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Abstract: Terpenes represent the biggest group of natural compounds on earth. This large class of
organic hydrocarbons is distributed among all cellular organisms, including fungi. The different
classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene
ergosterol is the main sterol identified in cell membranes of these organisms. The availability of
genomic data from members in the Ceratocystidaceae enabled the detection and characterization
of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using
a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species
of the Ceratocystidaceae were identified. Ergosterol and some of the intermediates in the path-
way were also detected in seven species (Ceratocystis manginecans, C. adiposa, Huntiella moniliformis,
Thielaviopsis punctulata, Bretziella fagacearum, Endoconidiophora polonica and Davidsoniella virescens),
using gas chromatography-mass spectrometry analysis. The average ergosterol content differed
among different genera of Ceratocystidaceae. We also identified all possible terpene related genes
and possible biosynthetic clusters in the genomes used in this study. We found a highly conserved
terpene biosynthesis gene cluster containing some genes encoding ergosterol biosynthesis enzymes
in the analysed genomes. An additional possible terpene gene cluster was also identified in all of the
Ceratocystidaceae. We also evaluated the sensitivity of the Ceratocystidaceae to a triazole fungicide
that inhibits ergosterol synthesis. The results showed that different members of this family behave
differently when exposed to different concentrations of triazole tebuconazole.

Keywords: ergosterol; Ceratocystidaceae; terpenes; biosynthetic gene cluster

1. Introduction

Fungi produce a large variety of terpenoids that form part of a structurally and func-
tionally diverse class of natural compounds [1]. They are involved in an array of biological
processes ranging from those needed for the adaptation to particular environmental niches
to those needed for the interaction with other organisms [2]. Despite this variety, all
terpenoids are made from simple five-carbon precursor molecules to form compounds
containing two or more isoprene units [1]. The terpenoid compounds of fungi can have
two, three, four or six isoprene units, respectively referred to as monoterpenes, sesquiter-
penes, diterpenes and triterpenes [3]. Most known terpene synthases of fungi catalyze the
formation of sesquiterpenes, and only a few diterpene and triterpene synthases are known,
and no known bona fide monoterpene synthases [1].
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Although steroids are a major group of natural triterpenoids [4], fungi lack a large
diversity of these compounds [1]. In most cases, ergosterol (24-methylcholesta-5, 7, 22-
trien3b-ol) is their major sterol [5], with the main exception being primitive fungi such as
those in the Chytridiomycota where cholesterol (cholest-5-en-3β-ol) is the main sterol [6].
These sterols are primarily found in cell membranes where it has diverse functions includ-
ing processes essential for growth and development, the regulation of cell wall permeability,
and adaptation to stress [7].

The processes involved in ergosterol and cholesterol biosynthesis have been elucidated
using studies on Saccharomyces cerevisiae, as well as various fungi [6–9]. In general, the
first set of steps involves the synthesis of farnesyl pyrophosphate (FPP; a linear terpenoid
with 15 carbons) from acetyl-coenzyme A (acetyl-CoA), after which the next set of catalytic
steps produce squalene (a linear terpenoid with 30 carbons) from two molecules of FPP,
with the final set of steps involving the conversion of squalene to lanosterol (a tetracyclic
terpenoid with 30 carbons) and its modification at various positions to produce either
ergosterol or cholesterol [10]. However, numerous variations are known among fungal
species [11], especially in the later stages of the biosynthesis pathway [5]. Additionally, in
some species, the pathway partially causes the production of other final products and no
ergosterol [5]. Due to its role in biology, distinctive structural characteristics and the unique
processes of its biosynthesis, ergosterol is regarded as an ideal target for fungicides [12].
For example, pathogenic fungi may be controlled using azole compounds that inhibit
lanosterol 14-α-demethylase, thereby blocking a key step in the conversion of lanosterol to
ergosterol [13]. However, azole resistance in fungi has been reported, and the mechanisms
allowing this include detoxification transporters, amino acid substitutions in lanosterol 14-
α-demethylase protein binding sites and overexpression of the genes encoding lanosterol
14-α-demethylase [13]. Therefore, understanding ergosterol biosynthesis and potential
resistance is important in the management of fungal pathogens.

Here we studied ergosterol and terpene biosynthesis in the very important plant
pathogenic fungal family Ceratocystidaceae (Phylum Ascomycota, Order Microascales).
Despite their economic importance, our knowledge regarding ergosterol biosynthesis
or the production of other terpenoids in the Ceratocystidaceae is limited to only a few
studies. Ergosterol was reported as the only sterol identified from Bretziella fagacearum
(previously known as Ceratocystis fagacearum) using thin-layer chromatography and mass
spectrometry [14]. In another study, the cyclic monoterpene alcohol isopulegol was isolated
and identified from liquid cultures of Endoconidiophora coerulescens (previously known as
Ceratocystis coerulescens) [15].

The overall goal of this study was to explore the potential of Ceratocystidaceae to
produce ergosterol and other terpenoids. We accordingly identified genes involved in
terpenoid biosynthesis using publicly available genome sequences for 23 species from
the Ceratocystidaceae (Table 1). We then used gas chromatography-mass spectrometry
(GC-MS) analysis to evaluate the production of intermediates of the ergosterol biosynthesis
pathway in seven representatives of the family (i.e., C. manginecans, C. adiposa, Huntiella
moniliformis, Thielaviopsis punctulata, Br. fagacearum, E. polonica and Davidsoniella virescens).
Finally, we evaluated the sensitivity of Ceratocystidaceae to an azole fungicide. The
findings of this study increase our knowledge of ergosterol biosynthesis in Ceratocysti-
daceae, which can be applied for developing new antifungal compounds targeting this
pathway. The results of the study thus provide a valuable starting point for future studies,
particularly regarding the control of pathogenic species Ceratocystidaceae.

2. Materials and Methods
2.1. Fungal Genomes and Cultures

We used the available genomic sequences from 23 species from eight genera in the
Ceratocystidaceae (Table 1). These included Ceratocystis (C. manginecans, C. fimbriata, C.
eucalypticola, C. harringtonii, C. smalleyii, C. albifundus, C. platani and C. adiposa), Huntiella
(H. moniliformis, H. decipiens, H. bhutanensis, H. omanensis and H. savannae), Thielaviopsis
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(T. punctulata and T. musarum), Bretziella (Br. fagacearum), Endoconidiophora (E. polonica
and E. laricicola), Ambrosiella (A. xylebori), Davidsoniella (D. virescens, D. neocaledoniae and
D. australis) and Berkeleyomyces (Be. basicola). These genomes were previously shown to
have high levels of completeness [16,17], suggesting that they would be useful for the
identification of putative genes in involved in terpenoid biosynthesis.

For the sterol detection and quantification studies, seven representative species were
used. These were C. manginecans, C. adiposa, H. moniliformis, T. punctulata, Br. fagacearum, E.
polonica and D. virescens. The entire set of 23 fungi were also used for the in vitro fungicide
sensitivity assay. The isolates were routinely cultured at 25 ◦C in the dark on malt extract
agar (MEA) medium (2% Bacto™ malt extract [BD BioSciences, San Jose, CA USA], 2%
Difco™ agar [BD BioSciences]). All isolates are available from the culture collection of the
Forestry and Agricultural Biotechnology Institute (FABI) fungal.

Table 1. Isolates numbers and genome sequence information for the species used in this study.

Species Isolate Number a GenBank Accession Number References

B. fagacearum CMW2656 MKGJ00000000 [18]

C. adiposa CMW2573 LXGU00000000 [19]

H. moniliformis CMW10134 JMSH00000000 [20]

T. punctulata BPI 893173 LAEV00000000 [21]

D. virescens CMW17339 LJZU000000000 [22]

D. neocaledoniae CMW 225392 RHDR00000000 [16]

D. australis CMW 2333 RHLR00000000 [17]

E. polonica CMW20930 LXKZ00000000 [19]

A. xylebori CBS110.61 PCDO00000000 [23]

Be. basicola CMW49352 PJAC00000000 [24]

C. manginecans CMW17570 JJRZ00000000 [20]

C. fimbriata CMW 15049 APWK00000000 [25]

C. eucalypticola CMW 11536 LJOA00000000 [22]

C. harringtonii CMW 14789 MKGM0000000 [18]

C. smalleyii CMW 14800 NETT01000000 [24]

C. albifundus CMW 13980 JSSU000000000 [26]

E. laricicola CMW 20928 LXGT00000000 [19]

H. decipiens CMW 30855 NETU00000000 [27]

H. bhutanensis CMW 8217 MJMS00000000 [18]

H. omanensis CMW 11056 JSUI000000000 [26]

H. savannae CMW 17300 LCZG00000000 [28]

T. musarum CMW 1546 LKBB00000000 [22]

C. platani CF0 LBBL00000000 [29]
a Isolates with CMW numbers may be obtained from the culture collection of the Tree Protection Cooperative
Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria,
South Africa. Those with CBS and BPI numbers may be obtained from Centraalbureau voor Schimmel cultures,
CBS Fungal Biodiversity Centre and the US National Fungus Collections, Systematic Botany and Mycology
Laboratory, Maryland, U.S.A.

2.2. Identification of Terpene Biosynthesis Genes and Gene Clusters

For identifying potential terpenoid biosynthesis genes and gene clusters, the respective
genome sequences were submitted, to antiSMASH [30]. The Open reading frames (ORFs)
identified were further examined using the InterPro web portal [31], after which signature
sequences were inferred with MOTIF (http://www.genome.jp/tools/motif/ accessed on

http://www.genome.jp/tools/motif/
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5 January 2021). The contigs identified by antiSMASH to contain terpene biosynthesis
genes and gene clusters were also examined manually. For this purpose, any ORF in
approximately 15kilobase pair upstream and downstream of the predicted core gene (i.e., a
terpene synthase coding gene) were screened against the nonredundant protein database of
the National Centre for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov
accessed on 5 January 2021) using BLASTp and tBLASTn searches (Expect value [E] ≤
10−6) to find their orthologs.

2.3. Ergosterol Biosynthesis Pathway Prediction

The GhostKoala tool of the Kyoto Encyclopedia of Genes and Genomes (KEGG) [32]
was used to add metabolic annotations to all of the genes encoded by each genome.
The ergosterol biosynthesis pathway in Ceratocystidaceae was then predicted using the
KEGG Mapper—Search&colour Pathway tool (http://www.genome.jp/kegg/tool/map_
pathway2 accessed on 5 January 2021). These analyses were done using the whole genome
sequences of all of the fungi included (Table 1), with the only exception being A. xylebori
because of an assembly problem that caused incorrect prediction of the pathway. As
a reference, we used the genome of Fusarium graminearum (GenBank accession number
AACM00000000). The annotation of homologous genes from each species was checked
using both AUGUSTUS [33] and Fgenesh [34].

The genome sequences included in this study were also interrogated for the presence
of putative genes involved in the production of the intermediate mevalonate and of ergos-
terol using BLASTn analyses (E ≤ 10−6) in CLC Genomic Workbench version 11.0.1 (Qiagen
Bioinformatics, Aarhus, Denmark). The gene sequences used in this analysis included
those that are part of the mevalonate pathway, namely genes coding for ERG8 (EWZ41759)
from Fusarium oxysporum, ERG10 (EDV11184 and EDN61111) from S. cerevisiae, ERG12
(EWZ48657) from F. oxysporum, ERG13 (PTB67186) from Trichoderma citrinoviride, ERG20
(ESU12927) from F. graminearum, isopentenyl-diphosphate delta-isomerase (ESU16336)
from F. graminearum and diphosphomevalonate decarboxylase (ESU17136) from F. gramin-
earum. Those that are part of the ergosterol biosynthesis phase of the pathway included
genes coding for ERG1 (AAA34592) from S. cerevisiae, ERG2 (RKL43533), ERG5 (RKL44214)
and ERG7 (RBA08815) from F. proliferatum, ERG3 (PCD36290), ERG4 (EFX01240) and ERG6
(ESU10532) from F. graminearum, ERG9 (ABX64425) and ERG25 (KLO95654) from F. fujikuroi,
ERG11 (DAA06695), ERG24 (EDN62547) and ERG27 (EDN59646) from S. cerevisiae.

2.4. Intron/Exon Architecture of the Ceratocystidaceae ERG Genes

The intron and exon positions of putative ERG genes in the genomes included in this
study were manually confirmed using CLC Genomic Workbench and Geneious version
11.1.5 (https://www.geneious.com/geneious/ accessed on 5 January 2021). The intron–
exon boundaries for the genes in H. moniliformis and C. fimbriata were also confirmed by
mapping publicly available transcripts [35,36] to the different genes of these two species.
For this purpose, the available RNAseq reads were quality filtered in CLC Genomics
Workbench version 9.1.1.0 using a read length over 300 bp and a Phred quality score of
below 20 (Q ≤ 0.01). The resulting RNASeq data for each of the isolates were then mapped
to the different genes identified, using the RNA-legacy tool in CLC Genomics Workbench
with a minimum similarity fraction of 0.8 and minimum length fraction of 0.5.

2.5. Phylogenetic Analysis of the Putative ERG11 and ERG13 Genes of the Ceratocystidaceae

Genes encoding hydroxymethylglutaryl-CoA synthase (ERG13) and lanosterol 14-α-
demethylase (ERG11) obtained from the 23 genomes used in this study, were subjected
to phylogenetic analysis. These genes are highly conserved, present in all eukaryotic
kingdoms, and are believed to have evolved prior to the divergence of most eukaryotic
families [37]. Accordingly, the datasets analysed included the respective ERG11 and
ERG13 sequences from all of the Ceratocystidaceae genomes analysed, together with
previously sequenced genes acquired from the top blast hits in the NCBI database. For

http://www.ncbi.nlm.nih.gov
http://www.genome.jp/kegg/tool/map_pathway2
http://www.genome.jp/kegg/tool/map_pathway2
https://www.geneious.com/geneious/
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outgroup purposes, ERG11 sequences from Ustilago hordei (CCF50451), Sporisorium reilianum
(CBQ68278), Malassezia vespertilionis (PKI85412) and Malassezia sympodialis (XP_018740314)
were used. For ERG13, the sequences from Wallemia mellicola (XP_006959548) and Ustilago
maydis (XP_011392062) served as outgroups.

For both the datasets, alignments based on amino acid residues were performed using
MAFFT (Multiple Alignment using Fast Fourier Transform; [38]) with default parameters.
From these datasets, phylogenetic trees were inferred using the MEGA7 package [39] and
the best-fit substitution models indicated by ProtTest [40]. These were JTT+I+G for ERG11
and LG+I+G+F in the case of ERG13) Branch support was estimated using the same model
parameters and 1000 pseudo replicates.

2.6. Sterol Detection and Quantification

Lipid extraction from fungal cultures was done as described before [41]. Briefly, this
involved inoculation of 200 mL of malt extract broth (MEB; 2% Bacto™ malt extract [BD
BioSciences, San Jose, CA, USA]) with a small block of agar overgrown with mycelium
and incubation for 14 days at 25 ◦C in the darkness with shaking at 150 rpm (222DS
Benchtop Shaking Incubator; Labnet international, Edison, NJ, USA). Fungal tissue was
then collected by filtration through filter paper (Whatman, Maidstone, United Kingdom),
washed with distilled water, and freeze-dried. Sterols were then extracted from 50 mg
lyophilized mycelium by saponification at 80 ◦C for 90 min in a 500 µL solution containing
10% (w/v) KOH in methanol. To this mixture, 250 µL distilled water was added and left
to cool to 25 ◦C. The solution was then subjected to three rounds organic extraction using
1 mL hexane. The pooled hexane fractions were evaporated to dryness under a stream of
nitrogen and dissolved in 100 µL methanol.

The samples were derivatized using 50 µL N-methyl-N-trimethylsilyl-trifluoroacetamide
(Macherey-Nagel, Dueren, Germany) for 2 h at 40 ◦C before analysis using a gas chromato-
graph attached to a quadrupole mass spectrometer with an electron impact ion source
(Agilent 5973 6890 GC MS, Agilent, Santa Clara, USA). A standard 30 m HP-5ms capillary
column (Agilent) was used with a constant flow of helium of 1 mL min−1. Sample (1 µL)
was injected with a 1:10 split ratio. The injector temperature was kept at 230 ◦C. The oven
temperature was ramped from an initial 70 ◦C to 320 ◦C at a constant rate of 6 ◦C min−1,
with a final hold time of 3 min. The mass spectrometer was operated in full scan mode
with a mass range of 50–350 m z−1. The ion source was kept at 70 eV at 250 ◦C.

Compounds were identified by spectral comparisons with the NIST library version
12 (National Institute for Standards and Technology, Boulder, USA), retention indices and
when available, retention times of pure standards. Peaks were integrated and quantified
relative to a calibration curve produced for cholesterol. All experiments were done in
three independent replications. Data were imported into the open-source R-based statistics
program Metaboanalyst (https://www.metaboanalyst.ca/faces/home.xhtml accessed on
5 January 2021), normalized using the natural logarithm. Hierarchical clustering was
performed with the hclust function in the R package using Euclidean distance as the
similarity measure and the Ward’s linkage clustering algorithm.

2.7. In Vitro Azole Sensitivity

The sensitivity of the fungi to tebuconazole (1-(4-Chlorophenyl)-4,4-dimethyl-3-(1H-
1,2,4-triazol-1-ylmethyl)-3-pentanol, 250 g/L, Bayer, Leverkusen, Germany) was examined
using the mycelial inhibition technique. Sensitivity to the compound was evaluated by
transferring a 4-mm mycelial block was obtained from the growing edge of a 1-week-old
MEA culture to the center of a Petri plate containing MEA medium supplemented the
fungicide. For this purpose, tebuconazole concentrations of 75, 50, 25, 12.5, 6.25, 3 and
1.5 µg L−1 were used. The inoculated plates were then incubated for 7 days at 25 ◦C in the
dark after which fungal colony diameters were measured. Four replicates were considered
per concentration.

https://www.metaboanalyst.ca/faces/home.xhtml
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All measurements were subjected to one-way analysis of variance (ANOVA). An
individual analysis was performed for each dependent variable and each fungal species on
the repeated dataset. Assumption of normality and homogeneity of variance were assessed
prior to the analysis. Means were compared using Tukey’s test at a statistical significance
of p ≤ 0.05. The analysis was conducted by the statistics program R using “agricolae”
package [42].

3. Results
3.1. Identification of Terpene Biosynthesis Genes and Gene Clusters

AntiSMASH detected two different terpenoid biosynthesis gene clusters in all the
genomes examined in this study (Figure 1). The first cluster was part of the ergosterol
biosynthesis pathway, because it contained genes encoding a steroid-binding protein,
DnaJ, Squalene synthase, delta 24-sterol reductase, a protease and a mannoyl transferase
coding genes (Figure 1A; Supplementary File S1). The second cluster included a core gene
encoding geranylgeranyl pyrophosphate synthetase [43], which was flanked by genes
encoding a cell division protein, MFS transporter, peroxisomal membrane protein, arsenite
transmembrane transporter and a hypothetical protein (Figure 1B; Supplementary File
S1). In H. moniliformis this second cluster was on the same contig, but 50 kb away, from a
gene encoding lanosterol synthase (a key gene in ergosterol biosynthesis pathway [44]). In
all other members of the Ceratocystidaceae, the lanosterol synthase encoding gene was
located on a separate contig.

Even though antiSMASH analysis did not identify other genes in the ergosterol
biosynthesis pathway, investigation of the genomes using KEGG and BLASTp analysis
identified additional genes involved in the pathway. These included genes coding for
phosphomevalonate kinase (ERG8), C-14 demethylase (ERG11) and C8 sterol isomerase
(ERG2) from H. moniliformis, H. omanensis, H. bhutanensis and H. savannae (Supplementary
File S3). In H. decipiens, genes coding for ERG2 and ERG8 were found on the same contig
(NETU00000079) and gene coding for ERG11 on another contig (NETU00000037). However,
in all other members of Ceratocystidaceae different ERG genes were scattered throughout
the genome and found in different contigs.

Investigation of the genomes using BLAST analysis followed by a manual curation
confirmed the presence of two putative terpene synthase coding gene sequences. However,
BLAST searches across all Ceratocystidaceae fungal genomes produced five positive hits
for putative terpene synthase coding genes in some genomes that were not used for further
analysis, due to being either too big (E. polonica, E. laricicola) or too small (H. moniliformis)
to resemble a typical terpene synthase. pBLAST analysis of these genes also confirmed that
they likely did not represent terpene synthase coding genes.

3.2. Ergosterol Biosynthesis Pathway Prediction

We were able to find the gene repertoire for ergosterol biosynthesis in different mem-
bers of Ceratocystidaceae using KEGG and BLASTp analysis. Based on these analyses,
all the genes that form the ergosterol biosynthesis pathway were present in the genomes
included in this study (Figure 2; File S3). These included genes encoding the recognized
enzymes involved in ergosterol biosynthesis in S. cerevisiae [45], beginning with Acetyl
Co-A and its ultimate conversion to ergosterol [8]. In the following section, we present
the gene homologues in different Ceratocystidaceae following their order in the predicted
ergosterol biosynthesis pathway.

The gene homologues from the first phase of the pathway (synthesis of FPP from Acetyl
Co-A) that were identified in the Ceratocystidaceae included those encoding for acetyl-CoA
C-acetyltransferase, ERG13 (hydroxymethylglutaryl-CoA synthase), hydroxymethylglutaryl-
CoA reductase (HMGCR), ERG12 (mevalonate kinase), ERG8 (phosphomevalonate kinase)
and ERG20 (farnesyl diphosphate synthase) (Supplementary File S3).
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Figure 1. Comparison of gene content and organization of the two terpenoid biosynthesis clusters identified in different members of Ceratocystidaceae. One of these 
clusters (A) contained genes needed for ergosterol biosynthesis. The other contained a gene encoding geranylgeranyl pyrophosphate synthetase (B) which may be 
involved in protein prenylation or potentially in the production of carotenoids or antimicrobial diterpenes (Keller et al., 2005). The direction and relative size of 
genes are indicated by arrows. The function of putative synthetic genes is shown by different patterns. Each color/pattern represents a specific gene. 

Figure 1. Comparison of gene content and organization of the two terpenoid biosynthesis clusters identified in different
members of Ceratocystidaceae. One of these clusters (A) contained genes needed for ergosterol biosynthesis. The other
contained a gene encoding geranylgeranyl pyrophosphate synthetase (B) which may be involved in protein prenylation or
potentially in the production of carotenoids or antimicrobial diterpenes (Keller et al., 2005). The direction and relative size of
genes are indicated by arrows. The function of putative synthetic genes is shown by different patterns. Each color/pattern
represents a specific gene.
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With regards to the second phase of ergosterol biosynthesis (synthesis of ergosterol
from FPP), we found the gene coding for the conserved squalene synthase (ERG9) among
all the Ceratocystidaceae examined. BLASTp analysis of squalene synthase from different
Ceratocystidaceae showed a very high similarity to those of different Ascomycetes such
as Neurospora tetrasperma (an average of 88–92%, XP_009853279) and Sordaria macrospora
(an average of 87–89% XP_003345124). Overall, the Ceratocystidaceae squalene synthase
protein sequences shared 87–64% amino acid similarity with those of other Ascomycota. A
similar trend of high similarity (88–61%) among the Ceratocystidaceae was also observed
for the next enzyme in the pathway, squalene monooxygenase (ERG1). This enzyme is
responsible for the formation of oxidosqualene by epoxidation of squalene [46]. Its protein
sequences in the Ceratocystidaceae were most similar to those of Verticillium longiospermum
(an average of 64%, CRK44748), Verticillium dahliae (an average of 65%, PNH40870) and
Hypoxylon sp. (an average of 66%, OTA91656).

Proteins encoded by ERG7, ERG11 and ERG24 respectively responsible for formation
of lanosterol from squalene epoxide and the subsequent demethylation and reduction of
lanosterol, to ultimately form 14-Dimethyl-lanosterol were also found in all the genomes
examined. The Ceratocystidaceae ERG7 protein sequences shared high similarity to its
homologs in Colletotrichum graminicola (an average of 74%, XP_008098265), Lemontospora
prolificans (an average of 72%, PKS07236) and Scedosporium apiospermum (an average of
70%, XP_016640229). The ERG11 protein sequences from the Ceratocystidaceae also shared
high similarity to homologs in other fungi (an average of 76% to Lemontospora prolificans,
AWO72586, 71% to Scedosporium apiospermum, AWO72588, 73% to Metarhizium robertsii,
XP_007820238), while those of ERG24 shared high similarity to homologs from fungi
such as Scedosporium apiospermum (an average of 66%, XP_016642425) and Lemontospora
prolificans (an average of 69%, PKS10286).

Genes coding for ERG25 (encoding C-4 sterol methyl oxidase), ERG26 (encoding sterol
4-α-carboxylate 3-dehydrogenase) and ERG27 (encoding 3-keto sterol reductase) work to-
gether as enzymatic complexes [47] and were present in all the Ceratocystidaceae genomes
examined. ERG25 sequences of Lemontospora prolificans (an average of 78%, PKS08950) and
Scedosporium apiospermum (an average of 76%, XP_016640914) were most similar to those of
the Ceratocystidaceae. The ERG26 protein product is a member of the 3b-hydroxysteroid
dehydrogenase family and removes the 3a-hydrogen from 4-Methyl zymosterol carboxy-
late, which results in the 3keto-4methyl zymosterol intermediate decarboxylation [48]. The
identified ERG26 gene shared high similarity to those encoded by other Ascomycetes,
e.g., an average of 75% to Lemontospora prolificans (AWO72586), an average of 77% to
Scedosporium apiospermum (AWO72588) and an average of 74% to Metarhizium robertsii
(XP_007820238). The ERG27 gene product catalyses formation of zymosterol from 3,keto-
4,methyl zymosterol [49]. The Ceratocystidaceae ERG27 protein sequences were most
similar to those of Colletotrichum simmondsiis (an average of 79%, KXH40884), Colletotrichum
nymphaeae (an average of 76%, KXH38700) and Colletotrichum salicis (an average of 77%,
KXH38261).

ERG6, catalyses the C-24 methylation of zymosterol to form fecosterol [50]. The puta-
tive protein sequence of ERG6 was most similar to species in the genus Colletotrichum (e.g.,
an average of 86% to Colletotrichum gloeosporioides (ELA25057), Colletotrichum chlorophyti
(OLN94084) and Colletotrichum incanum (KZL83690). All the Ceratocystidaceae genomes
encoded a ERG28 gene, which also showed high similarity to the homolog in Colletotrichum
(e.g., Colletotrichum chlorophyti (an average of 98%, OLN97423), Colletotrichum orchidophilum
(an average of 95%, XP_022474034).

Homologs of the genes coding for ERG2, ERG3, ERG4 and ERG5 were also detected
in all the Ceratocystidaceae genomes examined. The products of these genes form the
final part of the ergosterol biosynthetic pathway. The gene coding for ERG2 encodes sterol
8-isomerase that moves the double bond of the B ring of fecosterol from position 8 to
position 7 to form Episterol [51]. The Ceratocystidaceae ERG2 protein sequences were most
similar to those of Trichoderma asperellum (an average of 68%, XP_024761716), Trichoderma
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atroviride (an average of 68%, XP_013948848) and Chaetomium globosum (an average of 66%,
XP_001224797). ERG3 encodes sterol C-5 desaturase that catalyses formation of the double
bond (carbon–carbon bond) in episterol, resulting in the formation of the toxic 2,7,24,28-
Ergosta trienol. The Ceratocystidaceae ERG3 were similar to those of other fungi, including
Trichoderma reesei (an average of 67%, XP_006965542), Trichoderma citrinoviride (an average of
66%, XP_024749895) and Metarhizium bruneum (an average of 69%, XP_014544386). Finally,
ERG5 and ERG4, respectively encoding a P-450 Sterol C-22 desaturase and a C-24 sterol
reductase, are responsible for the last two steps involving formation of the C-22 carbon–
carbon double bond in the sterol side chain to ergosta tetraenol and ultimate conversion
of this molecule to ergosterol. The Ceratocystidaceae ERG5 was most similar to their
corresponding homologs in fungi such as Purpureocillium lilacinum (an average of 77%,
PWI70663), Sordaria macrospora (an average of 75%, XP_003348687) and Colletotrichum
chlorophyti (an average of 78%, OLN95588). In the case of ERG4, Ceratocystidaceae share
65–74% identity with different Verticillium sequences (V. alfalfa XP_003008950, V. dahliae
XP_009649917 and V. longisporum CRK47680).
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Figure 2. Possible ergosterol biosynthesis pathway in Ceratocystidaceae, as adapated from Bhattacharya et al. (2018). (A):
the first part of the pathway from Acetyl-CoA to farnesyl pyrophosphate (FPP). (B): the last part of the pathway from
FPP to ergosterol. ACAT1: Acetyl-CoA C-acetyltransferase, ERG13: Hydroxymethylglutaryl-CoA synthase, HMGCR:
Hydroxymethylglutaryl-CoA reductase, ERG12: ERG12, ERG8: Phosphomevalonate kinase, DMD: Diphosphomevalonate
dicarboxylase, ERG20: Farnesyl diphosphate synthase, GGPPS: Geranyl geranyl PP, hepB2: Hexaprenyl-diphosphate
synthase, Hexs-b: Hexaprenyl PP, FNTA: Farnesyltransferase, FNTB: Farnesyltransferase, ERG1: Squalene monooxygenase,
ERG7: Lanosterol synthase, ERG11: Sterol 14alpha-demethylase, ERG24: Delta14-sterol reductase, ERG25: Methylsterol
monooxygenase, ERG26: Sterol-4alpha-carboxylate 3-dehydrogenase, ERG27: 3-keto steroid reductase, ERG6: Sterol
24-C-methyltransferase, ERG2: C-8 sterol isomerase, ERG3: Delta7-sterol 5-desaturase, ERG5: Sterol 22-desaturase, ERG4:
Delta24(24(1))-sterol reductase.
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3.3. Intron/Exon Architecture of the Ceratocystidaceae ERG Genes

In all nine of the Ceratocystidaceae genomes in which intron–exon architecture was ex-
amined, the genes encoding ERG11, ERG8, ERG12, mevalonate diphosphate decarboxylase
and ERG20, displayed similar intron–exon architectures. The only exception was ERG10,
where A. xylebori and H. moniliformis had three introns while all the other Ceratocystidaceae
had two. Mapping the RNAseq data to the ERG10 coding gene model in these fungi con-
firmed the intron and exon positions and distribution patterns observed for H. moniliformis
and C. fimbriata.

The intron–exon architecture in the remainder of the ERG genes in the ergosterol
pathway of different members of Ceratocystidaceae showed more diversity. For example,
similar patterns were observed in Ceratocystidaceae genes coding for ERG1, ERG2 and
ERG6, but different intron–exon architectures were found within different Ceratocysti-
daceae for the genes coding for ERG4, ERG5, ERG7, ERG9, ERG13, ERG24 and ERG27
(Supplementary File S2).

3.4. Phylogenetic Analysis the Putative ERG11 and ERG13 Genes of the Ceratocystidacea

In this research we did the phylogeny analysis on two important genes of ergosterol
biosynthesis pathways include ERG11 and ERG13 to shed light on their variability be-
tween different members of Ceratocystidaceae family and also to check if they follow the
basic phylogenetical pattern of this family or if we can find any evidence of horizontal
gene transfer among tested isolates. However, based on our analysis, Ceratocystidaceae
sequences were separated into a well-supported clade in both the ERG11 and ERG13 trees
(Figures 3 and 4). Moreover, in both cases, similar groupings amongst the Ceratocysti-
daceae sequences were seen. These groupings are congruent with the general taxonomy of
Ceratocystidaceae [52].

3.5. Sterol Identification and Quantification

The sterol composition of the mycelium of the eight isolates representing eight genera
from the family Ceratocystidaceae grown in MEA was evaluated using GC-MS (Sup-
plementary File S4). Ergosterol was detected in the mycelium of all isolates where the
concentrations ranged from 1.01 to 3.272 mg g−1 dry weight (wt) mycelia. Total ergosterol
was 3.272 mg g−1 for C. adiposa, 1.679 mg g−1 for Br. fagacearum, 1.194 mg g−1 for T.
punctulata, 3.127 mg g−1 for H. moniliformis, 1.01 mg g−1 for C. manginecans, 3.005 mg g−1

for E. polonica and 1.492 mg g−1 for D. virescens.
The GC-MS examination of the total sterol fraction gained from different strains of

Ceratocystidaceae showed that the main sterols present were lanosterol and ergosterol.
However, we also detected ergosta-7,22-dien-3-ol, eburicol, 4-methyl ergosterol, fecosterol,
and ergosta-5,8-dien-3-ol. The sterol profiles between the different genera included in
this study differed widely (Figure 5). For instance, E. polonica and H. monilliformis showed
similarities in their sterol profile with high levels of ergosterol and ergosta-5,8-dien-3-ol.
On the other hand, the Ceratocystis species, T. punctulata and D. virescens shared high levels
of 4-methyl ergosterol and lanosterol.
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Figure 3. A maximum-likelihood tree of ERG11 protein sequences from different members of Ceratocystidaceae (one
or more species of the following genera: Ceratocystis, Huntiella, Thielaviopsis, Bretziella, Endoconidiophora, Ambrosiella,
Dadidsoniella and Berkeleyomyces), was achieved using the MEGA7 software and substitution model LG+I+G+F. The ERG11
from Ceratocystidaceae is shown with an underline. The evolutionary distances are in the units of the number of amino acid
differences per sequence. The analysis involved 31 amino acid sequences. All positions with less than 95% site coverage
were eliminated.
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Figure 4. Phylogenetic tree performed on ERG13 protein sequences. This tree was constructed inferred using the maximum
likelihood method using MEGA7 software. The optimal tree is shown. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. The analysis involved
46 amino acid sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment
gaps, missing data, and ambiguous bases were allowed at any position. There was a total of 442 positions in the final dataset.
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Huntiella, Thielaviopsis, Bretziella, Endoconidiophora, Ambrosiella, Dadidsoniella and Berkeleyomyces.
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Figure 5. Heatmap of the sterol composition and ergosterol content in mycelia of isolates of the Ceratocystidaceae species:
C. manginecans, H. moniliformis, T. punctulata, B. fagacearum, E. polonica and D. virescens grown in the MEB media for seven
days. All three replicates are shown. Red and blue colours indicate higher and lower concentrations of the compounds,
respectively.

3.6. In Vitro Triazole Sensitivity of Ceratocystidaceae Isolates

The different members of Ceratocystidaceae showed varying patterns of sensitivity to
tebuconazole. Among all tested strains, C. adiposa, Thielaviopsis species and Davidsoniella
species were least sensitive, whereas Br. fagacearum and Endoconidiophora species showed
significantly higher sensitivity to triazole (Figure 6). This fungicide inhibited mycelial
growth of Br. fagacearum, Davidsoniella and Huntiella species significantly more than Cer-
atocystis, Thielaviopsis and Endoconidiophora species at concentrations of 3 and 6 µg L−1

(Figure 6). At higher concentrations of 12.5 and 25 µg L−1 of Tebuconazole, inhibition was
not significantly different among different strains except for Br. fagacearum which stopped
growing at 25 µg L−1. However, at these concentrations, C. adiposa and Thielaviopsis species
were still more resistant compared to the other species. Endoconidiophora species growth
was completely inhibited at 50 µg L−1. The growth of A. xylebori, Huntiella species as well
as Ceratocystis species (except for C. manginecans) has stopped at 75 µg L−1. The other
tested Ceratocystidaceae could still grow even at 75 µg L−1. The list of all isolates used in
the sensitivity study is shown in Supplementary File S5.
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including Ceratocystis (C. manginecans, C. fimbriata, C. eucalypticola, C. harringtonii, C. smalleyii,
C. albifundus, C. platani and C. adiposa), Huntiella (H. moniliformis, H. decipiens, H. bhutanensis, H.
omanensis and H. savannae), Thielaviopsis (T. punctulata and T. musarum), Bretziella (Br. fagacearum),
Endoconidiophora (E. polonica and E. laricicola), Ambrosiella (A. xylebori), Davidsoniella (D. virescens,
D. neocaledoniae and D. australis) and Berkeleyomyces (Be. basicola). Agar discs containing each isolate
were grown for 7 days at 25 ◦C on MEA media amended with triazole at six different concentrations.
Bars represent standard error. There were significant differences between means (p < 0.05) based on
Tukey’s test.

4. Discussion

Although ergosterol and steroid biosynthesis pathways have been extensively exam-
ined in model fungi, little is known about these pathways in non-model fungi, including
those in the economically important Ceratocystidaceae. However, the availability of
genome sequences, allowed us to fill this knowledge gap. The current study presents the
first report of sterols, and ergosterol, in particular, produced by Ceratocystidaceae, as well
as the putative biosynthetic pathway underlying ergosterol biosynthesis in these fungi.
Basic knowledge of the Ceratocystidaceae ergosterol pathway is important as it could
be used to develop inhibitors with a larger range or better activity. Results of this study
can aid in the management of this important group of fungi, for example, the products
identified in this study can have importance in the biocontrol process.
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Our results suggested that the Ceratocystidaceae representatives examined have a
complete set of the enzymes known to be involved in the mevalonate and ergosterol
biosynthesis pathways [8]. Since these putative genes are present in the Ceratocystidaceae
genomes, as well as the genomes of other Ascomycota and in the Basidiomycota, these
genes are postulated to have originated in an early common of these phyla [53]. Our
finding is thus in-line with the hypothesis that genes involved in the ergosterol biosynthesis
pathway are crucial for the survival of most fungal lineages of the Dikarya [7].

The Ceratocystidaceae encodes all of the gene products needed to convert Acetyl-CoA
into ergosterol. Ergosterol biosynthesis is facilitated by 25 coding genes [8], where the first
phase is characterized by the mevalonate pathway forming FPP, an important precursor for
the biosynthesis of sterols in general, as well as dolichol, heme and prenylated proteins [10].
During this first phase, hydroxymethylglutaryl-CoA reductase (HMGCR) may catalyze the
rate-limiting step, as is shown in other fungi [54]. During the second phase of ergosterol
biosynthesis, ERG11 (lanosterol 14-α-demethylase) and ERG1 (squalene epoxidase) likely
catalyze rate-limiting steps [54], while ERG11 might also exert a regulatory effect on the
ergosterol biosynthesis in general [55]. It would be interesting to see whether all of the
genes identified in Ceratocystidaceae indeed fulfill their predicted roles, and to explore the
intricacies that may or may not characterize ergosterol biosynthesis in these fungi.

Comparative analysis of this pathway in 23 members of Ceratocystidaceae showed
that there are no duplicated genes in ergosterol biosynthetic pathway. This is congruent
with what is observed in many yeasts, such as Candida albicans and S. cerevisiae [7]. However,
this is different from many other Sordariomycetes in some species harbour more than one
copy of certain ergosterol pathway genes. For instance, two genes coding for ERG3 were
found in the genomes of F. circinatum and F. graminearum while, Magnaporthe grisea and F.
graminearum, had three and two genes coding for ERG11, respectively [8,56]. Copy number
variation is a significant source for genetic polymorphism and can lead to phenotypic
diversity in the population [57]. Knowing the copy number can also help us with the
functional characterization studies such as a gene knockout as genes with only one copy
are the best targets for such experiments.

Like other fungi, terpenoid synthesis in the Ceratocystidaceae is carried out by genes
that are clustered and co-regulated similar to that observed in other fungal biosynthetic
pathways [58]. Such clustering is thought to allow for easier regulation through epigenetics
and control by transcription factors, which are, in turn, crucial for the adaptation and sur-
vival of fungi under changing environmental conditions. Of the two terpenoid biosynthesis-
related clusters found in all the fungal genomes included in this study, both contained the
expected genes (e.g., terpene synthases or cyclase genes as core gene, along with tailoring
enzymes such as cytochrome P450 monoxygenases, oxidoreductases, transferases and
NAD(P)+) [3]. Where one of the clusters is likely involved ergosterol biosynthesis [46], the
biological role of the other is unclear. It may be involved in the production of carotenoids
or antimicrobial diterpenes, because the core gene of the first terpene cluster encodes a
geranylgeranyl pyrophosphate synthetase (GGPS) that is documented to form carotenoids
or antimicrobial diterpenes [59]. However, it is possible that this gene may be involved in
the synthesis of geranylgeranyl for protein prenylation rather than for the synthesis of a
secondary metabolite. This is because many fungi have two copies of the geranylgeranyl
diphosphate synthase gene [60,61]. One of the geranylgeranyl diphosphate synthase genes
in fungi is involved in protein prenylation, while the other gene product is involved in SM
biosynthesis [62]. It is interesting that in Huntiella species, the GGPP-containing cluster
was located in the vicinity of gene encoding lanosterol synthase. It might be possible that
these gene clusters have an ancient origin which has been kept specifically in the genome
of Huntiella. It is equally possible that the clustering in Huntiella is a more recent event.

The positional variation of introns in the ERG gene among different members of Cerato-
cystidaceae may suggest evolutionary events such as recombination or exon shuffling [63].
Positional dissimilarity (intron shuffling) was observed in the case of genes coding for
ERG4, ERG5, ERG7, ERG9, ERG10, ERG13, ERG24 and ERG27. In contrast, the intron
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positions in ERG1, ERG2, ERG6, ERG8, ERG11 and ERG12 were conserved in all species.
Intron shuffling in ERG11 among other fungi include Aspergillus niger, Nectria haematococca,
Fusarium sporotrichioides, Penicillium italicum and Fusarium oxosporium [63]. The average in-
tron size in the genes coding for ERG11 in Ceratocystidaceae was 69 bp, which is similar to
the size predicted for other genes analysed from other fungi using genome sequencing [64].
The branching pattern for both the ERG11 and ERG13 phylogenies produced the same
overall branching patterns and the intron conservation is congruent with these phylogenies.
This might be likely to put some limitations on the history of sterol biosynthesis due to
these explanations.

From this study, it is clear that Ceratocystidaceae members produce ergosterol as
their main sterol. Our biochemical analysis revealed that C. manginecans had the lowest
concentration of ergosterol and C. adiposa had the highest compared to the other members of
the family. Ergosterol content of these fungi was comparable to levels found in other fungi
such as Aspergillus amstelodami, Alternaria alternata and Aspergillus flavus (1 to 5 mg mg−1

dry weight) [65]. Although, the amount of ergosterol in Ceratocystidaceae was much
higher than those measured from several other fungi associated with Xyleborus ambrosia
beetles (0.12%–0.24 µg/mg) [66], it was still much lower than that quantified for fungi such
as Aspergillus fumigatus, Candida albicans and Aspergillus flavus (up to 14 µg/mg) [67].

In our analysis, we were unable to detect lanosterol in isolates of Br. fagacearum and H.
moniliformis. We also could not identify any fecosterol in D. virescens. Diversity in sterol con-
tent and composition among Ceratocystidaceae is probably a result of differences amongst
isolates and species, as well as differences in growth stage tested, growth temperature, and
sterol isolation method [68]. Media composition was also reported to have an effect on
sterol detection in fungi, but since all Ceratocystidaceae mycelia were grown in the same
media, it is unlikely to be a variable for this study.

In Ceratocystidaceae, we could not detect any of the standard ergosterol pathway
intermediates through zymosterol [6]. Rather, we found all intermediate sterols of fecosterol
formation through eburicol. Fecosterol and eburicol were detected in some of the strains.
These findings suggest that the production of fecosterol through eburicol in members of
Ceratocystidaceae is the same as the pathway described for ergosterol biosynthesis in
Aspergillus species [46].

Different members of Ceratocystidaceae showed different patterns of sensitivity to the
triazole fungicide tebuconazole, indicating significant differences in ergosterol content or
level of expression of the genes in the ergosterol pathway among these strains. This could
be also a result of differences in the number of ABC transporters which will result in differ-
ent accumulation of the fungicide in fungal cells. Nevertheless, the results presented here
are congruent with the outcomes of other reports in which the survival and growth and of
C. fimbriata on Potato Dextrose Agar medium were completely halted by the triazole propi-
conazole [69]. In another study by Scruggs et al. (2017 [70]) on the in vitro effect of different
chemicals on C. fimbriata, the ergosterol inhibitor fungicide, difenoconazole, was reported to
be the most effective fungicide tested. The differences in azole sensitivity among different
members of Ceratocystidaceae, as seen in the present study, demonstrates the necessity for
further transcriptional and population–genetics studies in these microorganisms.

Supplementary Materials: The supplementary files are available: online at https://www.mdpi.com/
2309-608X/7/3/237/s1, Supplementary File S1. The sizes and positions of genes in the respective
terpene clusters within the relevant contigs, together with the blast scores for the top database hits
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