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ABSTRACT

Molecular signatures have been suggested as
biomarkers to classify pancreatic ductal adenocar-
cinoma (PDAC) into two, three, four or five subtypes.
Since the robustness of existing signatures is con-
troversial, we performed a systematic evaluation of
four established signatures for PDAC stratification
across nine publicly available datasets. Clustering
revealed inconsistency of subtypes across indepen-
dent datasets and in some cases a different number
of PDAC subgroups than in the original study, cast-
ing doubt on the actual number of existing subtypes.
Next, we built sixteen classification models to inves-
tigate the ability of the signatures for tumor subtype
prediction. The overall classification performance
ranged from ∼35% to ∼90% accuracy, suggesting
instability of the signatures. Notably, permuted sub-
types and random gene sets achieved very similar
performance. Cellular decomposition and functional
pathway enrichment analysis revealed strong tissue-
specificity of the predicted classes. Our study high-
lights severe limitations and inconsistencies that can
be attributed to technical biases in sample prepara-
tion and tumor purity, suggesting that PDAC molec-
ular signatures do not generalize across datasets.
How stromal heterogeneity and immune compart-
ment interplay in the diverging development of PDAC
is still unclear. Therefore, a more mechanistic or a
cross-platform multi-omic approach seems neces-

sary to extract more robust and clinically exploitable
insights.

GRAPHICAL ABSTRACT

INTRODUCTION

Background and context

Pancreatic ductal adenocarcinoma (PDAC) is the most fre-
quent and aggressive malignant neoplasm of the pancreas.
Its incidence has been increasing in the past decades and it
is expected to rise further, reinforcing PDAC’s position as
one of the deadliest cancer types and on the way of becom-
ing the second leading cause of cancer-related death by 2030
(1). The absence of clear symptoms leads to a delayed diag-
nosis of the disease, where the tumor stage is often advanced
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and traditional treatments do not necessarily prolong the
survival time. Around half of the patients show spread of
distant metastases already at an early stage or when the tu-
mor has still a small diameter (<2 cm), which renders sur-
gical resection and radiotherapy no longer applicable (2,3).
Despite progress in anti-cancer drug research, chemother-
apy yields only minor survival advantages, which in combi-
nation with tumor resection reaches a five-year survival rate
of 30% and above (4) while strongly affecting the quality of
life due to its high toxicity (5).

More recently, immunotherapy has shown encouraging
treatment results. However, the PDAC tumor microenvi-
ronment is widely heterogeneous and characterized by the
presence of immunosuppressive cells which, in a dense
stroma environment, makes the malignancy resistant to im-
munotherapy as well as chemotherapy (6–8).

Precision medicine, i.e. the stratification of patients into
clinically actionable cancer subtypes based on the molec-
ular characteristics of a tumor, is expected to significantly
impact the outcome response (9). Different cancer sub-
types present different mechanisms involved in carcinogen-
esis and are linked to different phenotypes (10). At the
same time, patients within the same subgroup share com-
mon molecular patterns and genomic alterations, as well as
similar clinical outcomes. Widely available transcriptomics
data is particularly attractive for defining molecular sub-
types as was initially demonstrated successfully in the con-
text of breast cancer, where gene expression profiling drives
subgroup classification (11,12). In the same way, researchers
proposed the identification of molecular subtypes in PDAC.

Molecular subtypes of pancreatic cancer

Many studies built up the current knowledge of PDAC
molecular subtypes, proposing a tumor classification which
reflects the biological and prognostic differences between
patients. Here, we focus on the four transcriptomic and ge-
nomic studies most frequently discussed in literature for the
stratification of PDAC into different groups. Definitions of
molecular subtypes for pancreatic cancer were proposed by
Collisson et al. (13) in 2011, Moffitt et al. (14) in 2015, Bai-
ley et al. (15) in 2016, which are frequently considered as
a gold standard for PDAC molecular subtyping, and Puleo
et al. (16) in 2018, a more recent study.

Collisson et al. performed an unsupervised analysis on
the combination of two microarray datasets, one coming
from microdissected primary tumor samples (where the
epithelium was devoid of the stroma) and a second one
from whole tumor samples. The authors identify the signa-
ture of 62 genes for patients discrimination and proposed
three subtypes: classical, quasi-mesenchymal (QM-PDA)
and exocrine-like. To validate these subtypes, cell lines were
tested for therapy response in vitro. The use of Gemcitabine
and Erlotinib in human PDAC cell lines of known subtypes
had different effects on the groups. Classical subtypes ap-
peared to benefit more from Erlotinib, opposed to QM-
PDA where Gemcitabine was more beneficial. In a vali-
dation of the 62 genes via unsupervised analysis on hu-
man and mouse cell lines, the Exocrine-like subtype was not
observed. Furthermore, three additional publicly available

expression datasets with corresponding survival data were
used for subtype partitioning based on the 62 genes. Clus-
tering these additional datasets together with their original
data reproduced the three subtypes, whereas clustering the
additional datasets individually lead to different clusters,
suggesting that an independent reproduction of the sub-
types in different datasets is challenging.

Moffitt et al. performed a virtual microdissection on
the integration of multiple microarray data (primary and
metastatic tumors, cell lines, normal pancreas and distant
site adjacent normal samples). The transcripts were divided
into categories linked with each input phenotype, and tran-
scripts associated with tumor and stroma were used to
define two distinct subtyping approaches. Tumor-specific
subtypes rely on 50 tumor-related genes which stratify the
patients into classical and basal-like subtypes, while 48
stroma-related genes were used to distinguish between nor-
mal and activated stroma subtypes. Survival analysis was
used to assess how the subtypes differ prognostically. The
discovered subtypes were further validated by sequencing
of primary PDAC, patient derived xenografts, cell lines and
cancer associated fibroblasts. While clustering on patient-
derived xenografts supports the basal/classical classifica-
tion, cell line models exhibit a prevalence of the basal-like
subtype, implying cell lines are not suitable for such binary
PDAC classification.

Bailey et al. used RNASeq data from pancreatic cancer
samples of different histopathological subtypes that have
>40% of tumor cellularity. Via clustering, they identified
four clusters of subtypes: squamous, immunogenic, pan-
creatic progenitor and aberrantly differentiated exocrine
(ADEX), which showed significantly different prognosis. To
elucidate other biologically relevant characteristics of the
subtypes, Bailey et al. integrated the transcriptomic analysis
with a genomic analysis comprising whole-genome, deep-
exome sequencing and gene copy number variation. A mul-
ticlass significance analysis of microarrays (SAM) analysis
returned a list of 613 genes differentially expressed between
the four subtypes. Bailey et al. employed a larger human
cohort to assess the reproducibility of the classes, this time
array-based and without assessing tumor cellularity. After
submitting the mRNA expression profiles to the same clus-
tering procedure, the authors report the discovery of the
same tumor subclasses.

Puleo et al. collected microarray expression profiles of
formalin-fixed paraffin-embedded samples from resected
primary tumors. Clustering revealed five subtypes: pure
classical, immune classical, desmoplastic, stroma activated
and pure basal-like. The subtypes differ in immune and stro-
mal composition as well as in tumor microenvironment, as
shown by the authors through cellular and tumor compart-
ment estimation performed with the use of transcriptomic
tools and deconvolution of the data in independent com-
ponents. Desmoplastic and immune classical are the sub-
types with the highest immune infiltration, with the dif-
ference in desmoplastic which, in addition, shows elevated
fibroblast and endothelial cells and inflammatory stromal
features. As desmoplastic, also Activated Stroma presents
high stromal content, specifically determined by the acti-
vated stromal components. Pure classical and pure basal-
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like tumors were found, respectively, well and poorly dif-
ferentiated and both with low immune infiltration. Puleo
et al. included a survival analysis of the proposed PDAC
classes, finding subtypes with low immune infiltration (pure
basal-like and activated stroma) associated with poor prog-
nosis, as previously reported by Moffitt et al. The authors
propose a signature of 403 genes able to cluster samples of
independent datasets into the five subtypes. The validation
of the subtypes was based on survival curves using three
external public datasets, confirming the pure basal-like as
the one with the worst outcome. The authors emphasize the
comparison with the dual classification proposed by Mof-
fitt et al., the only study that takes the stroma compound
into account, and conclude by addressing the attention to
the possible existence of an intermediate group of samples
with both basal and classical features.

Table 1 contains a summary of the main characteristics
of each proposed subtype, divided by study.

State of the art for signatures validation and subtypes repro-
ducibility

More than one study raised skepticism about the generaliz-
ability of the subtypes established by Collisson et al., Mof-
fitt et al. and Bailey et al. finding discrepancies in the bi-
ological relevance of the tumor classes, motivating us and
others to reassess these findings through additional analy-
ses (17–22). Subtypes proposed by Puleo et al. are not yet
extensively evaluated by the literature, which gives us the in-
centive to include it and to offer a first critical assessment
of their classifier.

Birnbaum et al. (17) assessed the prognostic value of Col-
lisson et al., Moffitt et al. and Bailey et al. classifiers by using
a large cohort of primary tumor samples coming from 15
different public datasets. Their results independently con-
firmed the prognostic value of the Moffitt et al. and Bailey
et al. gene classifiers set but not the Collisson et al. classi-
fiers.

The Cancer Genome Atlas (TCGA) Research Network
(18) performed the same unsupervised analysis as Collis-
son et al., Moffitt et al. and Bailey et al. on their cohort of
primary tumor samples, using each time the corresponding
list of gene signatures. Once the clusters had been identified,
they investigated their relationship with the purity of the tu-
mor samples. They reported that subtypes such as immuno-
genic, ADEX (from Bailey et al.) and exocrine-like (from
Collisson et al.) are related to low tumor purity, suggesting
a contamination of the tumor samples from adjacent nor-
mal pancreatic tissue.

Rashid et al. (19) explored the ability of Collisson et al.,
Moffitt et al. and Bailey et al. proposed gene set classifiers
in prognostic differentiation and subtype replicability. They
applied consensus clustering on nine independent patient
cohorts for assessing clustering robustness and carried out
survival analysis on those cohorts where survival informa-
tion was available. They noticed that the two tumor-specific
subtypes presented by Moffitt et al. are consistent across
datasets and thus robust in reproducing different patient
subgroups that are prognostically relevant.

Janky et al. (20), used the 62 genes proposed by Collis-
son et al. on a larger cohort of whole tumor samples. The

three groups obtained from clustering the data showed an
almost perfect overlap with the existing subtypes. However,
the prognosis related to such clusters appears to be par-
tially inconsistent with respect to the original study. Col-
lisson et al. associated the Exocrine-like subtype with good
prognosis, contrary to Janky et al. that found the subtype
associated with bad prognosis, denoting inability of the sig-
nature to distinguish the subtypes according to the survival
outcome assigned by the study.

Inconsistencies of the subtypes

Collisson et al. themselves recognized that the Exocrine-like
subtype might be the consequence of the presence of normal
tissue exocrine cells in the sample. This was noticed while
observing the subtypes including in vitro data, which were
not linked to the exocrine-like subtype, confirmed by Mof-
fitt et al. Similarly, several critiques have been directed at the
ADEX subtype of Bailey et al., which shows discordance
in the subtype assignment and suggests a contamination of
acinar cells (16,18).

The existence of the immunogenic subtype of Bailey et al.
has also been subject to doubts. Maurer et al. (21) noticed
that samples classified as immunogenic showed an enrich-
ment in the stromal compartment, which might explain that
immunogenic subtype originates from the tumor microen-
vironment. Sivakumar et al. (22) determined the functional
pathways involved in each of the Bailey et al. subtypes and
found a link between the immunogenic subtype and the cell
cycle signaling pathway. Their samples appear to be low im-
munogenic. However, to verify that its discovery was not
a direct consequence of dense immunological samples, its
composition requires additional examination.

Puleo et al. estimated the cell population proportion of
a cohort of resected primary tumors and found genes of
acinar cells from healthy pancreas highly expressed in the
ADEX subtype proposed by Bailey et al., supporting the
hypothesis that normal tissue contamination leads to a bias
in these samples. This is further confirmed by assessing the
survival curves of the four Bailey et al. subtypes, where
ADEX does not show prognostic relevance.

Several studies reported subtypes driven by specific char-
acteristics including tumor infiltration, stromal contribu-
tion and association with prognosis. Nevertheless, a coor-
dination between such studies is missing. Only few of the
proposed molecular subtypes can be matched, like the clas-
sical types from Moffitt et al., Collisson et al. and Puleo
et al. with the Pancreatic Progenitor from Bailey et al.. Be-
yond the disagreement in the number of subtypes and their
nomenclature, the signature genes used to define the sub-
types show poor overlap (Supplementary Figure S1).

In a binary classification we imply that two classes have
opposing characteristics, e.g. samples enriched with basal
or classical genes. However, several samples express signa-
ture genes belonging to both subtypes, showing hybrid fea-
tures and hence making the classification difficult (18,23–
25). Topham et al. (24) employed two logistic regression
based tools designed for clinical application, one published
by Moffitt et al. and one that was successively revised by
Rashid et al. (19) (PurIST). A discrepancy was found for
twelve percent of the samples that did not fit with the ex-
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Table 1. Overview on the PDAC molecular subtypes

Bailey Pancreatic progenitor Squamous ADEX Immunogenic
Transcription factors PDX1, MNX1,
HNFGS, FOXAS, HES1 related to early
pancreatic development and associated
with fatty acid oxidation, steroid hor-
mone biosynthesis, drug metabolism and
glycosylation of mucins

Overexpression of genes implicated in inflammation, hypoxia,
metabolism, activated MYC pathway, TGF-� signaling, autophagy,
cell proliferation. Activated �6�1, �6�4 and EGF signaling. Sam-
ples hypermethylated with consequent downregulation of endoder-
mal cell fate genes causing loss of endodermal identity. TP53 muta-
tion combined with upregulated TP63 expression linked to tumori-
genesis and metastasis development

Transcriptional
networks linked to
later stages of
pancreatic
development and
differentiation.
Upregulated
transcription
factors (NR5A2,
MIST1 and
RBPJL) involved
in acinar cell
differentiation
and regeneration
after pancreatitis.
Activated genes
linked to endo
crine
differentiation
and MODY
diabetes, Exocrine
secretion and
regulation of beta
cell development.

B and T cells
infiltration.
Expressed genes
involved in
antigen
presentation and
in B cell, CD4+ T
cell, CD8+ T cell
and Toll-like
receptor signaling
pathways. CTLA4
and PD1
upregulated and
linked to immune
suppression

Survival: 23.7 months Survival: 13.3 months Survival: 25.6
months

Survival: 30
months

Collisson classical Quasi-mesenchymal Exocrine-like -
High epithelial and cell adhesion-associated
(GATA6) gene expression. KRAS mutation
dependent.

Upregulation of mesenchyme associated genes Upregulated
Tumor digestive
exocrine enzyme
genes.

Survival: 23 months Survival: 6.6 months Survival: 19.7
months

Moffitt Classical Basal - -
Overexpressed adhesion-associated, riboso-
mal and epithelial genes (GATA6)

Overexpressed mesenchymal genes, also known to be upregulated
in the basal subtype of breast and bladder cancer

Survival: 19 months Survival: 11 months
Puleo Pure classical Immune classical Pure basal-like Desmoplastic Stroma Activated - -

Low cellular infil-
tration. Enrichment
of Gly12Arg KRAS
mutation. Expres-
sion of hENT1. Low
proteasome/apoptotic
signal

Enrichment of
Gly12Arg KRAS
mutation.
Expression of
hENT1. High
infiltration of
immune cells
(natural killer, B
and T cells). Low
proteasome/apoptotic
signal.

Prevalence of
CDKN2A or TP53
mutations

High expression
of structural and
vascularized
stromal
components
Low tumor
cellularity. High
infiltration of
immune cells,
inflammatory
components,
fibroblast and
endothelial cells.

High levels of
stromal
components
(�-SMA, SPARC,
FAP) and
myofibroblast-like
cancer-associated
fibroblast

Survival: 43.1
months

Survival: 37.4
months

Survival: 10.3
months

Survival: 24.3
months

Survival: 20.2
months

clusive basal and classical subtype. The authors investi-
gated the characteristics of such discordant samples, reveal-
ing intermediate patterns between the two classes and dif-
ferences in survival. Discordant samples clustered together
and showed a median expression level in between the two
concordant classes. Inconsistencies in binary classification
were also reported by Chan-Seng-Yue et al. (25), who found
a cluster of tumors which inconsistently falls into either
the two Moffitt et al. subtypes or the multi-classes schemas
proposed by Collisson et al., Bailey et al. and Puleo et al..
Single-cell RNA-Seq was executed to better interpret the tu-
mor composition and revealed clusters of basal and classi-
cal cells proliferating in the same tumor, specifically in 13

out of 15 samples. Thanks to a single-cell level investiga-
tion, hybrid tumors at a bulk transcriptomic resolution can
then be justified with the presence of cell populations that
are usually attributed to a dichotomous classification. Such
co-existence further suggests the interpretation of PDAC
subtypes as a transcriptional continuum where hybrid sub-
types can be attributed to the genomic succession from a
classical-type to a basal-like type of tumor. Therefore, the
heterogeneity can be linked to the tumor stage and the pro-
gression process (26,27).

The varying intratumor cell subpopulations exposed with
single-cell transcriptomics, emphasize the idea of consider-
ing cancer subtyping as a spectrum of multiple molecular
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Figure 1. After collecting the PDAC signatures and the nine test datasets, we perform (A) clustering and (B) classification analysis. Based on the latter, we
follow up with compositional analysis of the predicted subtypes via (C.1) in silico cell type deconvolution, (C.2) functional enrichment analysis and (C.3)
survival analysis. (D) Finally, we also perform robustness analysis to learn if random signatures have comparable predictive power.

patterns and not as mutually exclusive molecular classes.
The concept of a continuum signature was addressed by
Nicolle et al. (28) who proposed a RNA-seq based pan-
creatic adenocarcinoma molecular gradient (PAMG). The
gradient assigns a score to the tumors, and is able to grade
them along a spectrum which is predictive of clinical out-
come. The authors used patient-derived xenografts (PDX)
samples, which were first assigned histologically to five sub-
types, successively sequenced and subject to independent
component analysis. The component most correlated with
the histological classes constitutes the PAMG. Nicolle et al.
further inspected the expression levels of classical and basal-
like tumor types previously published and revealed a grad-
ual shift between one subtype and the other, confirming
their initial hypothesis of different molecular shades of
PDAC not generalizable to a binary non-overlapping dis-
crimination. PAMG was further compared to the binary
classification performed by PurIST, showing a better per-
formance in capturing heterogeneity and complexity of the
samples.

Problem statement

A key observation is that the molecular subtypes deduced
by the previous studies are based on independent cohorts of
patients with very diverse sample characteristics: Collisson
et al. partially used laser microdissected samples, contrary
to Moffitt et al. who microdissected the tumor from the
stroma compartment virtually (in silico). Bailey et al. con-
sidered only samples with high epithelial content (>40%)
whose histological subtype is not only ductal, while Collis-
son et al. and Moffitt et al. focused their attention on the
ductal subtype alone. Puleo et al. used the full cohort with-
out filtering samples for tumor cellularity extent or stromal
compartment contribution. Data with different properties
might induce inconsistent results in a comparison. Specifi-
cally, the different subtypes may simply reflect differences
in the composition of the samples and hence the gener-
alization and meaning of related biomarkers on different
datasets remains unclear.

Most of the existing validation studies assess the prognos-
tic power of the signatures by survival analysis on the pa-
tient clusters (17–19). Several studies investigated the com-
position of the public subtypes by observing the tumor
compartment and the cellular environment of the samples
(21,23,29,30). Nevertheless, a systematic study assessing the
robustness of the signatures across different datasets is lack-
ing. Here, we seek to answer the question if it is possible to
replicate the same subgroups in a cohort that is not the one
used for signature discovery. Moreover, it has been shown
previously in breast cancer that random gene signatures of-
ten show performance comparable to published signatures
(31). Hence, we also compare the performance of published
signatures to randomly generated signatures of the same
size (with respect to number of marker genes). In addition
to survival analysis, which has been investigated before, we
also link PDAC signatures to differences in cell type compo-
sition and compare them with respect to functional enrich-
ment. With the latter, we reveal the mechanisms and pro-
cesses of genes that represent the samples best, as shown
by Xie et al. who investigated the immune functionalities
linked to different risk groups of PDAC patients (32). Func-
tional enrichment sheds light on the sample characteristics
that the PDAC signatures represent. We demonstrate that
they are only indirectly, if it all, linked to cancer subtypes.
Workflow steps of the current study are illustrated in Fig-
ure 1.

MATERIALS AND METHODS

Distribution analysis

Gene expression distributions of the subtypes for each gene
in the signatures are compared with a two-sided Wilcoxon
rank sum test and Kruskal–Wallis test (Bonferroni cor-
rected P-values < 0.05) when comparing two or more
groups, respectively. A Wilcoxon test was further imple-
mented pairwise, taking each gene at a time and compar-
ing Puleo et al. subtypes, each one against the other four.
P-values were corrected for multiple testing (Bonferroni, <
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0.05). All tests were implemented in Python using the SciPy
1.6.0 library.

Clustering

Agglomerative hierarchical clustering was implemented
with the SciPy 1.6.0 Python library with correlation as met-
ric. The analysis was applied to each dataset to identify
signatures-related clusters, after filtering the gene expres-
sion matrix for signature genes. All data were z-score trans-
formed before clustering. The number of examined clusters
were two, three, four or five depending on the expected num-
ber of subtypes according to Moffitt et al., Collisson et al.,
Bailey et al. or Puleo et al., respectively. We investigated the
cluster differences using on each gene in the signature a two-
sided Wilcoxon rank sum test for two and Kruskal–Wallis
test for three, four or five clusters and taking the Bonferroni
adjusted P-value (<0.05) distribution.

More details about the signatures overlapping with each
datasets can be found in Supplementary Table S1.

Overlap percentage between clusters and real labels is
computed using the Rand index (RI) and adjusted Rand in-
dex (ARI).

Classification

Datasets used for classification were batch-corrected in or-
der to avoid confounding between different sample prepa-
ration and origin. Correction was performed with the
RemoveBatchEffect function included in limma 3.48.1 R
package. Supplementary Figure S2 shows a principal com-
ponent analysis of the nine datasets before and after cor-
rection. Only genes in common across all the dataset were
considered for supervised analysis (more details in Sup-
plementary Table S2). This filtering step might leave out
genes belonging to the signatures that are not present in
all the nine datasets. Furthermore, relevant genes which
are highly expressed in the subtypes might be filtered out.
On the other hand, considering only shared genes in-
creases reliability and confidence of the results obtained
from analyzing different datasets, along with allowing a fair
comparison.

Data were z-score transformed before classification.
Classification was performed with the Random Forest

Classifier in the Python package Scikit-learn 0.24.2, keeping
the default values as parameters. Sixteen prediction mod-
els were built employing the four molecular signatures on
the four datasets used for their discovery. Considering one
dataset at a time, we filter the genes of each signature to
employ them as predictive features. Samples in the current
training dataset have available subtype labels which are used
as target variables for the model. Each model is applied to
a set of nine test datasets where samples are classified ac-
cording to the target variable. The sixteen models are built
with the aim of classifying different datasets into the four
subtype schemes by using the four signatures. A graphic il-
lustration of the model construction is shown in Figure 2.
Average accuracy from 5-fold cross validation is used as an
evaluation metric.

Robustness analysis

Robustness of the signatures was assessed comparing their
performance to random gene sets of the same size. Com-
parison is carried out using both clustering and classifi-
cation. In classification, we run the models with four set-
tings. First using as features the real signatures, then the
random signatures and, lastly, shuffling the subtype labels
while keeping the real signatures. Each setup was repeated
1000 times. Each average of the 5-fold cross-validation accu-
racy was stored and used for evaluation. We selected the sig-
natures from every dataset and used them to generate clus-
ters. Random signatures were used for the same purpose.
The similarity between clusters obtained using the real sig-
natures and random signatures are compared by computing
the ARI. A pairwise ARI was used to compare clusters ob-
tained from the random signatures. The analyses were per-
formed in Python with Scikit-learn 0.24.2.

Strictly standardized mean difference (SSMD) (33) was
used to assess the difference between ARI of the real
signatures versus random signatures-derived clusters and
the pairwise ARI computed on random signatures-derived
clusters. SSMD was computed considering the two groups
as independent and with unequal variance, with the follow-
ing formula: β = μ1−μ2√

σ 2
1 +σ 2

2

, where μ and σ 2 stand for mean

and standard deviation computed for group 1 and 2, respec-
tively.

Cell deconvolution and ssGSEA

We estimated the cellular microenvironment by deconvo-
luting bulk RNAseq data with the CIBERSORTx (34)
method. Human pancreas single-cell transcriptome was ob-
tained from Tosti et al. (35) and used to obtain a cell-type
specific signature matrix for the deconvolution tool.

Single sample gene set enrichment analysis (ssGSEA) was
performed in Python using the package GSEApy 0.10.5
(36–38). The repositories considered are KEGG (39), Reac-
tome (40) and Gene Ontology terms (biological processes,
molecular functions, cellular components) (41). ssGSEA
can be understood as a gene-set level aggregated score that
reflects a pathway or gene set’s activity where genes in the
set are up- or down-regulated in a coordinated, i.e. non-
random fashion. Enrichment scores thus allow comparing
pathway activity across samples and we use ANOVA and
two-sided t-test to identify associated terms that reflect the
phenotypic differences across the predicted subtypes from
a functional pathways perspective (Bonferroni corrected P-
values < 0.05). To find the terms significantly associated
with each subtype, we look at the mean enrichment score
of each term in each sample belonging to the same subtype.
A term is considered associated with a subtype if it regis-
ters the highest mean enrichment score. We provide a sum-
mary in Figure 8 and Supplementary Figure S8 that show,
for each enrichment library, the terms found significantly
associated with the cohorts and with the different classes
predicted by the sixteen classification models. Each figure
shows the top 30 terms associated with the highest number
of cohorts. For each subtype, we define a term upregulated
or downregulated in that subtype by looking at the sign of
the corresponding enrichment score.
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Figure 2. Illustration of the prediction models framework. (A) Models are trained using the four available signatures as a set of predictive features and
changing, in turn, the training dataset, considering the one used by Moffitt et al., Collisson et al., Bailey et al. and Puleo et al. This results in sixteen models
that are applied to nine test datasets. (B) Each model predicts the subtype labels linked to the training dataset: if we consider, for instance, a model trained
on Moffitt et al. dataset, each test dataset will have four sets of predicted Moffitt et al. subtypes, obtained using the four signatures.

Survival analysis

Survival analysis was conducted with the Python package
Lifelines 0.25.9 for datasets where survival information was
available. Survival difference was assessed by computing
pairwise log-rank tests between groups.

PAMG evaluation

The PAMG scores were obtained via correspondence with
the authors of the original publication (28). Four types
of PAMG scores were derived from four different datasets
(Patient-derived xenograft, Puleo et al. dataset, ICGC-
RNAseq and ICGC-Array dataset) and we chose the score
corresponding to the dataset, where possible, or ICGC-
RNAseq and ICGC-Array for RNAseq and Array plat-
form, respectively, in case the dataset was not in the PAMG
options. Cox regression was performed in Python using the
package Lifelines 0.25.9 and keeping the default parame-
ters.

Software and tools

Analyses were performed in Python 3.7.3 and R 4.1.0.
Scripts to reproduce analyses and figures are available

on GitHub at https://github.com/biomedbigdata/PDAC-
molecular-classifier-validation.

Limitations of the study

We believe that differences in the platform used and normal-
ization technique adopted by the different datasets might

influence the signatures evaluation. Other variables like co-
hort size might influence the evaluation as well, since large
cohorts are more suitable for such kinds of analysis. How-
ever, in order to limit the aforementioned potential con-
founding factors, we worked on z-scored values for the
clustering-based evaluation and adjusted the datasets by
taking different sources as a batch effect, after combining
the data for classification analysis. In addition, to further
control data composition differences, we decided to work
only on human primary samples of ductal histological sub-
type.

RESULTS

Distribution analysis

We collected RNAseq and array expression profiles from
nine datasets publicly available, including the data used by
Moffitt et al., Collisson et al., Bailey et al. and Puleo et al. as
discovery cohorts. For subtypes to be reliably discriminated,
signature gene expression values should vary between tu-
mor subgroups. As we hypothesize that signatures are rich
in those genes whose expression across subtypes is signifi-
cantly different, we tested for each individual gene its asso-
ciation with the subtypes (Wilcoxon rank sum test for two
subtypes, Kruskal–Wallis test otherwise) (Figure 3). Inter-
estingly, the five Puleo et al. subtypes are most clearly differ-
entiated, regardless of the gene set considered for the test.
Since the Kruskal–Wallis test assesses only if there is a dif-
ferent group, but does not identify it, we go further in de-
tail to see which subtype is different from the others. We
performed a pairwise comparison of each Puleo et al. sub-

https://github.com/biomedbigdata/PDAC-molecular-classifier-validation
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Figure 3. For each signature we assessed its variability across subtypes. Considering one gene at a time, we computed Wilcoxon rank sum test for two-
class comparison and Kruskal–Wallis for more than two classes. The P-values returned by each test were adjusted with Bonferroni correction and were
log-transformed. The horizontal dashed line indicates the threshold of significance (P-value = 0.05). The x-axis indicates the different signatures while the
color indicates different subtypes.

type against the other four, finding the pure classical as the
most distinguished, in some cases together with desmoplas-
tic (Supplementary Figure S3). The subtypes from Collis-
son et al. have the most similar expression distribution irre-
spective of the signature used.

We further examined the consistency of the signatures
across independent datasets in unsupervised and supervised
analysis, followed by a comparison against random gene
signatures and a functional evaluation of the subtypes.

Clustering

Each of the nine datasets was subject to hierarchical clus-
tering using only signature genes. We would expect that the
resulting clusters reflect subtypes across different datasets.
However, we observed that signature-based clusters accu-
rately reflect subtypes only in their discovery dataset (Sup-
plementary Figure S4A).

Although we found an overlap between some of the clus-
ters and existing labels, we decided to quantify and assess
the difference in expression between clusters. To do so, we
used a Wilcoxon rank sum test for two and Kruskal–Wallis
test for three, four and five clusters, and showed the adjusted
P-value distribution (Figure 4 and Supplementary Figure
S4, below every heatmap).

With the exception of the Collisson et al. and Bailey
et al. signatures which cluster well on the data the authors
used (Supplementary Figure S4A2 and A3), the expres-
sion profiles of the signature genes generally do not seem
to discriminate well between clusters, as indicated by the
–log10(adjusted P-value) distribution. The same outcome
was found in Figure 4B1 with good RI but high similarity
in expression levels between clusters. Nevertheless, we found
cases of good overlap as well as good P-value distribution,
as shown in Figure 4C2 and D3.

Clustering of other datasets is available in Supplementary
Figure S4.

To further investigate the binary and multiclass subtypes,
we compare the clusters with PAMG, the PDAC molecu-

lar gradient (28). While PAMG was established as a prog-
nostic estimator, a poor and good prognosis can be linked
to the aggressiveness of a subtype, like in the case of basal
and classical which are the tumor types with worst and best
prognosis, respectively (Table 1). We can see a good distinc-
tion especially in Figure 4A–C and Supplementary Figure
S4, where PAMG, represented as a continuum, shows low
values associated to basal-like (basal, quasi-mesenchymal
and squamous) and higher values for classical-like subtypes
(classical and classical PDA but not pancreatic progenitor
in Figure 4C since signatures failed in clustering it). Good
prediction was also found in Figure 4D if we reduce Puleo
et al. subtypes to the two main categories of basal-like and
classical-like subtypes (Table 1).

Classification

A limitation when comparing subtypes across different
studies is that the corresponding subtype labels are only
available for the discovery cohort but not for the others. To
enable further analysis and to assess the predictive poten-
tial of each signature, we build classification models that
allow us to predict subtype labels for any of the four sub-
type schemes. Specifically, we use the Moffitt et al., Collis-
son et al., Bailey et al. and Puleo et al. datasets for training
a random forest subtype classifier. For each of the differ-
ent signatures, we build four models using the four datasets
and their existing subtype labels, respectively, as illustrated
in Figure 2. We use the sixteen models to classify each of the
test datasets. When comparing predicted and original labels
(for those datasets where PDAC molecular subtype labels
were available), we observe that the real labels are mixed
among the predicted labels (Supplementary Figure S5). The
authors of the four studies declared a consensus across the
subtyping strategies, where subtypes are supposed to over-
lap given their equivalent features, as also shown in Table 1.
With this assumption, a sample classified as basal according
to Moffitt et al., should be predicted as Quasi-Mesenchymal
when using a prediction model based on Collisson et al. sub-
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Figure 4. Hierarchical clustering of Moffitt et al. (A), Collisson et al. (B), Bailey et al. (C) and Puleo et al. (D) dataset, performed using Moffitt et al. (1),
Collisson et al. (2), Bailey et al. (3) and Puleo et al. (4) signatures. Overlap between predicted clusters and real subtypes is observed on the left side of
each heatmap, where samples are sorted by clusters. Overlap in percentage is expressed with RI and ARI. For each gene, association between signature
expression profile and clusters is displayed with -log10(adjusted P-values) distribution below every heatmap, where P-values were obtained with Wilcoxon
rank sum test for two and Kruskal–Wallis test for three, four and five clusters. Significance threshold of P-value = 0.05 is indicated with a vertical dashed
line. PAMG values are visualized as additional color bar on the y axis of the heatmaps.



10 NAR Cancer, 2022, Vol. 4, No. 4

types, squamous when considering Bailey et al., and pure
basal, desmoplastic and stroma activated when consider-
ing Puleo et al. However, these subtypes were predicted to
be both classical and basal, as shown in Figure S5a. Other
examples can be found in Figure S5c, where the classical
subtype is expected to be predicted only as pancreatic pro-
genitor while what we see is samples being predicted incon-
sistently across multiple subtypes. This suggests that pre-
dictions are either not robust or that the different subtype
schemes do not agree very well, as also suggested by the
clustering analysis. As additional note, the Puleo et al. im-
mune classical subtype was not predicted in Collisson et al.
and Badea et al. data, independent of the signature that was
used.

To test if predictions are robust, we calculated the mean
accuracy in a 1000 times repeated 5-fold cross-validation
where, in addition to the Moffitt et al., Collisson et al. Bailey
et al. and Puleo et al. datasets, we also included the Badea
et al. dataset, which comes with already assigned Collisson
et al. tumor subtype labels. As shown in Figure 5, the Mof-
fitt et al. signature showed the most dramatic differences in
prediction accuracy. All the four signatures gave the best
performance on the Moffitt et al. dataset for the prediction
of their subtypes (basal and classical). Such high accuracy
is likely owing to the simpler binary classification task. The
Bailey et al. signature, with the largest number of genes, per-
forms best across all datasets. The worst accuracy was regis-
tered with Moffitt et al. and Puleo et al. signatures when pre-
dicting Bailey et al. subtypes, the only two signatures which
do not account for the exocrine signal.

Robustness analysis

Several studies have shown that random gene signatures can
outperform literature-reported signatures in outcome pre-
diction (31,42), underlining that signature genes do not nec-
essarily capture tumor biology. We hypothesize that random
gene signatures may also be able to outperform published
PDAC signatures in subtype prediction. To investigate this
hypothesis, we took the models trained on the Moffitt et al.,
Collisson et al., Bailey et al. and Puleo et al. datasets and,
for each dataset, compared the performance of a baseline
model using signature genes against 1000 random gene sets
of the same size as the corresponding signature. We addi-
tionally repeated model training after shuffling the subtype
labels 1000 times. To assess if any of the models suffers from
overfitting we computed 5-fold cross validation.

As shown in Figure 6, some of the random signatures
reach an accuracy similar to the literature-reported sig-
natures, in some instances even outperforming them. The
models based on the Moffitt et al. and Puleo et al. signa-
tures to predict the subtypes from Bailey et al. yield a me-
dian accuracy equivalent to the one obtained using a sig-
nature of random genes. Moreover, the maximum accuracy
registered in the 1000 runs is, for the signatures, significantly
lower than the random ones (Table 2, (*) and (**)). Even
though the median accuracy from real and random signa-
ture genes was comparable in only two cases, we found other
two cases where the highest accuracy of random signatures
observed among the 1000 runs was higher or as good as the
actual signature.

We observed this specifically with the Collisson et al. sub-
types using the Moffitt et al. signature (Table 2, (***)) and
with the Bailey et al. subtypes using the Collisson et al. sig-
nature where the highest accuracy for using a real signa-
ture was the same as using a random one (Table 2, (****)).
Nevertheless, the prediction of subtypes other than Moffitt
et al. show relatively poor classification performance. Be-
side some exceptions found with Collisson et al. signatures,
models trained after label shuffling show an overall perfor-
mance worse than models trained on real signatures, which
is encouraging.

After assessing the robustness of the classification mod-
els, we focus on evaluating the clustering ability of the sig-
natures when compared to clusters obtained from a set of
random genes. To do so, we use the ARI to measure cluster
similarity. We expect a low ARI when comparing clusters
from random signature and real clusters, ideally much lower
than the ARI we obtain when comparing pairwise random
against random gene set clusters. Supplementary Figure S6
shows that across all nine cohorts most signatures achieve a
very low ARI close to zero when compared against random
gene set clusters. To summarize these findings, we computed
the SSMD, which is a robust measure to quantify the differ-
ence of the means for the two distributions of ARIs values
while accounting for the considerable variance (Figure 7).
We notice differences for individual datasets which suggest
that the dominant signal is not always related to the sub-
types that the signatures aim to recapitulate. Puleo et al. sig-
natures registered higher SSMD values with respect to the
other three signatures, meaning that their gene panel gener-
ates clusters more different than the ones obtained by em-
ploying a random list of genes, compared to the other three
signatures.

Cell deconvolution and ssGSEA

With the trained classifiers (see Classification section), we
were able to predict subtype labels, allowing us to investigate
the functional characteristics of various subtype definitions
across a broad set of datasets. We hypothesize that cellular
composition of the samples has a major influence on the
bulk transcriptome and that subtype definitions could re-
flect this heterogeneity rather than properties of the PDAC
cells. To investigate if subtype definitions are confounded
by stromal or immune cells, we used CIBERSORTx (43)
to perform in silico cell type deconvolution. Specifically, we
used a pancreas single-cell RNA-seq dataset to obtain cell-
type-specific signatures allowing us to estimate stromal and
immune cell enrichment scores (Supplementary Figure S7).
As expected, Collisson et al. and Bailey et al., which use
rich tumor samples, are the datasets showing highest enrich-
ment in ductal cells. Notably, we found a high abundance
of pancreatic acinar cells in the Bailey et al. subtype ADEX
and Exocrine-like from Collisson et al., which can be con-
sidered as an effect of the presence of non-neoplastic tis-
sue in the bulk samples. Classical subtypes, classical PDA
from Collisson et al., Pancreatic Progenitor from Bailey
et al. and the pure classical from Puleo et al. where found,
in some datasets, associated with ductal cells. The desmo-
plastic subtype was found enriched with macrophage cells,
confirming the description from Puleo et al. and point-
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Figure 5. Distribution of the mean accuracy obtained by 1000 repeated 5-fold cross validation of classification. Use of signature (from left to right) from
Moffitt et al., Collisson et al. and Bailey et al. and Puleo et al. on the five datasets used for model training. Models built on Moffitt et al. as well as Puleo
et al. mixed tissue dataset show better performance when compared with models built on exclusive tumor data.

Figure 6. Evaluation of the classification ability of Moffitt et al., Collisson et al., Bailey et al. and Puleo et al. signatures used as features for classifying, in
turn, their datasets. The same task was repeated using random signatures and shuffled labels of the target variable. Models are executed 1000 times with
mean accuracy from 5-fold cross validation as evaluation metric.

ing towards immune infiltration. However, samples classi-
fied as desmoplastic were also found enriched with acinar
cells. A macrophage infiltration was detected also in sam-
ples predicted as immunogenic with the use of Bailey et al.
signatures, particularly observed in the datasets of Badea
et al., Yang et al. and ICGC-Array (Supplementary Figure
S7). Overall, subtype schemes show comparable results, not
dependent on the signatures but rather dependent on the
dataset.

Next, we performed single-sample Gene Set Enrichment
Analysis (ssGSEA) to investigate which functional terms
are associated with the different subtypes. For each of
the sixteen classification models, we computed sample-
wise enrichment scores across functional categories and
tested them for significant association with the predicted
subtype labels. Pathways we found significantly associ-
ated were mostly linked to metabolic activity, in partic-
ular fatty acid and lipid metabolism (Figure 8). Drug
metabolism pathways like cytochrome P450 were asso-

ciated with the Exocrine-like subtype, which is associ-
ated with drug resistance as also observed by Noll et al.
(44). Other ssGSEA summary tables in Supplementary
Figure S8.

Survival analysis

In addition to insights into tumor biology, subtype defi-
nitions are used for determining clinically relevant differ-
ences in prognosis. We carried out a survival analysis com-
paring the overall survival of predicted subtypes across
those datasets for which survival data was available. Fig-
ure 9 shows significant survival differences for the two
subtypes proposed by Moffitt et al. (a), validating their
original findings. For the Collisson et al. (b) and Bailey
et al. (c) signatures, the pairwise P-values were only signifi-
cant in few cases. Specifically, we observe highest –log10(P-
value) when comparing survival curves of basal and clas-
sical subtypes: quasy-mesenchymal versus classical (Fig-
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Table 2. Highest accuracy registered by each model in 1000 runs. Models trained on (a) real signature genes, (b) random genes set of the same size as the
signature, (c) real signatures but shuffled labels. Highest value among (a), (b) and (c) marked in bold. With (*), (**), (***) and (****) we point out the cases
where the highest accuracy registered in the 1000 runs for using a random signature was higher or equal to the accuracy for using a real signature

Figure 7. Strictly standardized mean difference (SSMD) comparing two
distributions: ARI values of the overlap of clusters obtained with random
signature with real signature-derived clusters are compared to ARI val-
ues obtained from pairwise comparison between only random signatures-
derived clusters. Large values in the heatmap indicate that signature-
derived clusters differ considerably from clusters of random signatures for
a given dataset, i.e. the larger the value the better. The values shown are
absolute values.

ure 9b) and pure basal-like versus pure classical (Figure
9 d.1 and d.2), beside the already binary classification from
Moffitt et al.

DISCUSSION AND CONCLUSION

In this study we evaluated the four major published molec-
ular signatures for PDAC stratification. Despite the vari-
ous sizes of subtype schemes proposed, direct comparisons
are hampered by the differences of phenotypes. Yet, some
overlap due to subtypes commonality should be expected
(45).

Our findings indicate that these signatures appear incon-
sistent when applied to independent datasets, underlining
their irreproducibility and further showing how the number
and characteristics of PDAC subgroups still remain vague.
Our results further suggest that current subtype definitions
are mostly driven by tissue composition. In particular, the
expression levels of the Bailey et al. signature frequently
show low association with the four predicted clusters, sug-
gesting that a three subtype schema is more plausible, sup-
ported by the hypothesis that the ADEX subtype is an arti-
fact induced by the discovery data used and that can be at-
tributed to contamination from healthy tissue (16,18,21,22).
Bulk samples deconvoluted at a single-cell resolution re-
vealed how samples enriched of pancreatic acinar cells were
classified as ADEX as well as Exocrine-like, supporting the
critique raised by other studies about the authenticity of the
two mentioned subtypes (18,20). Our results present strong
evidence that the expression profiles of these two PDAC
subtypes along with their signatures are biased by the pres-
ence of adjacent normal pancreatic tissue, and suggest that
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Figure 8. ssGSEA based on KEGG pathways. The table contains the number of times a term (on the rows) was found significantly associated with the
subtypes comparison for each cohort (on the columns) using the subtypes predicted. Each term can be found associated up to 16 times considering the
predictions executed using the 16 classification models. On the left, the vertical color bars show whether a pathway is up-/down-regulated and in which
subtype. We found decreased metabolic activity in the basal subtype with respect to the classical, as shown by the left colorbar indicating down-regulation
of metabolic pathways in the basal subtype.

samples with low tumor content were mistaken for an own
subtype.

The signatures appeared to perform better than random
genes, albeit the average classification accuracies are not too
far apart, where even random genes achieve good accuracy.
Bailey et al. signatures performed best in terms of accuracy
when compared with the other two signatures along with
random signatures or shuffled labels. In subtype classifica-
tion, Moffitt et al. and Collisson et al. signatures (50 and
62 genes, respectively) show less predictive power than Bai-
ley et al. and the Puleo et al. signatures (613 and 403 genes,
respectively). The number of features used for a supervised
analysis strongly influences the class prediction. Indeed, we
observed a difference in accuracy between the smaller sig-
natures, Moffitt et al. and Collisson et al., and the larger
ones, Bailey et al. and Puleo et al. with a plausible link to
the amount of features employed for building the predictive
model.

The signatures do not seem to determine prognostically
relevant subtypes, as discovered through survival analy-
sis. We found the comparison of all the basal-like against
classical-like subtypes as the one linked to the most sig-
nificantly different outcome, whichever is the signature im-
plemented for classification. Therefore, we hope that future
studies will consider the correction or removal of possible
confounding factors, such as sample preparation, sampling
bias and/or composition.

We detect the presence of an immune cell subpopula-
tion, specifically macrophages, expressed in the immuno-
genic subtype from Bailey et al. and the desmoplastic from
Puleo et al.. However, we also observed high expression
of acinar cells in a portion of desmoplastic samples. Fur-
ther focus should be dedicated to the understanding of
the immune cell compartment. PDAC seems to generate a
strong immune response since the initial state of the dis-
ease and it has been proved the impact of tumor-associated
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Figure 9. –log10(P-value) from a log-rank test computed comparing overall survival of the predicted subtypes for each dataset whose survival information
was available (datasets on the rows). The four subtyping schema (A), (B) and (C) and (D) predicted using, in turn, Moffitt et al., Collisson et al. Bailey
et al. and Puleo et al. signatures. (A) Log-rank test computed between basal and classical subtypes from Moffitt et al.; (B) pairwise log-rank test between
the three Collisson et al. subtypes; (C) pairwise log-rank test between the four Bailey et al. subtypes; (D) pairwise log-rank test between the five Puleo et al.
subtypes.
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macrophages, regulatory T-cells and myeloid-derived sup-
pressor cells on patient prognosis, denoting shorter sur-
vival given their prevalence in invasive cancer stages (46–
48). In addition, studies focused on the examination of
infiltrating immune-suppressive cells revealed distinct im-
mune cells compartment in distinct tumor groups, sug-
gesting the use of immune response as a strategy for the
PDAC stratification (47,49). Additional assessment can
confirm the potential existence of an immunogenic sub-
type and bring to light the prognostic role of immune
mechanisms.

While the work of Moffitt et al., Collisson et al., Bailey
et al. and Puleo et al. have advanced our understanding of
molecular differences within cohorts of PDAC patients, we
have to conclude that the proposed signatures are not well
suited as a basis for clinical decisions without first account-
ing for differences in sample preparation and composition.
However, the subtyping schema of Puleo et al. seems to be
the one capturing most of the molecular heterogeneity, pro-
viding a broader spectrum for the understanding of PDAC
differences. Indeed, the five subtypes they propose can be
seen as subclasses of the two main classes basal and classi-
cal, the ones with the most robust differences in both com-
position and prognosis.

With our findings we highlight and confirm the exis-
tence of basal and classical, as more consistent and ro-
bust than a multi-class schema, as well as more prognos-
tically relevant. Thus, a two tumor-specific classification
seems more reliable and suitable for clinical application.
Rashid et al. (19), with their PurIST classifier show robust-
ness of the basal/classical discrimination in prognosis and
therapy response, while the inclusion of additional known
subtypes did not bring any relevant insight. PurIST was
further used as a predictor for response to FOLFIRINOX
and Gemcitabine, showing promising results. Despite the
encouraging results in chemotherapy response estimation,
PurIST lacks evaluation in clinical trials. Moreover, numer-
ous studies faced challenges even from a binary classifica-
tion (24,25,50).

From a broader point of view, the complexity of PDAC
tumor microenvironment suggests the coexistence of fea-
tures across the subtypes, stressing the focus on a contin-
uous approach as the most suitable. The comparison be-
tween distinct classes from the four studies and the gradi-
ent stratification provided with PAMG gave promising re-
sults. Our findings confirm the ability of PAMG in repre-
senting samples classified as pure basal or pure classical-
like, as well as intermediate non-dichotomous samples. On
the other hand, the use of PAMG as a survival predictor
showed poor performance when used on independent co-
horts (Supplementary Table S5) suggesting that further in-
vestigation may be needed to make PAMG a robust prog-
nostic marker across data sets. Thus, the use of transcrip-
tome data for PDAC stratification still remains an open
challenge.

The combination of multi-omics data (metabolomics,
RNAseq, micro-RNAseq, whole-exome sequencing, SNP
chip) for characterizing PDAC phenotypes was already dis-
cussed by Nicolle et al. (51), who found not only tran-
scriptional changes but also alteration in methylation pat-
terns and stromal compartment as important contributors

to a binary classification into basal and classical. On the
other hand, the genomic landscape including copy number
aberrations was not found linked to phenotype or clinical
outcome, stressing the focus on transcriptome, epigenome
and stroma. Nicolle and colleagues observed in the tumor
compartment of the basal samples a high expression of
genes involved in glycolysis and cell cycle pathways. High
deregulation of the Wnt signaling pathway was retrieved
by mRNA genes and differentially methylated genes over-
expressed in the basal subtype. The classical subtype was
instead linked to normal pancreatic gastrointestinal cells
pathways. The authors focused on the fundamental aspect
to account for when investigating phenotypic differences,
which combines epigenetic marks with gene expression.
More recently, Cao et al. (52) carried out a study on the
proteogenomic landscape (genomic, epigenomic, transcrip-
tomic and proteomic) based on PDAC and normal samples.
They address a detailed multi-omic analysis based on eight
data types, aiming for the identification of biomarkers for
early detection of PDAC in patients. Beside a multi-omic ap-
proach, we highlight the importance of an integrated anal-
ysis that implements them from a cross-platform point of
view.

Several studies have shown that data at a single-cell res-
olution provides a more solid support for an unbiased
definition of subtypes and investigation of the tumor mi-
croenvironment (25–27,53,54). Single-cell data thus con-
stitutes a powerful tool to elucidate tumor progression
such as the proliferation of immune cells and pancre-
atic stellate cells (54). Some studies have already shown
how the integration of single-cell and spatial transcrip-
tomic significantly contribute to further delineation of the
PDAC tumor microenvironment (55–57). We believe that
such innovative data can link neoplastic landscape and fi-
brotic stroma to the diverse malignancy states of the dis-
ease, and can help in the establishment of biomarkers to
elucidate hybrid samples with mixed basal and classical
features.

DATA AVAILABILITY

Nine gene expression datasets were downloaded from pub-
lic repositories.

Normalized microarray profiles from Moffitt et al. and
Collisson et al. were downloaded from GEO under the ac-
cession codes GSE71729 and GSE17891, respectively. Only
PDAC primary samples were kept.

Bailey et al. RNAseq profiles (ICGC PACA-AU) were
obtained by author correspondence in a RSEM counts
matrix that we normalized through variance stabilizing
transformation in DESeq2. Non-ductal and non-primary
histopathological subtype samples were excluded from this
study.

Normalized Puleo et al. microarray expression matrix
was downloaded from ArrayExpress (accession number E-
MTAB-6134).

Normalized gene expression array data matrix from
Badea et al., Yang et al. and Sandhu et al. were downloaded
from GEO (GSE15471, GSE62452 and GSE60980). Repli-
cates in Badea et al. were dropped from this study.
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ICGC Array data matrix was downloaded pre-processed
from the International Cancer Genome Consortium (http:
//www.icgc.org) under the PACA-AU project and only pri-
mary samples of ductal histological type were kept.

Log2 of the counts for TCGA-PAAD RNAseq were ob-
tained from Xena Browser (58). After filtering patients with
PDAC primary tumor and ductal subtype, data were first
converted from logarithmic to counts and then normalized
with variance stabilizing transformation in DESeq2.

All probe ids were converted to gene ids, considering the
median value if a gene name is mapped to multiple probes.
An overview of the datasets used with respective gene and
sample size can be found in Supplementary Table S3.

Molecular signatures and subtype calls assigned to the
patients were downloaded from the corresponding publica-
tions of Moffitt et al., Collisson et al., Bailey et al. and Puleo
et al. A list with the genes of every signature is given in Sup-
plementary Table S4.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Cancer Online.
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