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Abstract: Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a
secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration.
This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application,
in combination with other factors and cell transplantations, for repairing the injured spinal cord.
As studies of recent decades strongly suggest that combinational treatment approaches hold the
greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of
combinational therapies will also be discussed.

Keywords: spinal cord injury; glial cell line-derived neurotrophic factor (GDNF); GFRα-1;
cRET; Schwann cells; astrogliosis; neuroprotection; axonal regeneration; combinational therapies;
neurotrauma

1. SCI Background and Need for Therapies

Spinal cord injury (SCI) is a devastating chronic condition, for which no effective treatments
currently exist. The primary cause of SCI cases worldwide is motor vehicle accidents, followed by falls
and sports injuries [1]. The potential long-term effects of chronic pain, inflammation, and devastating
disabilities that SCI patients endure are compounded by the extensive lifetime costs of care.
Approximately 1–5 million United States dollars (USD) is spent over the lifetime of an SCI patient,
depending on the patient’s age and level of injury (NSCISC-National Spinal Cord Injury Statistical
Center, 2018). The national cost of current and future healthcare for patients suffering from SCI in the
United States is estimated to be more than 400 billion USD.

The initial SCI mechanical trauma disrupts local vasculature and leads to a breakdown of the
blood–spinal cord barrier [2–4]. This is followed by a secondary wave of injury [5], comprised of
hemorrhage, ischemia [6], excitotoxicity, edema, neuronal apoptosis, loss of gray and white matter
tissue [6], axonal dieback, chronic inflammation [7], and the formation of a dense astrocytic glial
scar surrounding the lesion. During the acute phase after SCI, the astrogliosis is presumed to be
a positive regulator in limiting the spread of excitotoxic molecules, thus limiting the lesion area.
For decades, the astrocytic glial scar has been considered inhibitory in chronic phases after SCI.
However, recent literature supports beneficial axon regeneration in response to the astrocytic scar
formation [8]. Glial cell line-derived neurotrophic factor (GDNF) has been shown to positively
modulate astrogliosis [9–11], in addition to its known neuroprotective effects, thus making astrocytes a
potential therapeutic target in experimental SCI.
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2. Discovery of GDNF Family Ligands and Receptors

The GDNF subfamily of neurotrophic ligands consists of GDNF, neurturin (NRTN),
artemin (ARTN), and persephin (PSPN), which bind to the glycosylphosphatidylinositol-anchored
GFRα receptors 1–4, respectively [12]. The molecular structures of the GDNF family ligands and
receptors are nicely detailed by the authors of [13], as well as in Figure 1. While ARTN [14,15],
NRTN [11,16,17], and PSPN [18,19] have all been shown to be neuroprotective, this mini review
focuses specifically on GDNF and its applications for the treatment of SCI.
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Table 1. GDNF ligands, receptors, and co-receptors.

Ligand Receptor Co-Receptor

GDNF GFRα 1 cRET
NRTN GFRα 2 cRET
ARTN GFRα 3 cRET
PSPN GFRα 4 cRET

GDNF was first identified as a neurotrophic factor released from glial cells by Engele et al. [20]
and Lin et al. [21], in its promotion of the survival of dopaminergic neurons. The GFRα-1 receptor was
first reported in Cell in 1996 [22], following its isolation, cloning, and characterization from rat retinal
cells; a study which also detailed the interaction between GDNF, GFRα-1, and the cRET receptor.
Interestingly, the following week a Nature publication [23] revealed concurrent work with similar
findings on a cloned and characterized GFRα-1, as well as the GDNF, GFRα-1, and cRET multi-subunit
receptor complex.

3. Localization of GDNF and its Receptors

Expression patterns of GDNF, GFRα-1, and cRET indicate that the three are not mutually
exclusive for GDNF’s trophic actions, as GFRα-1 is expressed in regions lacking cRET, and cRET
has expression in regions lacking GFRα-1 expression, well characterized by the authors of [24]. In 1996,
Trupp et al. [25] identified GDNF’s activation of the cRET proto-oncogene, resulting in neuronal
survival, while Jing et al. [22] identified GFRα-1 as mediating the interaction between GDNF and cRET.
In 2001, Nicole et al. [26] demonstrated the expression of GDNF mRNA and protein, as well as GFRα-1
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and cRET on both neurons and astrocytes. Heparan sulphate, a key glycosaminoglycan, was identified
as crucial for the phosphorylation of the c-Ret co-receptor, and thus, also necessary for GDNF signaling
through its GFRα-1 receptor [27].

Satake et al. [28] showed a dramatic upregulation of GDNF mRNA expression within 3 h post
SCI that was maintained for approximately 2–4 weeks following injury. Additionally, changes in
GDNF’s expression pattern following central nervous system (CNS) injury are nicely illustrated by
Trupp et al. [12,25] and Donnelly and Popovich [29]. These studies provide potential time windows
following SCI during which GDNF might be most effective. GDNF’s targets in the CNS and peripheral
nervous system (PNS), as well as the administration of GDNF gene therapy for motoneuron protection
were highlighted in a review by Bohn [30].

4. GDNF Promotes Cell Survival and Growth

One of the earliest studies to report GDNF-induced reduction of astrogliosis was a study by Trok
et al. [31], in which spinal cord explants were allotransplanted into Sprague-Dawley anterior eye
chambers. GDNF was shown to promote graft survival and growth, in addition to the reduced Glial
fibrillary acidic protein (GFAP) immunoreactivity. Klöcker et al. [32] identified a new subpopulation of
neurons responsive to GDNF in a study showing significantly reduced cell death of axotomized retinal
ganglion cells in response to GDNF treatment. The upregulation of GDNF in the distal portion of
peripheral injured nerves was assessed and quantified, along with the localization of its cRET receptor,
as reported by Bär et al. [33]. Similarly, Höke et al. [34] showed upregulation of the GFRα1 receptor
on the distal segment of the sciatic nerve following injury; this upregulation and the upregulation of
GDNF by Schwann cells was maintained for approximately six months following injury. The GFRα1
receptor was localized to peripheral Schwann cells in a study by Hase et al. [35], showing another
putative target of GDNF for the repair of the injured nervous system, particularly given that Schwann
cells are the only cell type currently FDA approved for clinical trials of SCI in the United States [36].
Arce et al. [37] reported a 75% inhibition of neuron survival after exposure to Schwann cell cultured
media containing a blocking antibody against GDNF, thus demonstrating the importance of GDNF for
the Schwann cell-mediated neuroprotection. Paratcha et al. [38] highlighted the recruitment of cRET to
neuronal cell membrane lipid rafts, in response to soluble GFRα1. Rind et al. [39] showed anterograde
transport of GDNF in dorsal root ganglia (DRG) and motor neurons, both with undetectable levels
of GDNF mRNA in their current state. The radiolabeled GDNF in this study was provided to the
DRGs and motor neurons by Schwann cells and oligodendrocytes respectively, thus indicating another
potential cell source of GDNF within the nervous system. In 2004, a novel in vivo study was published,
showing for the first time the endogenous release of GDNF from astrocytes, which was neuroprotective
to neighboring neuronal populations, in utero during development [40]. The production of GDNF
from astrocytes, oligodendrocytes, and Schwann cells has made these cells important potential points
of intervention for SCI therapies.

5. Molecular Signaling of GDNF for Promotion of Cell Survival

In addition to its neuroprotective effects [38,41,42], GDNF has also been shown to: (1) attenuate
astrocyte cell death via reduced activation of caspase-3 [43], as well as through caspase-3/Akt
independent mechanisms [44]; (2) minimize activation of microglia and production of nitric
oxide [43,45]; and (3) promote the survival [46] and proliferation [40,47] of Schwann cells.
GDNF activates rat primary cortical microglial cells through GFRα-1 and cRET receptors,
with downstream signaling through the MAPK pathway, as illustrated in a study by Honda et al. [47].
Moreover, a pro-inflammatory response, resulting in increased levels of IL-1β, likely led to the
GDNF neuroprotection observed in a lipopolysaccharide (LPS)-induced nigral degeneration model of
Parkinson’s disease [48]. These studies demonstrate microglia as another putative therapeutic target
for GDNF in CNS injury and disease.
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Soler et al. [49] characterized the downstream signaling of GDNF in motoneurons, which includes
activation of both the PI3K and ERK-MAPK pathways. Further investigation revealed that the
neuroprotective effects of GDNF signaled through the PI3K pathway [49]. In 2001, Nicole et al. [50]
described a novel mechanism of cortical neuroprotection from excitotoxicity-induced necrotic cell
death after GDNF application. However, in this study GDNF failed to rescue cortical neurons from
apoptotic cell death, thus indicating that GDNF may result in neuroprotection via inhibiting neuronal
necrosis, but not apoptosis. Moreover, this study illustrated the indispensable nature of the MAPK
(MEK) pathway, and GDNF’s reduction of N-methyl-D-aspartate (NMDA)-triggered calcium influx,
resulting in the attenuation of necrotic cell death. However, glutamatergic excitotoxicity induced by
non-NMDA agonists (AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; kainate) was
unable to be attenuated by GDNF administration [26]. Additionally, this study highlighted the fact that
GDNF’s neuroprotective effects were likely caused by diminished NMDA receptor activity, and not
the result of free radical scavenging. Cheng et al. [51] investigated the downstream neuroprotection
signaling of GDNF, and determined that GDNF activated the MAPK signaling pathway, and resulted
in increased levels of Bcl-2. Liu et al. [21] described a similar upregulation of Bcl-2 and downregulation
of Bax, which provided neuroprotection in vitro and Schwann cell survival in vivo, in rats treated with
Schwann cells overexpressing GDNF, as compared to SCI rats. All of these studies provide potential
target points within the GDNF signaling pathways for intervention following SCI.

6. Studies Employing GDNF for Repair of Experimental SCI

After avulsion injury, axotomized motoneuron cell death was reduced by 50% and somatic atrophy
was reduced after treatment with GDNF [52]. In another study of avulsion injury, GDNF administration
via AAV-viral vector significantly attenuated spinal cord ventral horn motor neuron death [53]. In one
of the earliest studies of GDNF administration after SCI, Ramer et al. [54] reported the ability of GDNF
to rescue spinal cord motoneurons. In a contusive SCI model, GDNF showed significant improvement
in motor function (Basso Beattie and Bresnahan, (BBB) locomotor rating scale), increased cell survival,
and number of spared neuronal fibers compared to phosphate buffered saline (PBS)-controls [51].
Rescuing spinal cord motor neurons from cell death is an important component of sparing motor
function after SCI.

Mills et al. [55] described the way in which GDNF enhancement of axonal regeneration occurs
within a narrow therapeutic dosage range. Dosage and timing considerations are quite crucial for
treatments following SCI. What is an effective dosage at one time point, might be ineffective at a
later time point, considering the complex and dynamic lesion environment resulting from SCI. In a
compressive clip model of SCI, Kao et al. [56] demonstrated significantly improved motor functional
recovery (inclined plane) and reduced infarct zone, in addition to a dramatic increase in the number of
VEGF (Vascular endothelial growth factor)-positive and GDNF-positive cells (undetectable in sham
and SCI-only groups), and significantly reduced TUNEL (Terminal deoxynucleotidyl transferase (TdT)
dUTP Nick-End Labeling) staining. This study suggests the beneficial therapeutic potential of GDNF
and VEGF following SCI.

7. Studies Using GDNF in Combinational Therapies for Experimental SCI Repair

Iannotti et al. [57] showed robust remyelination, axonal regeneration, and reduced cavitation,
as well as modest yet significantly reduced astrogliosis and immune infiltration, in response to
GDNF-releasing matrigel guidance channels transplanted following experimental hemisection SCI.
Additionally, there was synergistic promotion of axonal regeneration and myelination in response
to guidance channels containing both Schwann cells (SCs) and GDNF [57]. This study supports
the notion that combinational therapies hold the greatest therapeutic potential for SCI. However,
despite significant axonal regrowth into the SCI lesion site, accompanied by the recruitment of
myelinating Schwann cells, Blesch and Tuszynski [58] highlighted the difficulty of promoting axonal
regrowth through and beyond the lesion site, following secretion of GDNF from genetically modified
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transplanted fibroblasts. Thus, axonal growth through and beyond the lesion is a major impediment
for a majority of SCI therapies.

In a novel study of chronic SCI, using a peripheral nerve graft, GDNF treatment enhanced axonal
regeneration 7-fold when compared to controls [59]. In a study with Schwann cell seeded guidance
channels, significant axonal regeneration and myelination were observed, along with an increased
number of blood vessels within the regenerated tissue, and increased diameter of the regenerated
axons [60]. The observed inhibitory astrogliosis was positively modulated, and an intermingling of host
and graft tissue was observed at the hemisection lesion interface, in a combinational study of GDNF
and Schwann cells in semi-permeable guidance channels [10]. Noteworthy is a study by Zhao et al. [61]
in which GDNF reduced axotomy-induced astrogliosis of the facial nerve. In a more recent study,
a growth-promoting bridge was formed by the transplantation of Schwann cell seeded guidance
channels, with Schwann cells overexpressing GDNF [62]. This GDNF overexpression modulated
the astrocytic glial scar, created a more permissive environment for propriospinal axonal regrowth
through and beyond the distal end of the lesion, conducted electrical signals through the lesion
gap, and improved functional recovery [62]. This study highlights the importance of combinational
treatment approaches for traumatic SCI.

In another combinational treatment approach, GDNF was embedded into an alginate hydrogel for
slow release, and transplanted in a hemisection SCI model [9]. In this study, GDNF promoted increased
functional recovery, increased numbers of intralesional and perilesional neurites, reduced astrogliosis,
and increased intralesional vasculature, as compared to controls. Using PLGA (polylactide-co-glycolic
acid) microspheres for slow release, Zhang et al. [40] administered GDNF, Chondroitinase ABC,
and a Nogo A antibody following a transection SCI. Lu et al. [46] showed remarkably robust axonal
regeneration up to 12 mm in length, in a severe SCI transection model (2 mm of cord removed),
in a combined therapeutic approach.This included transplantation of neural stem cells in fibrin
matrices containing a trophic factor cocktail (GDNF, BDNF (brain-derived neurotrophic factor),
PDGF-AA (platelet-derived growth factor), NT3 (neurotrophin-3), IGF-1 (insulin-like growth factor 1),
EGF (epidermal growth factor), aFGF (acidic fibroblast growth factor), bFGF (basic fibroblast growth
factor), HGF (hepatocyte growth factor), and a calpain inhibitor/). Moreover, this tissue graft resulted
in: (1) significantly enhanced motor recovery; (2) significantly improved electrical signals across the
lesion gap; (3) survival and differentiation of the neural stem cells; (4) an intermingling of host axons
into tissue grafts; (5) increased myelination; and (6) functional synapse formation likely leading to the
observed significant improvement in locomotion [46]. This study highlights the potential of various
trophic factor combinations, and the necessity for combined therapeutic approaches.

Chen et al. [63] used a combinational approach consisting of hydrogel scaffolds containing
Schwann cells which overexpressed GDNF, and were transplanted into the transected rat spinal cord.
The observations included increased axonal growth and axon myelination (by host Schwann cells).
This study and others demonstrate the potential of Schwann cells for SCI repair. Shahrezaie et al. [64]
observed significant functional recovery (BBB) with a combined treatment of bone marrow
mesenchymal stem cells (BMSCs) with lentivirus for GDNF expression, more so than SCI alone,
BMSCs alone, or BMSCs with an empty lentiviral vector. Another novel combinational treatment
approach was utilized by Zhao et al. [61], with a temperature-sensitive heparin-poloxamer hydrogel
with high GDNF-binding affinity, orthotopically injected following thoracic compression injury.
Rats receiving hydrogel with GDNF showed dramatically increased functional recovery (BBB and
inclined plane) compared with hydrogel treatment or SCI alone. Furthermore, this treatment
showed reduced astrogliosis, increased axon regeneration, and both autophagy-dependent and
autophagy-independent neuroprotection. While many treatments result in neuroprotection,
improved functional recovery is more difficult to achieve in models of SCI. In a 2016 study [50],
human umbilical cord blood mononuclear cells (hUCB-MCs) were combined with an adenoviral
vector containing GDNF, following rat thoracic contusive SCI. Adenoviral-GDNF and hUCB-MCs
with adenoviral-GDNF showed significantly more tissue sparing than either of the control groups
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lacking GDNF. The combined hUCB-MCs with GDNF (adenoviral vector) showed significantly
increased myelination compared to hUCB-MCs or adenoviral GDNF alone. Significant functional
recovery (BBB) was observed for the adenoviral-GDNF group compared to the adenoviral control;
in addition, hUCB-MCs adenoviral-GDNF showed similar improvements to the adenoviral-GDNF
group. The GDNF-containing treatment groups also showed distinct changes in various glial cells
(astrocytes, oligodendrocytes, and Schwann cells) throughout the injured area, demonstrating other
potential targets for SCI repair.

Jiao et al. [65] employed a silk fibroin/alginate GDNF scaffold seeded with human umbilical
cord mesenchymal stem cells (hUCMSCs) for a thoracic contusion injury in a rat model. The silk
fibroin scaffold combined with alginate had a prolonged release of GDNF when compared to
either scaffold alone. Moreover, the combination scaffold, including GDNF seeded with hUCMSCs,
resulted in significant functional improvement (BBB), neuroprotection, increased expression of
neuronal markers, and significantly reduced inflammatory cytokine expression, compared to: (1) the
combination scaffold with GDNF alone; (2) the combination scaffold without GDNF; and (3) SCI
alone. A similar combinational study utilized placental-derived mesenchymal stem cells (PMSCs) plus
GDNF, compared to bone marrow derived mesenchymal stem cells (BMSCs) plus GDNF accompanied
by copolymer scaffolds [66]. Interestingly, PMSCs expressing GDNF did not significantly differ in
their SCI repair capability from that of BMSCs expressing GDNF. However, untransfected PMSCs and
BMSCs showed significantly less tissue repair than transfected PMSCs and BMSCs expressing GDNF,
thus underscoring the high therapeutic potential of GDNF for SCI repair.

In summary, these collective studies demonstrate the beneficial effects of GDNF on multiple cells
types within the nervous system, particularly in combinational treatment approaches, for repair of
the injured spinal cord. The complex and dynamic milieu resulting from SCI appears to demand
combinational treatment approaches for repair and regeneration. Future potential clinical trials
might include transfecting the patient’s own Schwann cells to overexpress GDNF, before spinal cord
transplantation of the allogenic Schwann cells. This seems like the logical next step for the Schwann
cell clinical trial being conducted at the Miami Project to Cure Paralysis [36].
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