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Abstract

Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology 
of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of 
lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of 
this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls.
Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance 
spectroscopy in the dorsal anterior cingulate cortex (2 x 2 x 4.5 cm3) using a 2-D JPRESS sequence. Lactate and glutathione were 
quantified using the ProFit software program.
Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. 
Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between 
lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed.
Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder 
to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication 
of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory 
mechanism regardless of bipolar disorder diagnosis.
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Introduction
Multiple neurobiological pathways have been implicated in the 
physiopathology of bipolar disorder (BD). Oxidative stress (Berk 
et  al., 2011; Soeiro-de-Souza et  al., 2013) and mitochondrial 

dysfunction number amongst these pathways (Stork and 
Renshaw, 2005). Although these 2 processes are closely inte-
grated, published reports have generally focused on only one 
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of these abnormalities at a time. Proton magnetic resonance 
spectroscopy (1H-MRS) is a noninvasive method that allows in 
vivo detection of metabolic alterations in localized brain areas 
(voxels). With regard to BD, previous studies based on standard 
1-dimensional 1H-MRS protocols report a possible glycolytic 
shift evidenced by abnormalities in the glutamate to glutamine 
ratio (Stork and Renshaw, 2005; Soeiro de Souza et  al., 2013, 
2015). Two-dimensional (2D) J-resolved 1H-MRS techniques allow 
the measurement of small signal metabolites such as lactate 
(Lac), the main metabolic marker of mitochondrial dysfunc-
tion, and glutathione (GSH), the predominant brain antioxidant. 
Currently, there are no 2D J-resolved 1H-MRS studies reporting 
measures of both Lac and GSH concomitantly in BD. Measuring 
these 2 metabolites at the same time in vivo provides a unique 
opportunity to test the hypotheses of altered redox state and its 
association with mitochondrial dysfunction in BD.

Mitochondria play a crucial role in ATP production through 
oxidative phosphorylation, a process carried out by the respira-
tory chain complexes I, II, III, and V (Orth and Schapira, 2001; 
Shanske et  al., 2001; Chinnery and Schon, 2003). When mito-
chondrial function is inhibited or insufficient, anaerobic glyco-
lysis is activated, leading to higher production of Lac. Thus, the 
accumulation of Lac occurs when oxidative phosphorylation is 
unable to meet energy requirements and the cell is forced to 
rely on the glycolytic process (Rudkin and Arnold, 1999). In gen-
eral, mitochondrial dysfunction contributes to neurodegenera-
tion either by apoptosis or generation of reactive oxygen species 
(ROS). ROS such as hydrogen peroxide, superoxide, and hydroxyl 
radicals are produced as by-products of mitochondrial phospho-
rylation (Gutteridge and Halliwell, 2000; Cavanagh et al., 2002; 
Clark et al., 2002; Ferrier and Thompson, 2002). Under these cir-
cumstances of elevated levels of Lac and ROS, the GSH system, 
as the major brain antioxidant, has a fundamental role.

The GSH system is especially important for cellular defense 
against ROS, as GSH is the major antioxidant in the brain. This 
system comprises the enzymes that synthesize GSH within cells 
as well as dedicated enzymes that use GSH as the means to exert 
antioxidant effects (Dringen, 2000). GSH reacts directly with radi-
cals in nonenzymatic reactions and is the electron donor in the 
reduction of peroxides catalyzed by GSH peroxidase. Astrocytes 
appear to contain higher GSH levels than neurons both in vivo 
and in culture (Dringen, 2000). There are few reports about abnor-
malities of the GSH system in BD regarding altered enzymes 
that use GSH as a cofactor (GSH reductase, GSH S-transferase, 
GSH peroxidase), but the interpretation of findings is limited 
by the heterogeneous methodologies used (Brown et al., 2014). 
Studies conducted on peripheral blood cells have shown that BD 
is associated with increased levels of GSH reductase and GSH 
S-transferase in the late stage of the illness (Andreazza et  al., 
2009). Moreover, low GSH S-transferase levels have been reported 
in postmortem prefrontal cortex from patients with BD, major 
depressive disorder, and schizophrenia (Gawryluk et  al., 2011). 
Additionally, elevated GSH peroxidase in peripheral blood has 
been reported in BD depressive episodes (Andreazza et al., 2007; 
de Sousa et al., 2014) but not in mania or euthymia (Abdalla et al., 
1986; Kuloglu et al., 2002; Andreazza et al., 2009; Raffa et al., 2012).

Previous 1H-MRS studies investigating GSH are scarce in BD, 
because standard techniques are not sufficiently sensitive to 
detect metabolites present in low concentrations, such as GSH. 
Our review identified 5 previous MRS studies on GSH in BD, all 
of which included a mixed sample of BD patients (type I, I, or 
NOS) in mania, depression, or euthymia (Chitty et al., 2013, 2014, 
2015; Lagopoulos et al., 2013; Godlewska et al., 2014). All of these 
studies reported no differences in GSH levels between BD and 

controls in anterior cingulate (ACC) (Chitty et  al., 2013, 2014; 
Lagopoulos et al., 2013), prefrontal/occipital voxels (Godlewska 
et al., 2014), or hippocampus (Chitty et al., 2015). With the objec-
tive of confirming an absence of differences in GSH between BD 
patients and HC we, studied a large and homogeneous sample 
of euthymic BD type I patients. Furthermore, the 2D-J resolved-
PRESS 1H-MRS technique was employed for its greater sensitivity 
in detecting small GSH signals compared with the conventional 
1H-MRS technique used in previous studies.

Previous evidence on oxidative stress in BD has shown altera-
tions in antioxidant enzymes and lipid peroxidation in different 
states and stages of BD (Berk et al., 2011). Superoxide dismutase 
and catalase activity have been reported to be altered in BD 
mood episodes (Andreazza et al., 2007; Machado-Vieira et al., 
2007). Evidence for oxidative stress in BD has been found in the 
form of lipid peroxidation and reduced Na+-K+-ATPase activ-
ity, alterations that can be counteracted by lithium treatment 
(Banerjee et al., 2012). Moreover, decreased plasma levels of total 
GSH, together with lower catalase expression, increased protein 
carbonyls, 4-HNE, and 3-NT, were found in BD patients (Raffa et 
al., 2012; Andreazza et al., 2013). Mitochondrial abnormalities in 
BD patients displayed decreased attachment of hexokinase 1 to 
outer mitochondrial membrane and decreased Complex I levels 
(Andreazza et al., 2013).Moreover, there is some evidence indi-
cating that the lifetime number of manic episodes increases oxi-
dative damage to guanosine in BD, where our group previously 
reported an association between elevated levels of 8-OHdG and 
number of manic episodes (Soeiro-de-Souza et al., 2013).

Elevated Lac has been considered a marker of mitochondrial 
dysfunction in BD (Stork and Renshaw, 2005). Brain Lac, a meta-
bolic product of glycolysis, plays an integral role in neuronal 
energy metabolism (Schurr, 2006). Lac exists in the healthy brain 
at low basal concentrations, and elevations can indicate transient 
changes in physiological state (Dager et al., 1999) or neural activa-
tion (Frahm et al., 1996). Lac is a metabolite that is hard to measure 
due to its low concentration as well as to difficulties distinguishing 
the Lac signal from that of overlapping lipids and macromolecules, 
where specific 1H-MRS methods are required to reliably detect Lac 
(Rudkin and Arnold, 1999). The 4 previous 1H-MRS studies on Lac 
comparing BD patients with controls have reported increased lev-
els in patients with BD (Dager et al., 2004; Brady et al., 2012; Chu 
et al., 2013; Xu et al., 2013), but none have exclusively investigated 
BD type I euthymic patients. These studies have included a mix-
ture of BD subjects in different mood episodes, where this might 
be problematic when studying Lac in BD, as far as antioxidative 
enzymes have been reported to be altered during mood episodes 
(Andreazza et al., 2007; Machado-Vieira et al., 2007). Moreover, the 
majority of previous Lac 1H-MRS studies used a short echo-time 
(TE), which can obscure Lac detection because of an important 
overlap with lipids’ signal in this region (Rudkin and Arnold, 1999).

Aims of the Study

The aim of this study was to measure simultaneously dorsal 
ACC (dACC) levels of Lac and GSH in euthymic BD type I  and 
healthy controls (HC), using in vivo 2D 1H-MRS. We hypothesized 
that BD patients present higher levels of Lac and lower levels 
of GSH based on the assumption of increased redox state and 
mitochondrial dysfunction in BD.

Methods

Eighty-eight subjects were included in this study. Of these, 50 
(31 F, 18–45 years old) were euthymic BD I subjects and 38 (15 F, 
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18–45 years old) were HC. Diagnoses were made by trained psy-
chiatrists based on the Structured Clinical Interview (First et al., 
1996) for DSM-IV TR (DSM-IV, 2000). The subjects had been on 
stable medication regimens for at least 2 months prior to the 
scanning session. Subjects with neurological disorders or medi-
cal disorders, head trauma, or current/past (3 months) substance 
abuse, as well as those who had been treated with electrocon-
vulsive therapy in the last 6 months were excluded. Moreover, 
subjects reporting heavy episodic drinking (consuming 5 or 
more standard drinks [male], or 4 or more drinks [female] over 
a 2-hour period) (Moreira et  al., 2009) over the past 3  months 
were excluded. The Young Mania Rating Scale (Young et al., 1978) 
and the Hamilton Depression Rating Scale (Hamilton, 1960) were 
used to assess residual subthreshold depressive and manic 
symptoms. Euthymia was defined as <7 Young Mania Rating 
Scale and <7 Hamilton Depression Rating Scale. The patients 
also fulfilled the DSM-IV criteria for remission.

All HC had no current or past history of psychiatric disor-
ders according to the evaluation conducted by trained psychia-
trists using the Mini International Neuropsychiatric Interview 
(Sheehan et  al., 1998). In addition, HC subjects had no family 
history of mood or psychotic disorders among first-degree rela-
tives based on a semistructured interview.

The research ethics committee CEP CAPPesq from the 
University of Sao Paulo approved the study. Written informed 
consent was obtained from all study participants.

Image Acquisition

All MRI exams were performed on a Philips 3T Achieva scanner 
(Philips Healthcare, Best, The Netherlands) using an 8-channel 
head coil. Spectroscopy measurements were performed using the 
maximum echo sampled JPRESS sequence proposed by Schulte 
and Bosiger (2006). The JPRESS sequence is based on the conven-
tional PRESS spin-echo technique used for selection of a single 
voxel. By varying the echo time of the acquisition, the J coupling 
evolution is encoded in an additional dimension. This technique 
is therefore also known as 2-dimensional spectroscopy, whereby 
the signal is measured as a function of chemical shift expressed 
by the Larmor frequency (as in conventional 1-dimensional spec-
troscopy) but also as a function of the coupling constant J in Hz. 
With the information of the coupling constant J, it is possible to 
resolve the signals from overlapping multiplets, such as Lac and 
GSH. In this study, the JPRESS sequence was used to evaluate 
a voxel of 20 mm (L-R) x 20 mm (I-S) x 45 mm (A-P) (total voxel 
size 18 cm3) in the dACC region, as shown in Figure 1. The mini-
mum TE used was 31 ms, and TE was incremented in 100 steps 
of 2 ms each. For each time increment ΔTE, the maximum-echo 

sampling started the acquisition ΔTE/2 earlier with respect to 
the echo top (Schulte et al., 2006). The repetition time (TR) was 
1600 ms, and 8 averages were acquired for each TE step. One non-
water suppressed spectrum was also acquired at each TE. The 
number of points per spectrum was 1024, and the spectral band-
width was 2000 Hz. An automatic second-order B0 shimming 
routine was used and water suppression was achieved by VAPOR 
(Tkác et al., 1999). Spectroscopy acquisition took 24 minutes, and 
the total exam duration, including volumetric imaging and voxel 
planning, was about 45 minutes. Metabolite quantification was 
obtained using ProFit (PRiOr knowledge FITting) version 2.0 run-
ning on Matlab R2011b (Fuchs et al., 2013). The first version of 
ProFit was developed by Schulte et al. (Schulte and Boesiger, 2006) 
to fit 2D JPRESS data by extending LCModel (Provencher, 1993) 
principles to 2D data sets. In ProFit, as in the LCModel approach, 
the prior knowledge comes from a known metabolite basis set 
(experimentally acquired or calculated) used in the fitting pro-
cess, and the VARPRO approach (van der Veen et al., 1988) is used 
to separate the optimization of nonlinear and linear parameters 
for faster convergence. Fuchs et al. (2013) improved the quantifi-
cation program (ProFit version 2.0) by introducing an experimen-
tally acquired 2D macromolecular baseline into the fitting model 
and allowing for a more accurate and precise fit by accounting 
for the actual line shape and additional baseline distortions by 
self-deconvolution and spline modeling approaches.

The metabolite basis set used by ProFit includes spectra 
from a total of 18 brain metabolites including the metabolite of 
interest in this study: Lac and GSH. Basis set metabolite spec-
tra were calculated with the GAMMA library (Smith et al., 1994) 
using the chemical shift and J-coupling values from the litera-
ture (Fan, 1996; Govindaraju et al., 2000). Quantitative results in 
ProFit are given in the form of ratios to Cr signal (met/Cr). These 
ratios are already corrected for T2 relaxation effects, since ProFit 
automatically calculates T2 relaxation times for each metabo-
lite from the signal obtained at the different TEs. “Pseudo” 
absolute metabolite values [met] were obtained by assuming a 
white matter (WM) Cre concentration of 4.83 mM (mmol/L) and 
a grey matter (GM) Cre concentration of 9.59 mM, as expressed 
in the equation below. These Cr values in mM were calculated 
from previously reported Cr concentrations in units of mmol/
kg (Gasparovic et al., 2006), as used previously (Soeiro de Souza 
et al., 2015; Zoelch et al., 2015) and expressed in the following 
equation: 

met[ ]= +( . . )f * mM f * mM *
met
CrGM WM9 59 4 83
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T1 relaxation effects were corrected for, assuming a mono-expo-
nential T1 relaxation with GM T1 of 1.46s and a WM T1 of 1.24s 
(Mlynárik et al., 2001).

GM% and WM% represent GM and WM volume percentages, 
respectively, in the selected MRS voxel, while fGM and fWM repre-
sent the fractions of Cr signal attributable to GM and WM, respec-
tively. To determine the brain tissue composition contained in 
the MRS voxel of interest, 3-dimensional volumetric images 
were obtained using the 3D-T1- FFE (fast field echo) technique 
(FA  =  8°; TE/TR/TI  =  3.2/7/900 ms) with an isotropic voxel size of 
1 mm3. Briefly, the brain tissue was extracted using the brain 
extraction tool, and segmentation into WM, GM, and CSF was 
achieved using the automated brain segmentation tool FAST 

Figure 1. Magnetic resonance spectroscopy (MRS) voxel location in the sagittal 

plane. Size 20 x 20 x 45 mm3.
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(Zhang et al., 2001). Both tools are part of the FSL suite (http://
www.fmrib.ox.ac.uk/fsl). Finally, the MRS voxel was overlaid on 
the segmented image using a Python-based script developed 
in-house, and percentages of WM, GM, and CSF were calculated 
for each voxel. The ProFit program also provides a Cramér-Rao 
lower bound (CRLB) (Cavassila et  al., 2001), a measure of the 
quality of the metabolite quantification, for each metabolite. 
CRLBs were noted for each metabolite. Excluding spectra with 
Lac CRLBs above a specific threshold (30%) is a common prac-
tice in the literature on Lac. However, it was recently shown 
that to do so might prevent the observation of real differences 
between groups (Kreis, 2016), so we decided not to set a CRLB 
cutoff point in this study to avoid a misinterpretation of our 
Lac results. Only data with a CRLB of 999% were discarded from 
the analysis, since this specific CRLB output denotes that the 
program failed to calculate a reliable CRLB.

Statistical Analysis

The sample was first tested for homogeneity. Categorical vari-
ables were analyzed using χ2 tests, whereas continuous vari-
ables were analyzed using t tests. Normality was checked using 
the Kolmogorov-Smirnov test. Significant differences in age and 
gender were observed in the sample and to prevent this poten-
tial bias from influencing results, age and gender correction was 
performed in all analyses. Normally distributed variables were 
compared between the 2 groups using ANCOVAs in which Lac 
or GSH were entered as a dependent variable, while age, gender, 
group, CSF (only for Lac), and fGM were entered as covariates. To 
investigate the influence of medication use on Lac and GSH, we 
performed an ANCOVA test in which Lac or GSH were entered 
as a dependent variable and medication type (lithium, atypi-
cal antipsychotics, or anticonvulsants), age, gender, CSF (only 
for Lac), and fGM were entered as covariates. To investigate the 
influence of illness duration or lifetime psychotic symptoms on 
metabolites, we used an ANCOVA test in which Lac or GSH was 
entered as dependent variable and illness duration or lifetime 
psychotic symptoms, age, gender, CSF (only for Lac), and fGM 
were entered as covariates. Finally, to investigate the correlation 
between GSH and Lac, we performed a regression analysis con-
trolled by age and gender. All statistical analyses were carried 
out using IBM SPSS version 20.

Results

After controlling for age and gender, significant differences were 
observed between BD patients and HC in voxel content for GM% 
(BD 52% vs HC 54%) (F = 5.5, df = 88, P = .02) and CSF% (BD 25% vs 
HC 23%) (F = 6.2, df = 88, P = .01), but no differences were observed 
in WM content (BD 23% vs HC 23%) (F = 0.4, df = 88, p P = .48). Given 
the observed differences between HC and BD in voxel composi-
tion, we also performed a more detailed segmentation analysis 
of the brain tissue contributing to the spectrum by overlaying 
the 1H-MRS voxel on to structural maps segmented by FreeSurfer 
software (https://surfer.nmr.mgh.harvard.edu). This volumetric 
analysis is part of a separate publication including a larger cohort 
of BD patients (M. G. Soeiro-de-Souza and M. C. Garcia Otaduy, 
unpublished observations). Results of the MRS voxel overlay 
onto the segmented volumetric images indicate that the corti-
cal structure driving this difference in voxel brain tissue compo-
sition was the caudal ACC, which was reduced in BD compared 
with HC (HC = 16.5 ± 3.5% vs BD = 14.1 ± 3.8%; P = .005). As a result, 
BD subjects had lower GM volume and higher CSF volume within 
the MRS voxel. These differences were compensated for in the 

statistical analysis by inclusion of fGM (as described above in Image 
acquisition) as a variable in the statistical model. When compar-
ing Lac between groups, CSF% was also considered as a covariate, 
since Lac can be present in CSF. GSH was present and quanti-
fiable for all patients with a mean CRLB of 3.98% (1.37%-5.71%). 
Group characteristics for the GSH analysis are described in Table 
1. There was no statistically significant difference in GSH levels 
between groups, although the BD group had higher mean levels 
(f = 2.9, df = 88, P = .08) (BD mean 1.32 ± 0.31; HC mean 1.24 ± 0.14).

Regarding the Lac MRS, 16 individuals (3 HC and 13 BD) were 
excluded for having a CRLB of 999%, indicating lipid contamination 
or other artifacts (supplementary Table 1). Therefore, the sample 
used for Lac analysis consisted of 37 BD and 35 HC (Table 2). A sta-
tistically significant difference in Lac level was observed between 
the groups; the BD group had higher mean levels (F = 5.49, df = 72, 
P = .02) (BD mean 0.31 ± 0.15; HC mean 0.24 ± 0.09) compared with 
the HC group (Figure 2). As supplementary material, an analysis 
was performed considering CRLB < 30% (sample size BD = 26 x 

Table 1. Subject Demographic and Clinical Information for GSH MRS

Healthy 
Controls

Bipolar I 
Disorder

n = 38 n = 50

Age (y), mean ±SD 25.7 ± 5.7 31.7 ± 9.1
Gender (male/female) 23/15 19/31
HDRS, mean ±SD 3.7 ± 2.1
YMRS, mean ±SD 2.4 ± 2.1
Illness duration, mean ±SD 9.1 ± 7.6
Lifetime psychotic symptoms (yes/no) 15/35
Mean GSH 1.24 ± 0.14 1.32 ± 0.31
Mean GSH CRLB 3.94 ± 0.33 4.00 ± 0.67
Anticonvulsants (valproate  

or carbamazepine)
n = 23

Lithium n = 29
Atypical antipsychotics n = 23

Abbreviations: HDRS, Hamilton Depression Rating Scale; YMRS, Young Mania 

Rating Scale; y, years; SD, standard deviation; Lac, lactate; CRLB, Cramér-Rao 

Lower Bound.

Table 2. Subject Demographic and Clinical Information for Lactate 
MRS (n = 72)

Healthy 
Controls

Bipolar  
I Disorder

n = 35 n = 37

Age (y), mean ±SD 25 ± 4.5 31.1 ± 9.3
Gender (male/female) 23/12 13/24
HDRS, mean ±SD 3.1 ± 1.9
YMRS, mean ±SD 2.7 ± 2
Illness duration, mean ±SD 8.8 ± 7.2
Lifetime psychotic symptoms (yes/no) 11/26
Mean Lac 0.24 ± 0.09 0.31 ± 0.15
Mean Lac CRLB 28.8 ± 15.6 32.7 ± 36.3
Anticonvulsants (valproate  

or carbamazepine)
n = 16

Lithium n = 22
Atypical antipsychotics n = 18

Abbreviations: HDRS, Hamilton Depression Rating Scale; YMRS, Young Mania 

Rating Scale; y, years; SD, standard deviation; Lac, lactate; CRLB, Cramér-Rao 

Lower Bound.

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
https://surfer.nmr.mgh.harvard.edu
http://ijnp.oxfordjournals.org/lookup/suppl/doi:10.1093/ijnp/pyw032/-/DC1
http://ijnp.oxfordjournals.org/lookup/suppl/doi:10.1093/ijnp/pyw032/-/DC1
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HC = 26), whose outcome supported the result of higher Lac in BD 
(F = 5.0, df = 52, P = .02) (supplementary Table 2).

We observed a positive correlation between Lac and GSH 
levels in BD (B = 0.20, t = 3.2, P = .003, CI = 0.07–0.33) but not in HC 
(B = 0.17, t = 1.64, P = .11, CI = -0.04–0.39) (Figure 3). When we per-
form this analysis without correcting for age, gender, or fGM, we 
observed the same results: in BD, Lac was correlated with GSH 
(B = 0.21, t = 3.44, P = .002, CI = 0.08–0.33), while in HC there was no 
correlation between these 2 metabolites (B = 0.19, t = 1.8, P = .07, 
CI = -0.01–0.41).

Neither illness duration nor the presence of lifetime psy-
chotic symptoms demonstrated to influence any of the metabo-
lite measures (P < .05). There was no influence of lithium, atypical 
antipsychotics, or anticonvulsants on Lac or GSH levels.

Discussion

In the present study, higher dACC Lac levels were found in 
euthymic BD type I patients compared with HC. No significant 
differences in GSH were observed, but a positive correlation 

between Lac and GSH level was detected. Moreover, no influence 
of medications on metabolite levels was found.

Our results revealed increased Lac in BD regardless of medi-
cation use, supporting the hypothesis of mitochondrial dysfunc-
tion in BD (Stork and Renshaw, 2005). Mitochondrial dysfunction 
occurs when oxidative phosphorylation is unable to meet energy 
requirements and the cell is forced to rely on the glycolytic pro-
cess, which increases the production of Lac (Moore and Galloway, 
2002). Some studies have reported higher Lac concentrations 
in the CSF of BD patients (Regenold et al., 2009). Furthermore, 
postmortem studies have found decreased expression of mito-
chondrial genes encoding the electron transport chain (Konradi 
et al., 2004; Sun et al., 2006) and abnormal mitochondrial com-
plex I activity (Andreazza et al., 2010) in brain of BD individu-
als. Moreover, the presented data are reinforced by other MRS 
studies reporting lower intracellular pH (Kato et al., 1992; 1993), 
decreased N-acetyl aspartate (Cecil et al., 2002; Chang et al., 
2003), and higher Glx (Yüksel and Ongur, 2010; Soeiro de Souza 
et al., 2013). Findings of increased Glx in bipolar subjects suggest 
that the hypothesized glycolytic shift underlying the pathology 
of BD may be linked to some degree of glutamate-induced neu-
ronal hyperactivation (Stork and Renshaw, 2005).

Our data evidencing increased Lac in BD is in agreement with 
the majority of previous Lac 1H-MRS studies involving mania, 
depression, and euthymia (Dager et al., 2004; Chu et al., 2013; Xu 
et al., 2013). Only one study, by Brady et al. (2012) reported lower 
Lac levels in BD patients (n = 7) compared with HC. Brady et al. 
(2012) reported that Lac levels in mania (n = 7) were increased 
compared with HC in the parietal occipital cortex and ACC. 
However, when these same patients were in euthymia after 
treatment, their Lac levels were lower (n = 7) than those of HC 
(n = 6) (Brady et al., 2012). Chu et al. investigated Lac levels (4T 
scanner) in a sample of 21 BD patients in euthymia and mixed 
episode compared with 10 HC. The group reported increased Lac 
levels in BD patients, symptomatic or otherwise (Chu et al., 2013). 
The other 2 studies comparing Lac levels in BD patients with HC 
reported increased levels of Lac in the ACC of BD patients during 
mania, depression, and mixed state (Dager et al., 2004; Xu et al., 
2013). Three of the 4 Lac MRS studies described CRLB levels and 
used a CRLB cutoff for inclusion of subjects in the study. Brady 
et al. (2012) included individuals with CRLB < 26%, while Xu et al. 
(2013) and Chu et  al. (2013) included those with CRLB ≤ 30%. 
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Figure 2. Mean dorsal anterior cingulate cortex (dACC) levels of lactate (Lac) in 

bipolar disorder (BD) type I compared with healthy controls (HC).
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Figure 3. Correlation between dorsal anterior cingulate cortex (dACC) levels of lactate (Lac) and glutathione (GSH) adjusted for age and gender.
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A known problem with measuring Lac is systematic overestima-
tion when using linear combination fitting algorithms to esti-
mate concentrations (Kreis, 2004). Excluding spectra with Lac 
CRLBs above a specific threshold (30%) is a common practice in 
the literature on Lac, since CRLBs are linked to chemical esti-
mation reliability. However, due to the difficulty discriminating 
the Lac signal from background noise, the meaning of the CRLBs 
produced by LCModel for this metabolite is less clear. Kreis et al. 
(Kreis and Kyathanally, 2015; Kreis, 2016) reported that using 
CRLB threshold as an exclusion criterion can lead to false con-
clusions and suggested that quality checks should be based on 
metabolites present at higher concentrations. Therefore, we 
decided not to set a CRLB cutoff point in this study to avoid mis-
interpretation of our Lac data, and by doing so, the mean CRLB 
of Lac in this study was 30.8%. Supplementary Table 2 demon-
strates that inclusion of only individuals with CRLB<30% would 
have yielded a smaller sample size (BD, n = 26; HC, n = 26) with 
similar results.

Our GSH data are in agreement with the 5 previous MRS 
studies on GSH in BD (Chitty et al., 2013, 2014, 2015; Lagopoulos 
et al., 2013; Godlewska et al., 2014). All studies reported no dif-
ferences in GSH levels between BD and controls within differ-
ent voxels but included BD type I, II, and BD spectrum during 
all mood episodes. Two of these studies reported a negative 
association between alcohol and tobacco use with GSH lev-
els in the ACC that was specific to BD patients (Chitty et al., 
2013, 2014). A  longitudinal study reported that elevated GSH 
levels in the hippocampus were associated with lower alco-
hol consumption and frequency of tobacco use (Chitty et al., 
2015). Based on our data, from a sample that included exclu-
sively euthymic patients, taken together with previous GSH 
1H-MRS studies, it can be concluded that the levels of GSH 
measured by 1H-MRS do not differ between BD patients and 
HC regardless of mood state. In BD patients, we found a cor-
relation between Lac and GSH, where higher Lac was associ-
ated with higher GSH levels. We hypothesize that the positive 
correlation found between GSH and Lac could be related to 
the presence of a physiological compensatory mechanism, in 
which there is an increase in GSH levels as Lac levels increase. 
Similar results have been observed in early-stage schizophre-
nia and posttraumatic stress disorder, where a higher GSH 
was noted in subjects with greater oxidative stress (Michels 
et  al., 2014; Wijtenburg et  al., 2015). We hypothesize that 
both BD and HC groups had different patterns of correlation 
between Lac and GSH, because the patients were medicated 
and stable, allowing a compensatory response of GSH to 
increased mitochondrial dysfunction. Therefore, we speculate 
that the association between Lac and GSH is impaired during 
acute mood episodes.

A limitation to studying euthymic BD type I  patients is 
the difficulty finding subjects without symptoms who are not 
under medication treatment. Therefore, the use of medications 
should always be controlled as a cofactor in this type of study. 
Consequently, we can only state that the findings reported are 
the result of an interaction among all the factors and probably 
a metabolic feature of euthymic medicated BD type I patients. 
Moreover, the present sample of BD patients differed from HC 
for age and gender, although these variables were controlled 
for in all analysis. Furthermore, the differences in tissue voxel 
composition observed between BD patients and HC are probably 
explained by cortical thinning, previously reported for BD (Lyoo 
et al., 2006) and major depressive disorder (Li M et al., 2014). In 
congruence with this phenomenon, we found a smaller contri-
bution of the caudal ACC cortex to the total brain tissue in the 

MRS voxel among BD patients compared with HC. To compen-
sate for this variation, the fGM and CSF% were considered in the 
statistical analysis.

To the best of our knowledge, this investigation had the larg-
est sample size for an MRS study of Lac and GSH in euthymic 
BD type I patients. Our data showed that BD type I patients had 
higher levels of Lac in the dACC, which could be an indication 
of altered mitochondrial function and a glycolytic shift in BD 
even during euthymia. Moreover, Lac correlated with GSH lev-
els regardless of BD diagnosis, indicating a physiological asso-
ciation between the antioxidative system and mitochondrial 
dysfunction.
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