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ABSTRACT Bacteriophages are abundant members of all microbiomes studied to
date, influencing microbial communities through interactions with their bacterial
hosts. Despite their functional importance and ubiquity, phages have been underex-
plored in urban environments compared to their bacterial counterparts. We profiled
the viral communities in New York City (NYC) wastewater using metagenomic
data collected in November 2014 from 14 wastewater treatment plants. We show
that phages accounted for the largest viral component of the sewage samples
and that specific virus communities were associated with local environmental
conditions within boroughs. The vast majority of the virus sequences had no ho-
mology matches in public databases, forming an average of 1,700 unique virus clus-
ters (putative genera). These new clusters contribute to elucidating the overwhelm-
ing proportion of data that frequently goes unidentified in viral metagenomic
studies. We assigned potential hosts to these phages, which appear to infect a wide
range of bacterial genera, often outside their presumed host. We determined that
infection networks form a modular-nested pattern, indicating that phages include a
range of host specificities, from generalists to specialists, with most interactions or-
ganized into distinct groups. We identified genes in viral contigs involved in carbon
and sulfur cycling, suggesting functional importance of viruses in circulating path-
ways and gene functions in the wastewater environment. In addition, we identified
virophage genes as well as a nearly complete novel virophage genome. These find-
ings provide an understanding of phage abundance and diversity in NYC wastewa-
ter, previously uncharacterized, and further examine geographic patterns of phage-
host association in urban environments.

IMPORTANCE Wastewater is a rich source of microbial life and contains bacteria, vi-
ruses, and other microbes found in human waste as well as environmental runoff
sources. As part of an effort to characterize the New York City wastewater metag-
enome, we profiled the viral community of sewage samples across all five boroughs
of NYC and found that local sampling sites have unique sets of viruses. We focused
on bacteriophages, or viruses of bacteria, to understand how they may influence the
microbial ecology of this system. We identified several new clusters of phages and
successfully associated them with bacterial hosts, providing insight into virus-host
interactions in urban wastewater. This study provides a first look into the viral com-
munities present across the wastewater system in NYC and points to their functional
importance in this environment.
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Wastewater treatment systems are responsible for transporting raw sewage which
contains a rich source of microbes including bacteria, archaea, fungi, protists, and

viruses. In addition to transporting human waste, sewage systems can be combined
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with drainage systems to transport runoff and stormwater, increasing the overall
microbial diversity. Previous research on wastewater influent demonstrates that the
bacterial communities in raw sewage can serve as indicators of the human population
in the surrounding areas, providing a valuable resource to understand population-level
traits and health (1–3).

Viruses and, in particular, bacteriophages are also major components of raw sewage
due to the high concentrations of nutrients and biomass present in the system. In fact,
wastewater systems were shown to have concentrations of 108 virus particles per
microliter, which is 10 to 1000 times higher than any other aquatic environment
examined and about 10-fold higher than the estimated concentration of bacterial cells
(4–6). A proportion of viruses detected in wastewater systems are eukaryotic, and some
may cause human infections, such as human adenoviruses, enteroviruses, and polyo-
maviruses (7, 8). However, the majority of viruses detected have mostly been bacte-
riophages (7, 8). In addition to being abundant, bacteriophages impact microbial
ecology through their interactions with their hosts. They can influence bacterial com-
munities directly by infection, by shuttling genes through horizontal gene transfer, and
by providing potential benefits during prophage integration such as virulence and
metabolic genes. Bacteriophages also contribute to nutrient cycling and the release of
organic matter in the environment (9–11).

Despite the abundance and functional importance of viruses on microbial ecosys-
tems, few broad-scale metagenomic studies have focused on their presence in raw
sewage. Here, we profiled the virus communities present in the sewage system across
the 5 boroughs of New York City (NYC), building upon previous work that characterized
protists and bacteria in this environment (3, 12). The NYC sewage system includes over
7,000 miles of pipes that flow wastewater into 14 treatment plants spanning the 5
boroughs. We used this metagenomic sequence data to identify and functionally profile
viruses in wastewater (12). This type of data allows for viral discovery as well as the
study of viral dynamics. For example, recent metagenomic analyses reported on the
dynamics of virophages and giant viruses in aquatic systems, increasing our under-
standing of these viruses within this ecological niche (13). With these data we were able
to simultaneously identify viruses and their hosts, better understand how they are
related to each other, and determine how viral functional profiles differ across samples
and boroughs, thus expanding our knowledge of phage dynamics in wastewater.

RESULTS
NYC wastewater virus community is dominated by bacteriophages. The micro-

bial composition of wastewater in NYC (protists, bacteria) has recently been analyzed
using a combination of 18S rRNA and 16S rRNA gene sequencing, and shotgun
metagenomics, but viruses have so far been unexplored (3, 12). Here, we used this
previously generated shotgun metagenomic data to profile the viral composition of
wastewater in NYC. We identified and characterized viruses by analyzing the virus
component of metagenomic data from 16 wastewater samples collected in November
2014 across all 5 boroughs of NYC (12) (Fig. 1). On average, there were 10,751,683 total
paired-end reads per sample, with 98.2% (10,557,807/sample) of the reads remaining
after quality filtering. These sequencing reads were then analyzed for viral signatures,
as described below.

To first profile the overall virus taxonomy of this data set, we used VirMAP, a tool
developed to merge both nucleotide and protein information to classify viral se-
quences, while excluding bacterial and eukaryotic sequences (14). This approach
allowed us to classify 6,993,448 reads as viral, representing 4.1% of the combined data
set of 16 samples. A total of 806 virus taxa were identified. There was an average of
437,090 viral reads per sample with, on average, 166 virus taxa identified per sample
(range: 78 to 480). These included eukaryotic viruses and bacteriophages, with a clear
dominance of bacteriophage sequences across the data set (eukaryotic viral reads: 431;
bacteriophage reads: 6,993,017) (see Data Set S1, Sheet 1, in the supplemental mate-
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rial). However, for the majority of the viral reads (�90%), taxonomic assignments could
not be made beyond “Virus” (taxId � 10239).

To compare species diversity within each sample and assess how diversity compared
across locations, we used measures of alpha and beta diversity, respectively. When
calculating Gini-Simpson’s Index (1-Simpson’s Index), where values range from 0 to 1
according to increasing diversity, the average value across these samples was 0.90,
though evenness scores, measured by Pielou’s J, were low (Table S1). We observed high
alpha diversity in each sample but with uneven species distribution, indicating that
only a few species dominate each sample. We next calculated the beta diversity using
the Bray-Curtis dissimilarity measurement to measure diversity between samples. The
average beta-diversity score was 0.04, indicating that the samples have very similar
species composition. Location did not appear to influence diversity among samples
(ANOVA, P value � 0.615) (Fig. 2a). For example, the Brooklyn samples (green) share a
low similarity score as they do not cluster together based on composition and diversity.
Overall, virus taxon diversity is not specific to the borough but rather to the sample site,
i.e., neighborhoods covered in the catchment area, reflecting the variety of urban
ecosystems.

To identify patterns of viruses present within and between boroughs, we calculated
the intersections of each set of virus taxa by sampling location (Fig. 2b). There were 38
viruses identified in all sampling locations, which we termed the core virome. It
included, among others, phages that infect Faecalibacterium prausnitzii, a resident of
the human gastrointestinal tract (15); Lactococcal phage 1706, known to infect bacteria

Staten Island

Brooklyn

Queens

Manhattan

Bronx

FIG 1 Map of NYC sewage system and sampling sites. Fourteen wastewater treatment catchment areas
spread across the 5 boroughs of NYC. Each color represents the catchment area for the wastewater
treatment center. Borough boundaries are outlined in gray. Staten Island � dark green, peach;
Manhattan � green, yellow, purple; Bronx � purple, light green; Queens � royal blue, orange,
yellow, red, light blue; Brooklyn � yellow, brown, aqua, teal, pink. The location data were obtained
from https://openseweratlas.tumblr.com/data.
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in the human gut (16); and Salmonella- and Enterobacter-infecting phages. Queens had
the highest number of unique phages (n � 249), i.e., phages not shared by any other
combination of locations. Brooklyn and Queens shared the highest number of unique
virus taxa between sample locations, indicating that these two boroughs may share
similar ecological niches that influence virus diversity. These boroughs are distinctly less
urban in regard to population density compared to Manhattan.

To characterize in more detail the abundant phages across the data set, we queried
for the top 20 most abundant taxonomic classifications (following the nonspecific
“Virus” category). These included Siphoviridae phages, such as Lactococcus phage 1706
and Enterobacter phage phiEap-2; Myoviridae phages, such as Vibrio phage VH7D and
Shewanella sp. phage 3/49; and Podoviridae phages, including Acinetobacter phage
Presley and Cronobacter phage vB_CsaP_Ss1 (Fig. 2c). Identified eukaryotic viruses were
mainly from the Phycodnaviridae and Adenoviridae families, such as Ostreococcus luci-
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FIG 2 Viral taxonomy and diversity. (a) A PCoA (principal-coordinate analysis) ordination was performed to visualize the viral community matrix across all 16
samples based on the Bray-Curtis dissimilarity measurement. Each color represents the site from which the sample was collected. Samples are numbered and
labeled according to collection site. (b) UpSet plot visualizing the intersecting sets of viral taxa at different sewage sampling locations. Each sampling location
was defined as a set, resulting in a total of 8 sets (Manhattan � 1 sample, Brooklyn/Queens/Manhattan � 1 sample, Brooklyn/Queens � 1 sample, Bronx � 1
sample, Bronx/Manhattan � 1 sample, Staten Island � 2 samples, Brooklyn � 4 samples, Queens � 5 samples). The “set size” bars over the sets represent the
total number of viral taxa present in that set. Dots with interconnecting vertical black lines represent the intersections, where filled and colored dots represent
sets that are within the intersection and unfilled light gray dots represent sets that are not part of the intersection. The bars above represent the number of
viral taxa within the intersection. (c) Heatmap representing the relative abundance of the top 20 virus taxa (below the “Virus” category), identified by VirMap
in each sample. Darker shades of purple indicate higher relative abundance of that virus taxa.
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marinus virus 7 and Human adenovirus 12, respectively (Data Set S1, Sheet 1). Viruses in
the Phycodnaviridae family infect marine and freshwater eukaryotic algae while viruses
in the Adenoviridae family have a broad range of vertebrate hosts including humans,
cats, and dogs.

The sewage virome contains largely unexplored sequence space. To further
characterize the virome, we ascertained features such as virus environmental sources,
bacterial hosts, and functional potential. We expanded beyond a strictly reference-
based approach and assembled all sequencing reads from each sample into contigs,
which allowed us to do more in-depth analyses to uncover potential viral sequences
that often go unexplored in metagenomic studies (Data Set S1, Sheet 2). The contigs
generated were used as input for VirSorter (17), which predicts viral contigs based on
the presence of virus “hallmark” genes and other virus-specific parameters. This method
primarily facilitates the identification of unknown or previously unidentified phages.
VirSorter classifies the putative viral contigs into three categories based on confidence,
with Category 1 containing contigs with the most support and Category 3 containing
those with the least. VirSorter predicted a total of 4,881 viral contigs across all samples
(2.2% of reads mapped back). There was a total of 1,095 contigs in Category 1, 3,683
contigs in Category 2, and only 103 contigs in Category 3 (Fig. S1).

To understand the genetic relatedness of the viral contigs, we applied a gene
content-based network analysis (18) to group predicted contigs based on their gene
sequences into virus clusters (VCs), where nodes are genomes or contigs, and edges
between nodes represent gene content similarities. In this framework, viruses sharing
a high number of genes are organized into VCs that represent approximate virus
genera, as defined by the International Committee of Taxonomy of Viruses (ICTV). We
represented the relationships among the predicted viral contigs with known bacterial
and archaeal viruses from RefSeq as a weighted network for each sample.

An average of 2,113 VCs were predicted for each sample. Only 4% of the viral contigs
across all samples clustered with RefSeq virus genomes; these contigs can be assumed
to be in the same virus genera as the corresponding RefSeq genome (Fig. 3). Each
sample had at least one viral contig that was grouped into a VC with the prototypical
crAssphage genome (Fig. 3, box), a recently identified ubiquitous phage found in the
human intestinal tract (19, 20). Flavobacterium phage 11b, which is typically found in the
aquatic environment, clustered with viral contigs in half of the samples (Fig. 3, box).
Additionally, viral contigs in 7/16 samples clustered with Vibrio phages and viral contigs
in 8/16 samples clustered with Pseudomonas phages (Fig. 3, box). Samples 1, 2, 9, and
13 from Brooklyn_1, Brooklyn/Queens/Manhattan, Queens_1, and Bronx/Manhattan,
respectively, had contigs that fell into a cluster with Riemerella phage RAP44. This phage
infects Riemerella anatipestifer, which causes infection in young ducks and geese (21).
Additionally, some patterns were sample or borough specific. For example, two Queens
samples (9 and 15) both had viral contigs that clustered with Rhodobacter phage RcRhea
known to infect the photosynthetic bacterium Rhodobacter capsulatus (22). Two sam-
ples from Brooklyn (4 and 5) clustered with Achromobacter phage JWF, which was
recently isolated from sewage and found to infect the bacterium Achromobacter
xylosoxidans, an emerging nosocomial pathogen typically found in wet environments
(23).

However, the majority of contigs (96%) did not belong to VCs with RefSeq virus
genomes but instead clustered together into novel VCs. There was an average of 1,754
VCs that contained only viral contigs and no RefSeq genomes.

Identification of novel virophages in wastewater. In the previous VirMAP analy-
sis, we identified a small number of reads (n � 10) belonging to the giant virus family
Mimiviridae (Data Set S1, Sheet 1). Since this data set was highly diverse and rich in
uncharacterized viral sequences, we next searched for evidence of virophage genomes.
Virophages are small viruses that use the replication machinery of giant viruses to infect
eukaryotic cells including algae and amoebae (24–26). By coopting the giant virus
replication machinery, virophages have a negative effect on giant virus replication (26).
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As such, virophages are responsible for reducing the mortality rate of the eukaryotic
cells and could result in algal blooms (26, 27). To date, only two types of virophages
have been isolated in culture. However, using metagenomics, 57 partial and complete
virophage genomes have been identified (26). We first looked for the major capsid
protein (MCP) because it is a conserved virophage marker gene. This search revealed 48
MCP-containing contigs, nearly doubling the total number of virophage MCPs previ-
ously identified. The MCPs were identified in 11 out of the 16 samples, and these were
found in every borough except Manhattan. The sample with the highest number of
contigs with an MCP protein was Queens_1 (14 contigs). All MCPs matched the
Zamilon/Sputnik MCP hidden Markov model (HMM) profile.

We constructed a maximum-likelihood phylogenetic tree of the identified full and
nearly complete MCPs in this data set along with previously published MCP sequences
from GenBank and RefSeq (Fig. 4). The contig Brooklyn_3_627 contained a complete
MCP protein and clusters most closely with the Sputnik/Zamilon MCP proteins, though
it forms a distinct branch (Fig. 4a). The other virophage contigs cluster with freshwater
virophages such as Mendota (13) and a virophage identified in sheep rumen. Addi-
tionally, the Brooklyn_3_147689 and Staten_Island_1_3954 contigs cluster most closely
with one another.

We next determined if these virophage contigs also contained three other core
virophage proteins: a minor capsid, a cysteine protease, and a DNA-packaging protein.
Brooklyn_3_627 contained these additional core proteins (Fig. 4b). Staten_Island_
1_3954 contained all other core genes except the minor capsid. These core genes are
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found in all virophage genomes analyzed thus far and indicate that these newly
discovered partial and nearly complete genomes contain the essential virophage
genes.

Sewage contains viruses from different environmental sources. Viruses present
in sewage systems may come from a variety of sources in addition to the human body.
NYC has a combined sewage system, where runoff water, rainwater, and waste enter
into the wastewater system. To identify the potential environmental sources of the viral
contigs, VirSorter contigs from the higher-confidence categories (1 and 2) were com-
pared to the Integrated Microbial Genome/Virus (IMG/VR) database (28), which contains
viral metagenomic data sets from several different sources, including wastewater. The
top three sources for these matches were samples originating from humans (1,511
contigs), aquatic environments (1,158 contigs), and wastewater (823 contigs) (Fig. 5a).
Sample 9, from Queens, was the only sample with contigs matching sources from
animals. Only 5 of the samples had matches to a bioreactor source, and Sample 13
collected from Manhattan/Bronx had the highest abundance of contigs matching solid
waste sources. These environments can be further separated into specific categories
corresponding to their sources. For example, we identified 1,598 contigs that have
sources in the human digestive system (Fig. 5b). The aquatic environment, when
separated into different ecosystems, showed 577 contigs that belonged to freshwater
and 448 contigs that belonged to the marine environment (Fig. 5b). Twelve of the 16
samples contained matches to sources originating from activated sludge, a common
component of the wastewater treatment process. Additionally, Sample 7 from Staten
Island was the only sample with hits to composting environments. This sample also had
matches to defined media, indicating that some of the viral contigs in this sample may
be similar to cultured phages. Overall, these data show that the viral contigs originated
from different environmental sources.

Viral contigs contain a broad range of functional and structural genes. Phages
contain a set of genes that are used to infect hosts, replicate their genomes, and
produce new progeny. In addition to these genes, phage genomes may also carry
additional genes that can impact their bacterial host, aiding in overall survival by
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providing metabolic or fitness benefits (29–31). To probe the functional potential of the
viral contigs in this data set, we first annotated the predicted open reading frames
using the UniRef50 database, which contains clustered sets of protein sequences, and
mapped the annotations to corresponding Gene Ontology (GO) terms (32) (Fig. S2). Top
GO terms across the samples were relevant to phages and included biological pro-
cesses such as DNA integration and replication, cellular components such as viral
capsid, and molecular functions such as ATP binding and endonuclease activity.

We also mapped the UniRef50 matches to the MetaCyc enzymatic reaction database
(32) to determine the metabolic potential of the phages in the sewage system (Fig. 6).
Three enzymes—DNA-directed DNA polymerase, lysozyme, and ribonucleoside-
diphosphate reductase—were present in at least 11 of the 16 samples. Some enzymes
were specific to only a few samples. For example, nucleotide diphosphatase was
present in only 2 samples (Brooklyn_1 and Queens_1) and UTP– glucose-1-phosphate
uridylyltransferase, an enzyme involved in carbohydrate metabolism, was present in
only 2 samples from Queens (Queens_4 and Queens_5).

Furthermore, we identified a total of 8,419 protein families (Pfams) by searching
against the Pfam database (33, 34). The majority of the samples, regardless of location,
clustered together based on the presence or absence of the Pfam domains, which
points toward a subset of protein families that are universally present or absent across
the samples (Fig. S3a). Outliers consisted of samples from Queens, Brooklyn, and Staten
Island as well as the sample collected from Brooklyn/Queens/Manhattan (Fig. S3a). To
more closely examine the protein domains for evidence of auxiliary metabolic genes
(AMGs), we removed virus- and phage-associated protein families, resulting in 8,240
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protein families. AMGs are found in bacteriophage genomes but are derived from
bacterial cells. They can support host metabolism during infection through processes
such as photosynthesis, carbon metabolism, and nucleic acid synthesis. Using hierar-
chical clustering, the samples clustered into 3 groups. The Queens_1 sample (Sample
9) formed its own group, while the other samples were split between the remaining 2
clusters (ANOVA, P value � 0.001). There were several protein families present at a
higher relative abundance in the Queens_1 sample compared to the other 2 clusters
(Fig. S3b). For example, thioredoxin had a higher relative abundance in Queens_1
compared to all other locations. Additionally, there were several differences between
clusters 1 and 2, including rhodanese being more highly abundant in cluster 1 (P
value � 0.01).

A total of 3,248 (39%) of the remaining protein families were universally present
across the samples. We computed the core protein families by selecting for those with
a relative abundance greater than 0.25% in at least 75% of the samples. In doing so, we
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identified 31 core protein families that included ABC transporters, which are involved
in the shuttling of various substrates (35); SusD/RagB, important for nutrient binding
(36); and tetR, which confers bacterial resistance to tetracycline (37) (Table S2).

Identified prophage sequences are mostly unique. Some phages can integrate
into bacterial genomes, where they are termed prophages. Prophages can influence the
fitness and virulence of the bacterial host (31). They can encode auxiliary metabolic
genes, as described above, and are responsible for a large proportion of bacterial
genetic diversity (30, 38). We identified 140 prophage-associated contigs across the
samples using the PHAge Search Tool (PHASTER [39]). Of these, 57% aligned only to
themselves following an all-versus-all BLASTN search, whereas 43% aligned to at least
one other contig in the data set, suggesting that the majority of prophage sequences
in this data set are unique. Of the 140 contigs, we identified six sequences that
contained intact prophage genome regions. They spanned from 15 kb to 67.8 kb in
length, with an average length of 36.5 kb. The regions around five of the six prophage
sequences could be assigned a specific host and matched different bacterial species
including Ketobacter alkanivorans, Moraxella osloensis, Fusobacterium periodonticum,
Sphingobacteriaceae bacterium, and Bacillus cereus.

Phage-host interactions are diverse and modular. Studies carried out in natural
environments suggest that environmental conditions influence phage-host range and
that phage-host ranges may be broader than originally suspected (40). To determine
patterns of phage-host interactions in this urban environment, we identified CRISPR
spacers, which originate from infecting virus genomes, and direct repeats, present in
the bacterial genome. We identified an average of 20,735 spacers and 1,686 repeats per
sample (Table S3). The Brooklyn/Queens/Manhattan sample had the most identified
spacers and repeats (38,687 and 2,929, respectively). This could be attributed to having
sewage flow from three boroughs, the most out of any of the samples. We also
analyzed the proportion of spacers identified in bacteria attributed to various human
body sites (41). We show that most samples have a high proportion of spacers
identified in Moraxella as well as a wide range of gut-associated bacteria (Fig. S4).

We were able to assign 929 hosts to the viral contigs using the spacer sequences.
At the genus level, the highest number of phage-host interactions were with Acineto-
bacter, Arcobacter, and Moraxella (Data Set S1, Sheet 3). There were also sample-specific
phage-host interactions. For example, only phages from Staten Island were linked to
Geobacillus hosts, and only phages from Queens were linked to bacteria in the genus
Dialister (Data Set S1, Sheet 3). We successfully assigned specific phage taxonomy to 91
of the phage-host pairs (Fig. 7a). Of these 91 pairs, only 8 phages were identified to
infect their taxonomically assigned host. For example, Streptococcus phage 315.2 was
linked back to Streptococcus, and Geobacillus phage GBSV1 was paired with Geobacillus.
The phage with the broadest host range was Lactococcus phage 1706, which was linked
back to eight different bacterial genera, suggesting that this phage may be a generalist
in the urban sewage environment. Together, these results demonstrate that phage-
host interactions in the urban sewage environment are broad and can span genera.

The ability to assign viral contigs to hosts using CRISPR spacers allowed us to
determine the underlying network structure of the phage-host infection patterns we
identified. We applied the gene content-based network analysis as described above to
the 929 viral contigs that were linked to bacterial hosts. This resulted in 285 VCs which
infect a total of 102 different bacterial genera (Data Set S1, Sheet 4). We used this binary
adjacency matrix to calculate the nestedness and modularity of the phage-host infec-
tion networks. Nested networks represent those in which there is a hierarchy of phages
that can infect susceptible hosts. In a nested network, phages with a broad host range
can infect all hosts, whereas specialist phages infect only one host. In modular net-
works, infections take place between phages and bacteria in the same subset, rather
than across the different subsets; this type of interaction pattern may indicate distinct
clusters of phage-host infections. We observed low values for nestedness (nestedness
temperature calculator [NNTC] � 0.97, nestedness metric based on overlap and decreas-
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ing fill [NODF] � 0.0472), and 58 modules (Barber’s modularity [Qb] � 0.716) (Fig. 7b
and c). We also observed high nestedness within some of the individual modules,
pointing toward a “nested-modular” infection pattern that has previously been ob-
served in the murine gut and ocean data sets (42). This infection pattern is indicative
of a framework where phages span from generalists to specialists with interactions
organized into modules (43). We also identified generalist phage VCs that interact with
a range of bacterial hosts, often outside their assigned module (Fig. S5).

Phage-host co-occurrence across sewage systems. We aimed to understand
patterns of phage-host co-occurrence in the wastewater system since phages can
interact only with hosts that are present in their environment and information on host
and phage distribution in wastewater systems is lacking. We expanded beyond NYC to
also include metagenomic data collected from across the United States, with samples
from California, Illinois, Massachusetts, Pennsylvania, and Vermont, to better under-
stand these patterns on a broader geographic scale.

Using a multicity approach, we had enough samples to be able to approximate the
conditional probability of observing a specific microbe given that a specific phage was
observed with enough statistical power. We generated a network to visualize these
probabilities using the core phages previously identified (Fig. S6). We predicted over
200 phage-host relationships. Phages within this network tend to co-occur with bac-
teria in the same phylum. We also observe that crAssphage, a highly abundant phage
in the human gut, has a high co-occurrence probability with phages within the
Bacteroidetes phylum, which are known hosts of crAssphage. Lactococcus phage 1706
has a high probability of co-occurrence with bacteria in the Campylobacteraceae family,
and specifically with Arcobacter, a host we identified in the CRISPR spacer analysis,
suggesting this may be conserved across wastewater systems. The hosts it co-occurs
with overlap Human gut gokushovirus, Aeromonas virus Aes12, and Cronobacter phage
vB_CsaP_Ss1, which have all been found in the human gut, suggesting that they share
a similar ecological niche. Faecalibacterium phages FP_oengus and FP_Toutatis co-occur
with bacteria in the Firmicutes phylum, which are known hosts and may be promoting
growth of the phage population. Using wastewater data collected across a broader
geographic scale allowed us to more accurately identify these phage-bacterium rela-
tionships that are present across all samples. This could also provide clues to under-
stand phage-host interactions in bacteria without CRISPR systems (44, 45).

DISCUSSION

This is the first study to examine viruses in sewage collected from New York City, and
it adds valuable information to the previous studies on protist and bacterial diversity in
this environment (3, 12). Using metagenomic data, we established that the viral
component of sewage in NYC is dominated by bacteriophages that are not currently in
databases. By combining reference-based and reference-free approaches, which clas-
sified 4.1% and 2.2% of reads, respectively, we assigned viral origin to 6.3% of the
sequencing reads of this study. This greatly expands on the proportion of viral reads
typically examined in an unenriched, metagenomic sample (which can be as low as 1%
[7, 46]). From the analysis of virus clusters, we identified multiple viral contigs—
including contigs that clustered with crAssphage, an abundant human fecal bacterio-
phage that could be considered a useful biomarker of fecal contamination in the
sewage system process (20)—and a number of contigs unique to this study, potentially
representing new phage genera and demonstrating the novelty of viruses present in
NYC sewage. This finding is significant in that it points toward the wide range of viruses

FIG 7 Legend (Continued)
a CRISPR spacer linking the phage to the host. A red box indicates the phage infects its assigned database host. (b) The phage-bacterium
interaction matrix was sorted to maximize nestedness (NNTC � 0.97, NODF � 0.0472). The red curve represents an isocline of perfect
nestedness. (c) The phage-bacterium interaction matrix was sorted for modularity. Fifty-eight modules were detected using LP-BRIM
(Qb � 0.716). Each color represents a different module, with corresponding isoclines. Black boxes indicate interactions that occur
outside the module.
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yet to be discovered in all environments and is consistent with previous studies
examining wastewater viromes (5). This is also similar to findings from global ocean
virome data sets where �1,000 new virus genera were predicted using this framework
(18). The exploration of each new environment will continue to add a significant
number of novel viral sequences to current databases (47–49).

We also identified 48 virophage MCPs in NYC wastewater. Virophages are small
viruses that infect eukaryotic cells by hijacking the infection cycle of coinfecting giant
viruses (24, 25). This relationship leads to the fine-tuning of algal and small eukaryote
abundance in their environments (27). Only a few virophages have been isolated and
cultured, though previous work has demonstrated that virophages can be identified
using metagenomic data (13). We identified several virophage MCPs in NYC wastewater
that are diverse in nature and span several environments including freshwater, the
digestive system, and potentially a sewage-specific environment. We assembled and
characterized a nearly complete virophage genome that is most closely related to the
Sputnik and Zamilon virophages. This is the first nearly complete virophage genome
found in wastewater, supporting evidence that virophages are widely distributed in the
environment (50). Further studies examining virophages and their associations with
giant viruses in wastewater data sets would provide a deeper understanding of their
role in urban environments.

Previous research suggests that although phages are widely distributed in the
environment, there are distinctive groups in specific locations (51, 52). We observed
geographic similarities and substantial differences among phage taxa in this data set.
The viral profiles we identified were more dependent on local wastewater catchment
locations (for example, the different Queens samples) than by borough boundaries,
indicating that local inputs into the sewage system may play a role in viral diversity at
each location. We identified specific patterns across samples as well. For example, while
the “core” virome across all sampled sites consisted of 38 shared viruses, samples from
Brooklyn and Queens also had 58 unique viruses only shared between them. This
suggests that the sewage inputs in these two boroughs may be highly similar, selecting
for the presence of unique viruses. Overall, these findings support the conclusion that
there can be enrichment of phage taxa at certain locations (52, 53). The analysis of
potential environmental sources of viral contigs show that while we could track human,
soil, and wastewater as virus sources across all samples, a few sources were unique to
sampling sites. For example, in the Staten Island wastewater treatment plant, a unique
source of viral contigs came from composting, which was part of a new NYC initiative
piloted in Staten Island in 2013–2014. It is interesting that a new program could impact
the ecology of an environment so quickly and clearly. In three of the wastewater
treatment plants (Brooklyn/Queens/Manhattan, Brooklyn, and Manhattan/Bronx; sam-
ples 2, 5, and 13, respectively), rhizoplane sources, originating from plant roots, could
be identified, suggesting that runoff from plant-related locations flowed into the
sewage system at these sites. The abundance of non-human-associated environments
coincides with similar findings of protist communities in NYC (12) as well as previous
studies on bacterial communities in different wastewater data sets (2, 54. Additionally,
the identified prophages also spanned a range of environments. The corresponding
bacterial species had a range of urban habitats including seawater, laundry facilities,
human oral cavities, freshwater, and soil, respectively.

It has been established that bacteriophages influence microbial communities and
the environments they inhabit. They do so in numerous ways, such as by putting
pressure on hosts to evolve to avoid infection (i.e., arms-race dynamics), by conferring
advantages to their hosts through auxiliary metabolic genes, and through nutrient
cycling and organic matter release (9–11). In this study, we identified genes involved in
carbon, sulfur, and carbohydrate metabolism. For example, thioredoxin, a component
of carbon metabolism and an absolute requirement for filamentous phage assembly
(55), had a higher relative abundance in one Queens sample compared to all other
locations, suggesting that there is a higher abundance of filamentous phage at this
location. Rhodanese, a central enzyme involved in sulfur metabolism and important for
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cyanide detoxification, was also identified as having a higher relative abundance in
some samples compared with others. This suggests that phages may play a role in
sulfur metabolism at sites where these samples were collected (56). We also identified
on viral contigs genes that confer resistance to tetracyclines. Tetracycline resistance
genes were also observed in the bacterial communities in the NYC sewage (3).

Phage-host infection patterns can explain underlying evolutionary and ecological
processes. We showed that phages are capable of infecting several bacterial species,
even spanning across bacterial genera, and that many phages can infect bacteria
outside their previously assigned/annotated hosts. This supports the notion that
phage-host infections in natural environments are complex and can extend to broader
taxonomic ranges, beyond known associations provided in current databases (40).
Expanding beyond CRISPR-based phage-host analyses, we used a multicity approach to
predict the probability of phages and hosts co-occurring together in sewage systems.
This analysis predicted over 200 phage-host relationships, some of which had high
co-occurrence probabilities. The relationship between phages and hosts having a high
probability of being observed together can indicate a few scenarios. The first is that the
phage population may provide a benefit to the host it infects. Second, the presence of
the host may allow the growth of the phage population. Third, the phage population
preys on a competitor of the bacteria it is connected with. Or, fourth, the phage may
be generalist in nature and coexist with multiple potential hosts. The relationships
predicted in our network could be considered for exploration in future studies.

We also show that phage-host infection networks are mostly modular, with nest-
edness within individual modules. This infection pattern is indicative of phages that
have evolved to infect a range of bacteria within modular constraints and is similar to
findings in the murine gut (43). Modular interaction structures are found to occur where
there is high availability of resources and high bacterial diversity (57), both of which are
true for wastewater (58). Some phage virus clusters, i.e., VCs, were associated with
bacteria outside their assigned module, indicating that they may have evolved to infect
a broader range of hosts based on host availability or other environmental parameters,
such as temperature, nutrient availability, and host susceptibility (43, 59).

The analysis was constrained by the lack of multiple time points to allow a
longitudinal analysis of virus dynamics and as such represents only a limited snapshot
of the viral community. This study also cannot address the numerous RNA viruses that
are present in NYC wastewater, and future studies would benefit from the inclusion of
RNA to further understand the total viral community. While much work has focused on
the vast diversity and abundance in ocean data sets (47, 49, 60), studies on urban
wastewater have lagged behind. Sewage is an important urban ecosystem that can
explain population-level attributes and provide a valuable resource for public health by
providing insight into both the eukaryotic and bacterial viruses present in the popu-
lation and environment (2). The results presented here offer insight into the phage
communities across NYC, as well as their underlying potential functions and environ-
ments of origin. Understanding the biodiversity of wastewater treatment centers also
can aid in making treatment processes more efficient by harnessing the innate ability
of phages to target bacterial communities (61). Our study is a look into wastewater viral
diversity and function and provides a deeper understanding of potential phage-host
interactions in a complex environment.

MATERIALS AND METHODS
Sample data sets. Metagenomic sequencing data from NYC sewage samples were collected by

Maritz et al. (12). Data were downloaded from the NCBI Sequence Read Archive under BioProject no.
PRJEB28033 with the following accession numbers: ERR2729796, ERR2729797, ERR2729798, ERR2729799,
ERR2729800, ERR2729801, ERR2729802, ERR2729803, ERR2729804, ERR2729805, ERR2729806,
ERR2729807, ERR2729808, ERR2729809, ERR2729810, and ERR2729811. The data consisted of samples
from raw sewage collected across all NYC DEP wastewater treatment plants. Each sample includes raw
sewage taken every 3 h over a 24-h period in November 2014. Approximately 1 ml of raw sewage was
used for DNA extraction with the PowerSoil DNA isolation kit (Qiagen, catalog no. 12888). Sequencing
libraries were constructed using the KAPA LTP library preparation kit (KAPA Biosystems, catalog no.
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KK8232) and sequenced on two lanes of a HiSeq Rapid Run with 2 � 250-bp paired-end chemistry,
resulting in 10,751,683 raw paired-end reads.

Additional data came from wastewater samples collected in California, Illinois, Massachusetts,
Pennsylvania, and Vermont with SRA accession numbers SRR5007225, SRR2062623, SRR5007352,
SRR5007271, SRR2062049, SRR4236650, SRR4236649, SRR4236660, SRR4236648, SRR5007133,
SRR4236663, SRR4244739, SRR5007150, SRR5007354, SRR4244858, SRR2060726, SRR5007116,
SRR2062633, SRR5007313, SRR5007348, SRR4236662, SRR4236666, SRR5007146, SRR5007272,
SRR4236664, and SRR8476230.

Taxonomic assignment and assembly. Viral taxonomic assignment was performed with VirMAP
(1.0), which uses nucleotide and protein information to assign virus taxonomy (14). VirMAP was run using
a quality filter set at Q15 and a kmer length of 20. Additionally, Illumina adapters were removed allowing
1 mismatch to determine the reads that would be processed. To perform metagenomic assembly, reads
matching the human genome were first removed using Deconseq (0.4.3) using default parameters (62).
The remaining reads from each sample were used as input for metaSpades, which was run with default
parameters (63). Alpha and beta diversities were calculated using the “vegan” package in R (64).

Virus prediction and annotation. Assembled contigs were used as input for VirSorter (1.0.4) (17)
and were run on Cyverse (65, 66) to identify putative viral contigs. Contigs from VirSorter categories 1
and 2 were selected for further analysis to minimize the chance of including nonviral sequences as
contigs assigned to these 2 categories are the most likely to represent viral genomes. These contigs were
mapped back to the Joint Genome Institute’s Integrated Microbial Genome/Virus database (accessed in
November 2018) to identify ecosystems of origin, using a greedy approach to select for the best match
(28). These contigs were also processed using the PHASTER API in February 2018 to detect prophages
(39). Additionally, contigs were functionally annotated using HUMAnN2 (0.11.1) (32) and pfamscan (1.6)
(67). Contigs were mapped to the UniRef50 database (1.1, downloaded from HUMAnN2 repository,
November 2019) and further mapped to MetaCyc reactions and Gene Ontology (GO) terms using
HUMAnN2 (0.11.1). MetaCyc reactions were plotted and analyzed with a cutoff value of 0.001. Open
reading frames (ORFs) were predicted for each contig using Prodigal (2.6.3) (68) and used as input for
pfamscan (1.6) to identify Pfams on each contig using HMMER (3.0) (33, 34). Heatmaps were generated
using heatmaply (1.0.0) (69) in R and visualized as the square root of the relative abundance of each
feature in each sample. Using the “vegan” package (2.5 to 6) in R, principal-coordinate analysis (PCoA) of
Pfam domains was performed with Jaccard dissimilarity; comparisons of dissimilarities were defined
using ANOVA.

Virophage identification and analysis. Virophage major capsid proteins (MCPs) were identified
using both blastp (2.9.0) and hmmsearch (3.2.1) (34, 70). Contigs containing putative MCPs were
examined for the presence of 3 other core virophage genes: a minor capsid gene, a cysteine protease
gene, and a DNA-packaging gene. To generate an MCP phylogenetic tree, multiple alignments of
complete and nearly complete MCPs from this study along with previously published MCPs were
generated using Muscle (3.8.31) (71). The maximum-likelihood tree was constructed using FastTree
(2.1.10) (Whelan Goldman model) (72) and visualized using iTOL (73).

Phage-host prediction. We predicted phage-host pairs by using Crass (2.1) (74) to detect CRISPR
spacers and direct repeats. Spacers and repeats were mapped back to the assembled contigs, and those
with a mismatch of �2 bp were retained for analysis. We clustered the spacers and repeats from each
sample to determine their nucleotide similarity using CD-HIT (4.6.8) (75). The average cluster size for
spacers was 1.1, indicating that most spacer sequences identified were unique. The average cluster size
for direct repeats was 2.8, indicating that repeats can be identified more than once, as expected based
on CRISPR-array architecture.

Contigs containing spacers and/or repeats were assigned taxonomy by alignment to the NCBI nt
database (June 2019) using BLASTN (blast� 2.9.0). Spacers were aligned to predicted viral contigs using
BLASTN optimized for shorter sequences, as detailed in reference 76. For each viral contig, the bacterium
with the best-matching CRISPR spacer was predicted as the host using a greedy approach (highest bit
score, lowest E value, highest percent identity, longest length, and lowest number of mismatches and
gaps).

Gene-sharing network construction and clustering of viral contigs. Viral clusters were identified
using a shared gene content-based network analysis, where virus genomes and contigs are nodes in the
network and sequence similarities are represented as edges, as described in Jang et al., 2019 (18). Briefly,
for each sample, ORFs were predicted and compared all-to-all using BLASTP along with virus genomes
in the viral RefSeq database (version 85, November 2017) and clustered using the Cyverse tool
vConTACT2-Gene2Genome (1.1.0). The protein clusters were used as input to generate viral clusters
using vConTACT2 (0.9.5) (18, 77). To identify viral contigs that were grouped with viral RefSeq genomes
across the samples, output from vConTACT2 (0.9.5) for each sample was merged together to create a
condensed network, visualized in Cytoscape (77).

Bipartite network analysis. Phage-bacterium network infection patterns were stored using an
adjacency matrix with 285 columns representing VCs and 102 rows representing bacterial genera. BiMat
(1.0) was used to calculate nestedness and modularity using the equiprobable null model and 10,000
iterations. Nestedness was tested using the nestedness temperature calculator (NTC) (78) and nestedness
metric based on overlap and decreasing fill (NODF) (79). Modularity was tested using label propagation
followed by bipartite recursively induced modularity (LP-BRIM) (80).

Phage-host co-occurrence analysis. A kmer�based taxonomic analysis was performed using Kaiju
(1.7.2) (81) for the 16 NYC samples and 26 wastewater metagenomic samples collected in the United
States and obtained from Integrated Microbial Genome (IMG) (82). Differential abundance between cities
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was performed using multinomial regression available from the songbird package (83). New York was
chosen as the reference city. This analysis was run with 10,000 epochs and a batch size of 3 samples.

To estimate phage-microbe interactions, co-occurrence analysis was performed using mmvec (1.0)
(84). From this, we were able to approximate the conditional probability of observing a specific microbe
given that a specific phage was observed. This analysis was run with 1 latent dimension 500 epochs, a
learning rate of 1e�5, and a batch size of 1,000 sequences; 4 samples were held out for cross validation.
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