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Abstract

Particulate matter (PM) air pollution is increasingly recognized as an important and modifiable risk factor for adverse health
outcomes including cardiovascular disease (CVD). However, there are still gaps regarding large population risk assessment.
Results from the nationwide Behavioral Risk Factor Surveillance System (BRFSS) were used along with air quality monitoring
measurements to implement a systematic evaluation of PM-related CVD risks at the national and regional scales. CVD status
and individual-level risk factors were collected from more than 500,000 BRFSS respondents across 2,231 contiguous U.S.
counties for 2007 and 2009. Chronic exposures to PM pollutants were estimated with spatial modeling from measurement
data. CVD outcomes attributable to PM pollutants were assessed by mixed-effects logistic regression and latent class
regression (LCR), with adjustment for multicausality. There were positive associations between CVD and PM after
accounting for competing risk factors: the multivariable-adjusted odds for the multiplicity of CVD outcomes increased by
1.32 (95% confidence interval: 1.23–1.43) and 1.15 (1.07–1.22) times per 10 mg/m3 increase in PM2.5 and PM10 respectively in
the LCR analyses. After controlling for spatial confounding, there were moderate estimated effects of PM exposure on
multiple cardiovascular manifestations. These results suggest that chronic exposures to ambient particulates are important
environmental risk factors for cardiovascular morbidity.
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Introduction

The deleterious effects of air pollution on cardiac function have

been well documented in animal studies: acute exposure to

particulate air pollutants has been linked to ischemia-reperfusion

injury [1]–[2], while long-term exposure has been demonstrated to

augment the development of atherosclerosis [3]–[4]. A potential

relation between air pollution and cardiovascular ill health has also

been described in humans: a wide variety of time-series analyses

have associated recent exposure to pollution episodes with

increases in morbidity and mortality related to cardiovascular

complications [5]–[14]; further, cohort studies such as the

Harvard Six Cities Study and the American Cancer Society

(ACS) Cancer Prevention Study II, have reported significant

associations between long-term exposure to particulate matter

(PM) air pollution and increased all-cause and cardio-respiratory

mortality [15],[16]. The increased mortality risk was confirmed in

extensive reanalyses and new analyses providing compelling

evidence for a potential role of elevated PM concentrations in

cardiovascular injury [17]–[20].

To extend previous analyses primarily concerned with cardio-

vascular deaths and hospitalization, this paper attempts to evaluate

the long-term relationship between prevalent CVD and PM across

the general population in the United States. In particular, lifestyle

factors, socioeconomic attributes and comorbid conditions that are

major CVD risk factors were considered together with ecologic air

quality covariates to provide a broad context of risk assessment.

Although epidemiologic studies are not geared to definitive

analyses of the biological pathways from exposure to response,

they can provide empirical evidence to help evaluate plausible

biological explanations, and thus enhance our understanding of

the long-term cardiovascular health effects of PM pollution.

Methods

Individual-level data
Data on CVD status and individual covariates were obtained

from the U.S. Behavioral Risk Factor Surveillance System

(BRFSS), a random digit-dialing cross-sectional household survey

system which began to monitor CVD status among U.S. adults

(18+ years old and non-institutionalized) since 2005. Developed by

the Centers for Disease Control and Prevention, the BRFSS is the

largest telephone health survey in the world and currently collects

information on preventive health practices and risk behaviors as

well as a wide range of health outcomes in 50 states, the District of

Columbia (DC), and three territories. Participants were selected

using probability sampling from all households with telephones in

each state or territory at 1st stage and all adults per household at

2nd stage (1 adult selected per household) [21]–[23]. The survey

questions pertaining to CVD were threefold, ‘‘Has a doctor, nurse,

or other health professional ever told you that you had any of the

following? (1) A heart attack, also called myocardial infarction

(MI); (2) angina or coronary heart disease (CHD); and (3) stroke

(STK).’’ Since data on relevant medical conditions (e.g. hyper-

tension, high cholesterol) were only collected in odd-numbered

years and to maintain coherence in survey protocols used to
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ascertain CVD status, the analysis was restricted to the BRFSS of

2007 (No. of valid responses [N-VR] = 430,912; median interview

completion rate among participating states [MICR-PS] = 75.2%)

and 2009 (N-VR = 432,607; MICR-PS = 77.6%). Most of the

respondents were non-Hispanic white (.85%), resulting in

inadequate racial gradients and data sparseness after full

adjustment for variations in race/ethnicity (the proportion of

minority respondents of Asian, Native Hawaiian/ Pacific Islander,

American Indian/Alaska Native, and/or multiracial origins was

,5%). Study samples were thus restricted to non-Hispanic whites,

African Americans and Hispanics to control data dimensionality

and to accommodate potential biases arising from racial/ethnic

distributions which may covary with the exposure of interest. The

BRFSS data were deidentified and thus analyzed anonymously (all

survey instruments and data are available at www.cdc.gov/brfss).

Ambient air pollution data
Concentration data available for estimating background levels

of PM10 (coarse/fine particle with diameter ,10 mm) and PM2.5

(fine particle with diameter ,2.5 mm) were extracted from the

U.S. Environmental Protection Agency’s Air Quality System [24].

Measurements from years 1999–2005 were obtained for PM10 and

PM2.5 (no systematic sampling of PM2.5 before 1999); for exposure

assessment, data were further restricted to surveillance-type

monitoring stations located throughout urban and rural areas in

conterminous states, and to those with at least 50% of observations

(percent of observations calculated as the ratio of valid days to

scheduled days for the year). Yearly median value was the chosen

measure of background particulate concentration. They were

constructed from site-level PM concentrations computed as

integrated averages of hourly samples collected in a 24-hour

period. Table 1 shows the distributions of PM concentrations

based on data from the selected period and monitoring sites. As a

means of quantifying year round exposure across region, median

PM10 and PM2.5 concentrations obtained from the sampling sites

had fairly strong correlations for the study period (Table 1).

Geostatistical methods
Population exposures to PM at the available areal level were

assessed on the basis of long-term averaged yearly median

concentrations by kriging in conjunction with block interpolation.

County was the target interpolation block as the nationwide

BRFSS does not record individuals’ residence at the city or town

level currently. The kriging technique quantifies spatial depen-

dence represented by available observations, and uses the

estimated autocorrelation structure to form minimum variance

estimators over the entire study domain [25],[26]. For this study,

all sample points representing surveillance-type monitoring sites

were used in model development for accurate spatial interpolation.

Particulate concentrations were transformed to a logarithmic scale

to better approximate a normal residual distribution and to

constrain the modeled concentrations to be positive. Sampled data

were first checked for autocorrelation and trends so as to

determine the optimal parameters that characterize difference-

squared values between each pairs of points at different distances

lags (i.e. semivariogram); multiple semivariogram models were

then fitted with different specifications on distance lags and

directional influences. The optimal kriging parameters were

chosen based on leave-one-out cross-validated error statistics

including the mean prediction error (ME), root-mean-squared-

error (RMSE) and cross-validated R2. A 44644 km grid partition

was used to convert point-kriged results to raster coverages at the

continental scale. Area-based exposure assignment was subse-

quently made by computing block averages over discretized

surfaces. All geostatistical analyses were implemented with ESRI

ArcGIS (v9.3; ESRI Inc., Redlands, CA, USA).

Statistical analysis
Risks for individual CVD components (i.e. MI, CHD, STK)

were estimated by standard mixed-effects logistic regression using

the multilevel pseudo-maximum likelihood (MPML) method;

MPML estimates of the overall CVD risks were obtained with

multilevel latent class regression (LCR) [27]–[30]. This modeling

approach posits that individuals form homogenous classes based

on discrete observed variables (e.g. self-reports of CVD status), and

class membership depends on a latent construct that serves as a

summary of observed indicators. For the multilevel LCR analysis,

a two-class or binary latent construct (denoted by C) was

hypothesized (high vs. low CVD risks), with three categorical

indicators obtained as item responses to the BRFSS CVD module

enquiring the occurrence of MI, CHD, and STK. Class

membership was characterized by both individual and group-level

risk factors (denoted by X’s and Z’s respectively) for CVD,

including age, gender, race, income, education, hypertension,

hypercholesterolemia, diabetes, smoking, physical activity level,

obesity, and ambient concentrations of PM spatially interpolated

to each county. The multilevel LCR model is schematically

depicted in Figure 1.

The conceptual equivalence between a latent class and random

effects specifications has been demonstrated previously [31]–[33].

Per standard mixed-effects modeling, a random intercept

deviation (for each county) was adopted to represent a covariance

structure induced by county-to-county heterogeneity (i.e. interde-

pendencies of individual observations within each county). The

Table 1. Distributions of PM10 and PM2.5,1999–2005, surveillance-oriented sites from contiguous U.S. region.

Pollutanta Study Median sampling daysc Yearly median levels (mg/m3)

sitesb Per Period Mean 25th 50th 75th 100th Inter-quartile

year total (SD) percentile percentile range

PM10 853 60 384 19.7 (1.4) 17.0 20.2 23.9 59.7 6.9

PM2.5 734 112 656 10.7 (1.4) 8.9 11.6 13.4 21.9 4.6

Average correlation of yearly site-specific median measurements: PM10 — 0.86 PM2.5 — 0.81

aFollowing the promulgation of the National Ambient Air Quality Standard for PM2.5 in 1997, routine collection of PM2.5 was implemented in 1999. No attempt was
made to convert PM10 concentrations to PM2.5, which requires a scaling factor based on a presumptive proportion of PM2.5 in the PM10 mass.
bSites describe unique sampling points indicated by longitude/latitude. Those providing no geodetic datum information were not included.
cWhile PM was typically measured at a frequency of every six days or higher, many sites took daily sampling.
doi:10.1371/journal.pone.0033385.t001
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additional latent class specification is beneficial for synthesizing

correlated item responses into an outcome that is easily

interpretable while retaining latent heterogeneity in the data (i.e.

unobserved but not strictly exogenous differences between

individuals) as a means of controlling for unobserved influences

that contribute to the relations between observed variables.

Because there were empirical associations among the responses

of interest (the three CVD indicators had a Fleiss Kappa

coefficient of 0.3, implying a fair degree of agreement), and

analyses stratified by CVD indicators unnecessarily attenuated the

statistical relationship between them, the latent outcome formu-

lation provided an improvement on bias control as it took into

account the interdependency of reported cardiovascular symptoms

in estimating the standard errors used in hypotheses testing.

The probability for a cardiovascular response in the form of MI,

CHD or STK, or being a member of a high-risk class is defined in

terms of binomial logit. Because of evidence of a curvilinear

relationship between BMI and cardiovascular outcomes, linear

and squared terms for BMI were used as continuous variables in

model fitting. To allow for broad-scale regional effects, indicator

variables representing the nine Census regions were employed;

analyses were also stratified by the nine Census regions to explore

the possibility of effect modification by region. Model evaluation

consisted primarily of comparing hierarchically consistent candi-

date models on likelihood-based information criteria. Statistical

programs SAS (v9.2; SAS Institute Inc., Cary, NC, USA) and

Mplus (v6.1; Muthén & Muthén, Los Angeles, CA, USA) were

used for the mixed-effects analyses.

Results

Spatial variations in background PM concentrations
Ordinary and universal kriging procedures were evaluated as

methods to estimate the long-term averaged median PM

concentrations. Table 2 summarizes the performance metrics for

the preferred models with and without a spatial trend component.

The models gave similar overall performance measures: incorpo-

rating a linear or quadratic trend component did not give a

stronger basis for interpolation (as indicated by RMSE values).

Exposure estimation results showed that the chosen kriging

models did not extrapolate much beyond the range of measured

concentrations; however, estimated values have a markedly lower

standard deviation (Table 2). Such discrepancies possibly arose

from monitor placement bias as they tend to lie in urban, more

polluted areas, whereas the modeled concentrations utilized

measurements from neighboring samples to provide full coverages

across measurement units. As such, they may give ‘‘smoothed’’

spatial patterns of pollution levels and underestimate exposure

gradients. Figure 2 shows the median background PM concentra-

tions across contiguous U.S. counties for the selected time window,

based on the optimal modeling methods (defined as those with the

lowest RMSE values). Interpolated PM surfaces were similar for

the preferred kriging models, as indicated by the high correlations

(.0.95) between estimates assessed with the different models. This

suggests that the background PM pollution landscape for the study

region and time frame was unlikely to change greatly depending

on the choice of the optimal spatial interpolation model. Figure S1

in the Supporting Information provides graphical comparisons

between measured concentrations at the study sites and predicted

values by the chosen kriging methods.

Cardiovascular risk estimation
For the assessment of cardiovascular health in relation to

individual and ecologic co-risk factors, the 2007 and 2009 BRFSS

data were linked to the estimated background PM concentrations

by county of residence. Covariate missingness was analyzed with

non-response indicators constructed for items on which missing

data may not occur randomly (e.g. income and education).

Because of little evidence for associations of missingness indicators

with CVD, the final study populations included only survey

respondents with known responses on all individual covariates, and

were limited to those residing in the 48 conterminous states and

DC, of which 2,231 counties participated in the 2007 and 2009

BRFSS cardiovascular health survey module. The size of the

samples ranged from 494,358 to 499,667, depending on the

specific CVD components assessed separately or in combination as

the outcome measure (taken together, a total of 500,715 responses

were evaluated). The samples were approximately 39% men and

61% women, and the median age of participants 56 years. The age

Figure 1. A schematic depiction of the multilevel latent class
regression model.
doi:10.1371/journal.pone.0033385.g001

Table 2. Evaluation statistics (mg/m3) for the exposure assessment methods.

Pollutant Yearly median levels Kriging method (log transformed data)

Observed Estimated Ordinaryb Universal Universal

linear trend quadratic trend

Mean SD Mean SD ME RMSE R2 ME RMSE R2 ME RMSE R2

PM10 (Na

= 853)
19.663 1.430 19.716 1.269 0.0027 0.264c 0.453 20.0074 0.276 0.404 0.0021 0.271 0.425

PM2.5

(N = 734)
10.664 1.376 10.339 1.316 0.0021 0.165c 0.734 20.0016 0.165 0.733 20.0032 0.171 0.714

aN is the number of surveillance-oriented sites used for PM pollution modeling.
bA constant trend is implied by ordinary kriging.
cThe optimal assessment method is indicated. When models rank similarly in terms of performance, the simpler specification that reproduces important features of the
empirical variogram is deemed optimal.
doi:10.1371/journal.pone.0033385.t002
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and sex characteristics of study subjects were comparable across

levels of PM exposure (Table S1); the racial, socioeconomic and

lifestyle traits were distributed somewhat unevenly across PM

pollution ranges. The crude prevalence estimates were 6.2%

(31,078) for MI, 6.6% (32,752) for CHD, and 3.9% (19,589) for

STK. Estimated posterior probabilities indicated fairly homoge-

neous overall latent class patterns across all fitted models: around

11% of respondents constituted the high-risk class. Age, sex and

race-adjusted prevalence was estimated for MI, CHD and STK (at

mean values of individual-level covariates for the study population)

in model building, with random effects adjustment of county-

specific deviations in CVD outcomes. Overall, higher CVD rates

occurred in the South and Midwest than in the Northeast and

West (Figure S2); and higher-than-average particle concentrations

occurred in the southern-central region (Table S2). Figures 3 and 4

show the PM pollution effect estimates from the final fitted models

controlling for competing risk factors, with adjustment for spatial

and temporal trends in disease. All individual-level covariates were

independently associated with CVD outcomes, and their effect

estimates showed little change across models.

PM10 or PM2.5 alone were associated with MI, CHD and STK

after accounting for effects attributable to age, sex, race,

education, income, BMI, hypertension, hypercholesterolemia,

diabetes, smoking status, physical activeness, and temporal

patterns in CVD (year of interview used as the time index)

(Figures 3 and 4). The multivariable-adjusted odds ratio (AOR)

for MI was estimated at 1.12 (95% CI: 1.05–1.19), for CHD 1.08

(1.03–1.15), for STK 1.17 (1.09–1.27), and for overall suscepti-

bility 1.15 (1.07–1.22) per 10 mg/m3 increase in yearly PM10

median concentrations. PM2.5 showed slightly stronger effects on

overall cardiovascular morbidity, with an estimated AOR for MI

of 1.17 (1.08–1.26), for CHD 1.28 (1.20–1.39), for STK 1.16

(1.06–1.27), and for overall susceptibility 1.32 (1.23–1.43) per

10 mg/m3 increase in yearly median concentrations. However,

inclusion of geographic location indicators attenuated the PM-

CVD associations, with significant effects only observed on MI

(AOR = 1.07; 95% CI: 1.01–1.15) and STK (1.08; 1.00–1.17)

from PM10 exposure, whereas CVD risks associated with PM2.5

exposure remained elevated, if not significant. On considering

possible effect modification by spatial location, region-specific

Figure 2. Estimated background PM10 and PM2.5 concentrations (mg/m3) across contiguous U.S. counties. A—PM10 yearly median
concentrations (averaging 1999–2005), assessed with ordinary kriging, exponential covariance, lag distance = 125 km, nugget = 0.037,
range = 1,538 km, partial sill = 0.083; B—PM2.5 yearly median concentrations (averaging 1999–2005), assessed with ordinary kriging, spherical
covariance, lag distance = 170 km, nugget = 0.014, range = 1,687 km, partial sill = 0.066.
doi:10.1371/journal.pone.0033385.g002

Particulate Matter and Cardiovascular Health

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e33385



models controlling for individual and temporal covariates were

also assessed. Although the region-stratified approach does not

provide a test of statistical significance of the differences between

the stratified odds ratios, there was a mild indication of a region-

PM interaction (Figure 5): PM showed strongest associations with

MI in ENCen, with CHD in ESCen and Mid Atl, and with STK

in WNCen; the inverse PM associations with MI and STK

estimated from SAtl and with CHD from NEng regions were

likely due to discordance between morbidity and background PM

across Central Florida and Maine counties respectively (Figure 2

and Figure S2).

Discussion

This study used time-averaged ambient air pollution data and

a cross-sectional sample of 500,715 adults to assess CVD risks

associated with background PM pollution across contiguous U.S..

There have been only a few previous studies that assessed long-

term air pollution effects on CVD across large populations, partly

due to the lack of direct exposure measurements at a broad scale.

To address this limitation, reasonable spatial interpolation models

were developed to enable population exposure assessment. On

the basis of multilayered data, PM effects were evaluated on

Figure 3. Multivariable-adjusted odds ratios (AOR) and lower and upper 95% confidence limits (LCL & UCL) for CVD complications
from PM10-fitted models —assessed with samples from the 2007 and 2009 Behavioral Risk Factor Surveillance System. Both
regionally and non-regionally adjusted results were presented, with the former graphically displayed. BMI and (BMI-squared)/100 were included as
continuous variables. PM10-related effects were associated with 10 mg/m3 increment in yearly median levels.
doi:10.1371/journal.pone.0033385.g003
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cardiovascular complications while directly adjusting for individ-

ual differences in major risk factors. There were moderate

estimated effects of PM exposure on cardiovascular morbidity:

multivariable-adjusted odds for the multiplicity of CVD outcomes

increased by 1.32 and 1.15 times per 10 mg/m3 increase in PM2.5

and PM10 respectively in the LCR analyses; the estimated PM2.5

effects diminished quite a bit following spatial adjustment with

indicators distinguishing the nine Census regions, while the

spatially adjusted PM10 effects on MI and STK remained

marginally significant (Figures 3 and 4). The effects of PM10

cannot be independently quantified from those of PM2.5 based on

available data granularity however, since PM2.5 is a key

component of the total PM10 mass.

Although differences in study design, endpoint/exposure

assessment, and population or region covered limit the scope for

direct comparison with earlier PM-related mortality studies, the

moderate relative CVD risks associated with PM exposure found

in the current study were roughly in line with previous findings. In

the Six Cities Study, Dockery et al. estimated an adjusted

cardiopulmonary mortality rate ratio of 1.26 for the most polluted

versus the least polluted city using fine particles as measures of

pollution [15]. In the ACS Study carried out by Pope et al., the

Figure 4. Multivariable-adjusted odds ratios (AOR) and lower and upper 95% confidence limits (LCL & UCL) for CVD complications
from PM2.5-fitted models —assessed with samples from the 2007 and 2009 Behavioral Risk Factor Surveillance System. Both
regionally and non-regionally adjusted results were presented, with the former graphically displayed. BMI and (BMI-squared)/100 were included as
continuous variables. PM2.5-related effects were associated with 10 mg/m3 increment in yearly median levels.
doi:10.1371/journal.pone.0033385.g004
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adjusted relative mortality risks from cardiopulmonary causes were

1.26 and 1.31 times higher in the most polluted areas as in the

least polluted in terms of sulfates and fine particles levels

respectively [16]. A stronger correlation between fine particle

pollution and cardiovascular mortality was found by Miller et al. in

their Women’s Health Initiative observational study; they

estimated a hazard ratio of 1.76 for death from CVD per

10 mg/m3 increase in the mean PM2.5 concentration [18]. In the

reanalysis of the Six Cities Study and ACS Study data by the

Health Effects Institute (HEI), inclusion of auxiliary socio-

demographic and environmental variables at the areal level was

shown to have little impact on the estimated associations between

particulate pollution and cardiopulmonary mortality; however,

risk estimates were somewhat sensitive to adjustment for spatial

patterns in the ACS Study data [17]. This may reflect a spatial

trend of disease burden which likely contributes to the observed

PM-CVD relationship. In their Medicare Cohort Air Pollution

Study, Zeger et al. compared relative mortality risks associated

with chronic PM2.5 exposure across 250 counties; their results

from applying different degrees of spatial smoothing (to adjust for

potential spatial confounders) suggest that the evidence for PM2.5-

mortality association was stronger for larger spatial scale than

more local scale comparisons [19]. The decrease in spatially

adjusted relative risk with respect to PM is consistent with the

findings reported here. Because the broad regional trends in CVD

appeared to coincide with PM2.5 formation shown by the exposure

assessment map, regional adjustment may have over-adjusted the

effect estimates for regional scale fine particle pollutants relative to

more local scale coarse particle pollutants. Conversely, it might be

conjectured that incorporating a state or county-based areal

marker should induce greater uncertainty in the PM10 effects.

However, such local-level adjustment was not adopted as it

depends on the usage of arbitrary administrative units which tend

not to match PM distribution on a geographical or ecological

scale. Consideration also needs to be given to the implications of

using aggregate PM exposure data due to the lack of individual-

level exposure data. Despite the inclusion of a relatively large set of

personal characteristics measures, a strength of this study which

helps remove the aggregation effects in analyzing geographically

aggregated data, there is still the potential for ecological biases

which introduce measurement errors and contribute to uncertain-

ties in effect estimates. As with multilevel studies in general, this

limitation needs to be recognized in risk estimation.

In separate analyses to characterize the spatial patterns of the

PM effects on CVD, stronger PM-CVD correlations were detected

in the eastern-central U.S. (Figure 5). The geographical variations

in PM effects may arise from heterogeneity in PM composition

across regions, which cannot be adequately captured by

concentration-based exposure metrics. A number of studies have

reported regional differences in the acute or chronic effects of PM.

Using daily time-series data of 1999–2002 on cause-specific

hospitalization admissions for 204 U.S. counties, Dominici et al.

investigated the short-term effects of PM2.5 on cardiovascular and

respiratory diseases and noted higher cardiovascular risks in the

eastern region (including the Northeast, Southeast, Midwest and

the South) [34]. More recently, Zeger et al. evaluated Medicare

billing claims for 2000–2005 from urban areas within six miles of a

PM2.5 monitor; they found significantly elevated mortality risks in

the eastern and central regions associated with PM2.5 exposure

after adjusting for smoking and socioeconomic status, but no

PM2.5-related effects in the western region [20]. Regarding the

adverse effects of PM2.5, multiple chemical constituents have been

implicated including iron, nickel, zinc, ammonium nitrate,

elemental carbon, organic carbon, nitrates, and sulfates [35]–

[37]. In a study of the spatial and temporal variations in the PM2.5

mixture across 187 U.S. counties for 2000–2005, Bell et al.

observed higher sulfate levels in the eastern region, and higher

nitrate levels in the western and northern regions [38]. As also

noted in the study, a major obstacle to interpreting regional

differences in the observed PM effects is that multiple sources of

the PM mixture—often in complex interplay—complicate the

identification of individual effects of various PM components on a

regional or national scale. This suggests that the ability to

distinguish and explain the spatial patterns of health risks

associated with PM can be improved through localized compo-

sitional analyses of ambient PM where definitive source appor-

tionment is feasible.

The present study used kriging for exposure classification, an

approach also adopted by the HEI in their reanalysis of the Six

Cities and ACS data. Kriging has the advantage of providing

unbiased estimates of pollutant levels at unsampled locations with

minimum estimated variance, and has been applied with success to

Figure 5. Region-specific multivariable-adjusted odds ratios (AOR) and lower and upper 95% confidence limits (LCL & UCL) per
10 mg/m3 increment in PM for CVD complications, controlling for age, gender, race, education, income, smoking status, physical
activeness, BMI (linear and quadratic terms), hypertension, hypercholesteraemia, diabetes, and year of interview.
doi:10.1371/journal.pone.0033385.g005
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model broad scale variations in background air pollution [39]–[41],

where measurements are only made at designated sites. Nonetheless,

important constraints on exposure modeling such as limitations in

the spatial representativeness of the air sample data used need to be

recognized. Because monitoring is costly, the density of monitoring

networks is limited. Clustering of monitoring sites is also unavoidable

due to monitor placement strategies favoring areas of high pollution

levels. The uneven distribution of spatial observations could lead to a

low degree of spatial autocorrelation, increased prediction uncer-

tainty and potential exposure misclassification. These considerations

suggest that the modeled concentrations should be interpreted as

estimated background concentrations, rather than measurements of

personal or microenvironmental exposures. In any case, reliance on

monitored air pollution data alone provides only a partial picture of

the air pollution situation in any area, and supplementing monitored

air pollutant measurements with auxiliary factors (e.g. traffic volume,

altitude, wind speed/direction, temperature, precipitation) would be

worthwhile for more local scale exposure assessment.

Other limitations of the work reported here relate to the cross-

sectional nature of the study and the resulting insufficiency of

findings to demonstrate a cause-and-effect relationship between

the studied air pollutants and CVD morbidity. Also, apart from

potential selection biases (e.g. non-coverage of cell phone only

households or those with no phone at all) and the restriction of the

study population to the selected racial groups, which limit

generalizability of results to less-selective populations, a certain

degree of inaccuracy in disease outcome and risk factors

ascertainment is to be expected with self-reported data; however,

it is probable that such inaccuracy would be non-differential, and

any bias introduced would only obscure the effects found. In

addition, misclassification may arise from exposure assignment

according to residency at the time of survey data collection (the

BRFSS questionnaires currently do not track migration activities

or time spent in the area of residency). Such exposure

misclassification is likely to be random and again its main

consequence is the attenuation of the effects estimated.

Although the pathomechanisms responsible for the association

between air pollution and CVD development or exacerbation have

not been fully elucidated, previous observations suggest that

exposure to air pollutants elicits morphological changes and

systemic inflammatory processes, conditions that may lead to tissue

damage and release of bioactive substances into the circulatory

system, thus creating direct or indirect insults to the cardiovascular

system. Results from air pollution studies show that a large

proportion of the urban fine particle mass is made up of primary

combustion products from mobile source emissions and includes

organic compounds, elemental carbon, and metals [42],[43].

Exposure to many of these toxic pollutant components has been

demonstrated as entailing inflammatory and neurogenic responses

with local and systemic consequences. Greater toxicity has also been

attributed to fine and ultrafine particles (PM with diameter

,0.1 mm) due to their high pulmonary deposition efficiency, higher

particle number concentration than larger particles and a resulting

higher surface area to carry toxic pollutants, as well as their

translocation potential [44],[45]. The pathophysiologic conse-

quences arising from PM exposure are both acute and chronic.

Short-term exposure to fine particles has been linked to increased

risks of myocardial infarction, vasoconstriction, reduced heart rate

variability and arrhythmias [46]–[48]. The lifetime risks may be

influenced by atherosclerotic and inflammatory responses as well as

oxidative stress [45],[49],[50]. Importantly, the observed correla-

tions between PM pollution and CVD evidence both acute and

protracted mechanisms so a distinction between the short and long-

term PM effects cannot be made easily.

While much remains to be discovered about the role of air

pollution in cardiovascular pathologic manifestations, this study

provides new evidence linking long-term PM exposure to

cardiovascular impairment. Indeed, the associations between

multiple CVD outcomes and PM remained robust after

accounting for major risk factors including demographic charac-

teristics, socioeconomic status, hypertension, hypercholesterol-

emia, diabetes, smoking, physical activity level and obesity. From

a public health perspective, this study underlines the potentiality of

air pollution abatement in reducing the morbidity and mortality

associated with CVD.

In conclusion, geospatial modeling and multivariate techniques

were used to implement a large population assessment of relative

cardiovascular risks posed by airborne particulate matter across

contiguous U.S.. The findings suggest that improvements in air

quality could imply a substantial reduction in the disease burden

associated with CVD.
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