and FA
synthesis (ACLY, ATP citrate lyase; FASN, FA synthase). On the inner surface of the
peroxisomal membrane, studies using a yeast two hybrid system and surface plasmon
resonance techniques indicate that the very long-chain acyl-CoA synthetase 1 (ACSVL1)
interacts with ABCD1 [155]. In Saccharomyces cerevisiae, peroxisomal ABC transporters
(Pxa1p and Pxa2p) functionally interact with the acyl-CoA synthetase Faa2p on the inner
surface of the peroxisomal membrane for subsequent re-esterification of the VLCFAs [72].
In this model, whether or not a physical interaction with acyl-CoA synthetases exists
remains to be investigated. In Arabidopsis thaliana, peroxisomal long-chain acyl-CoA syn-
thetases (lacs6 and lacs7) physically and functionally interact with CTS, as assessed by
co-immunoprecipitation experiments [73].

In our study aiming at identifying ABCD2 binding partners, the fatty-acid amide hy-
drolase 1 (FAAH1) exhibited the highest fold change (Table 1, FC = 5.02). This endoplasmic
reticulum enzyme is the main enzyme involved in anandamide hydrolysis and plays an
important role in endocannabinoid metabolism degrading the FA amides to the correspond-
ing fatty acids, with a PUFA preference over MUFAs and saturated fatty acids [156,157].
Interestingly, FAAH1 catalyzes the conversion of the ethanolamine amide form of DHA
(N-docosahexaenoyl ethanolamine) to DHA [158]. The interaction of FAAH1 with ABCD2
could be consistent with the role of FAAH1 as a supplier of ABCD2 substrates (DHA and
other PUFAs) for further degradation in the peroxisome by β-oxidation.

Concerning ether lipid biosynthesis, the peroxisomal enzyme alkyl-dihydroxyacetone
phosphate synthase (AGPS) is suggested to interact with ABCD1, as assessed by an inte-
grative global proteomic profiling approach based on chromatographic separation [159].
Ether lipid biosynthesis starts in the peroxisome with the transfer of the acyl group of
fatty acyl-CoAs to dihydroxyacetonephosphate (DHAP), generating an acyl-DHAP. The
second peroxisomal step is catalyzed by AGPS, which exchanges the acyl chain for an alkyl
group, yielding an alkyl-DHAP. After a final peroxisomal step, the ether lipid biosynthesis
is completed in the ER. This global proteomic analysis showed that AGPS failed to interact
with ABCD2, just as our co-immunoprecipitation coupled to proteomic analysis [28].

β-oxidation of MCFAs to LCFAs mainly takes place in the mitochondria, whereas VL-
CFAs are first metabolized down to octanoyl-CoA in the peroxisome for further degradation
in the mitochondria. Surprisingly, proteomic data supported by co-immunoprecipitation
experiments evidenced a physical interaction between a long-chain acyl-CoA synthetase 1
(ACSL1) localized in the ER and ABCD3 [159]. This could be in agreement with the role
of ABCD3 in the β-oxidation of lauric and palmitic acids [68]. In addition, ACSL1 has
been shown to interact with ACBD5 [160], a peroxisomal membrane protein suggested
to function as a membrane-bound receptor for VLCFA-CoA in the cytosol to bring them
to ABCD1 [161]. Whether ACSL1 transfers other unidentified lipid species to ACBD5,
ABCD1, or ABCD3 for peroxisomal degradation needs further investigation.

Other potential binding partners of ABCD2 identified are involved in mitochon-
drial FA metabolism, such as the carbonyl reductase family member 4 (CBR4), the long-
chain acyl-CoA synthetase 3 (ACSL3), and the long-chain acyl-CoA synthetase 5 (ACSL5)
(Table 1). These enzymes were identified with less confidence (fold change <2). Although
linked to lipid metabolism, CBR4 is a matrix mitochondrial enzyme. ACSL3 and ACSL5
do not activate VLCFAs, nor does ACSL1, which nevertheless has been found to interact
with ABCD3 [160] as discussed above.
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Peroxisomes contain enzymes involved in the α-oxidation of phytanic acid. Large-
scale mapping of protein–protein interactions by mass spectrometry identified a single
interaction between peroxisomal proteins i.e., the peroxisome matrix phytanoyl-CoA 2-
hydroxylase (PHYH) and ABCD3 [162]. This interaction makes sense since, after activation
of phytanic acid, phytanoyl-CoA is imported into the peroxisome by ABCD3 and enters in
the peroxisomal α-oxidation pathway of which PHYH is the first enzyme (Figure 1).

The recent demonstration of ABCD1 interaction with M1 spastin, a membrane-bound
AAA ATPase found on LDs, suggests the involvement of ABCD1 in inter-organelle FA
trafficking [163]. Actually, ABCD1 forms a tethering complex with M1 spastin as assessed
by co-immunoprecipitation experiments to connect LDs to peroxisomes. Furthermore, by
recruiting IST1 and CHMP1B to LDs, M1 spastin facilitates LD-to-peroxisome FA trafficking.
Whether M1 spastin-ABCD1 interaction directly promotes fatty acids channeling into
peroxisomes remains unclear. It is worth noting that among proteins detected in our ABCD2
interactome study, the spectrin alpha chain, non-erythrocytic 1 (SPTN1) was identified as
a potential ABCD2 binding partner (Table 1). As a cytoskeletal protein, SPTN1 is known
to be involved in stabilization of the plasma membrane and to organize intracellular
organelles [164]. These data corroborate the existence of peroxisome interconnection with
LDs and the cytoskeleton [165,166].

Related to calcium signaling, the sarcoplasmic/endoplasmic reticulum calcium AT-
Pase 2 (AT2A2) was identified with a high fold change (FC = 4.71), which ensures a specific
interaction with ABCD2 (Table 1). Besides, its homolog (ATPase1) has been identified as
well by proteomic analyses in a subclass of peroxisome expressing ABCD2 [152]. AT2A2
transfers Ca2+ from the cytosol to the ER and is then involved in calcium signaling. Coinci-
dently, disturbed calcium signaling was suggested to be associated with the pathogenesis
of X-ALD [122]. Involved in maintaining intracellular calcium homeostasis, the plasma
membrane calcium-transporting ATPase 1 (AT2B1) was identified, though with less confi-
dence (fold change <2). Actually, its physical interaction with ABCD2 remains questionable
since it is expressed at the plasma membrane. Nevertheless, several high throughput
studies using robust affinity purification-mass spectrometry methodologies to elucidate
protein interaction networks have revealed the interaction of ABCD1 with AT2B2 [167]
and ABCD3 with AT2B2 and AT2A2 [168,169]. Hence, clusters of arguments indicate
that peroxisomal ABC transporters could be linked to calcium signaling, but deciphering
molecular interaction networks would be required to confirm this hypothesis.

Identification in the putative ABCD2 partners of the serum paraoxonase/arylesterase
1 (PON1), an antioxidant enzyme synthetized and secreted by the liver in the serum [170]
where it is closely associated with high density lipoprotein (HDL), could be at first glance
intriguing (Table 1). Nevertheless, in the liver, PON1 is primarily localized in microsomal
fraction where the enzyme is associated with vesicles derived from the ER [171]. The
potential intracellular interaction with ABCD2 remains to be elucidated. Noteworthy, PON1
activity and polymorphisms have been associated with neurodegenerative diseases [172],
of which X-ALD is not evoked.

The binding partners of peroxisomal ABC transporters discussed in this review are
mainly linked to lipid metabolism (PUFA metabolism, α-oxidation pathway, and ether lipid
biosynthesis) and are consequently found in the cytosol, in the peroxisomal membrane, or
in the peroxisomal matrix. However, binding partners were identified in other cell com-
partments. Since peroxisomal lipid metabolism requires cooperation and interaction with
mitochondria, ER and LDs, peroxisomal ABC transporters, through their interactome, could
therefore actively participate in this intracellular metabolic network. Peroxisome-organelle
interactions have physiological relevance [166,173], and peroxisomes are increasingly con-
sidered important intracellular signaling platforms that modulate physiological processes
such as inflammation, innate immunity and cell fate decision [12,174,175]. Peroxisomal
ABC transporters would play an essential part in this emerging role of peroxisomes in
signaling pathways such as calcium signaling as highlighted in this review.
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6. Conclusions

Transcriptomic, proteomic, and lipidomic studies, which have multiplied in the last
few years, have confirmed and/or revealed the involvement of peroxisomal metabolism in
various biological processes essential for cellular adaptation, brain homeostasis, or even
immune response and inflammation. Peroxisomal ABC transporters constitute a pathway
for the entry of various lipid substrates into the peroxisome mainly for their degradation
but also for the synthesis of bioactive lipids impacting membranes and signaling pathways.
It is therefore quite logical that the role of peroxisomal ABC transporters is now extended to
unexpected biological processes. Since their cloning in the 90s, the lack of good antibodies,
the rarity of relevant cell models, the fragility of the peroxisomal membrane, and other
difficulties have constituted a real handicap towards performing functional assays and
in vitro transport reconstitutions, and progressing in the understanding of the role of
peroxisomal ABC transporters. The emergence of new cell models and the rise of model
organisms, as well as cell reprogramming and CRISPR gene editing technologies, suggest
that major new discoveries will be made soon that reveal their role in physiological and
pathological situations.
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ABC ATP-binding cassette
ACOX1 Acyl-coenzyme A oxidase 1
AMN Adrenomyeloneuropathy
BBB Blood-brain barrier
cALD Cerebral adrenoleukodystrophy
CBAS Congenital bile acid synthesis defect
CNS Central nervous system
CoA Coenzyme A
CTS Comatose
DHA Docosahexaenoic acid, C22:6 n-3
ER Endoplasmic reticulum
FA Fatty acid
FC Fold change
HSCT Hematopoietic stem cell transplantation
iPSC Induced pluripotent stem cell
LCFA Long-chain fatty acid
LD Lipid droplet
MCFA Medium-chain fatty acid
MUFA Monounsaturated fatty acid
NBD Nucleotide binding domain
PBMC Peripheral blood mononuclear cell
PMP Peroxisomal membrane protein
PUFA Polyunsaturated fatty acid
TMD Transmembrane domain
VLCFA Very long-chain fatty acid
X-ALD X-linked adrenoleukodystrophy
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