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Introduction
Breast cancer is the second most commonly diagnosed cancer, 
and it accounts for ~11.6% of all cancer cases.1 According to 
the expression of receptor proteins and genes, breast cancer can 
be categorized into 4 subtypes. Among these subtypes, triple-
negative breast cancer (TNBC),2 which comprises ~15% to 
20% of breast cancer is generally defined as being ER-negative, 
PR-negative, or HER2 negative. A previous study reported 
that TNBC has a high risk of metastases and typically behaves 
more aggressively, which increases the poor prognosis of 
patients.3 Its metastases at distant sites are also the primary 
cause of cancer-related death in patients. Due to the lack of 
gene targets for metastases, available therapies are largely 
unsuccessful in treating metastases.4 The treatment of metasta-
ses is more dependent on the estrogen, progesterone, and 
human epidermal growth factor receptor 2 status of the patient. 
Since TNBC lacks these molecular targets, few new agents 
have been approved for treating the subset of patients with 
metastases.5

Metastasis is an evolutionary process.6 Multiple competing 
subclones can emerge in primary tumors, culminating in the 
formation of metastases.7 Genetic and epigenetic alterations in 
primary tumor cells contribute to the evolutionary process.6 

Nearly 12% of breast cancer cases eventually become meta-
static cases, and after diagnosis with metastatic breast cancer, 
the 5-year survival rate is 26%.8 When compared with their 
metastatic breast cancer counterparts, patients with metastatic 
TNBC have a higher death rate.9 Since metastatic breast can-
cer is incurable, especially metastatic TNBC, there has been 
substantial interest in understanding changes in metastasis-
associated genes. In addition, it is necessary to explore new 
metastasis-associated biomarkers to determine their utility in 
diagnosis and predicting prognosis. Also, biomarkers detected 
need robustness and stability. A recent study reported that a 
novel network-based approach can identify the biomarkers of 
breast cancer survivability.10

We identified genes involved in metastatic TNBC through 
a comprehensive analysis of the Cancer Genome Atlas 
(TCGA) gene expression data. Weighted gene co-expression 
network analysis (WGCNA) is a systems biology method to 
describe the patterns in correlations of genes among samples. It 
has been proven to be a reliable tool for identifying candidate 
biomarkers,11 and it has been used to identify biologically 
meaningful modules related to metastatic breast cancer in our 
study. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and gene ontology (GO) analysis was performed to explore 
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functions and pathways related to genes within key modules 
and identify their biological meaning. We identified 4 candi-
date genes, IGSF10, RUNX1T1, XIST, and TSHZ2, from the 
related module that were associated with TNBC prognosis. 
These candidate genes could serve as candidate biomarkers of 
metastatic TNBC and contribute to understanding TNBC 
progression.

Materials and Methods
Data analyses were performed, as indicated in Figure 1.

Data sources

Breast tissue RNA sequence data (HTseq-counts) and clinical 
features were accessed from TCGA (https://cancergenome.nih.
gov/; accession date: 14 September 2018). Of the available data, 
140 TNBC and 13 adjacent healthy tissue samples were selected 
for analysis. These data are publicly accessible, and no further 
ethical approval was required from the Ethics Committee.

Weighted gene co-expression network analysis

The WGCNA package in R was used to construct the gene 
co-expression network. Data were normalized using edgeR,12 
and then we screened the genes in the top 25% of the variance. 
All 13 845 genes from the 140 TNBC samples were used to 
establish co-expression modules. An interaction coefficient was 
calculated between genes. The adjacency matrix was converted 
to a topological overlap matrix (TOM), and then genes were 
divided into different gene modules according to the TOM-
based heterogeneity measure. The soft-thresholding power was 
8. Gene modules were constructed using a dynamic tree cut 
algorithm, and the minimum number of genes was set as 30 to 
obtain more reliable results. A module eigenvalue distance 
threshold was set as 0.25 to merge highly similar modules. The 

module that had the highest correlation and was significantly 
related to metastasis was selected and used for further analysis. 
Modules with a P-value <.05 were identified as clinical trait-
related modules.

Function-enrichment analyses of metastasis-
associated modules

Gene Ontology (GO) annotation and KEGG pathway enrich-
ment were used to analyze genes using the Database for 
Annotation, Visualization, and Integration Discovery (http://
david.abcc.ncifcrf.gov/) to explore the biological functions of 
genes in metastasis-associated modules.13 The threshold of sig-
nificance was set as P < .05.

Survival analysis of candidate genes

The K-M plotter website (http://www.kmplot.com) was used 
to analyze the association between the expression of hub genes 
and the survival of patients.14 The threshold was adjusted to 
P < .05.

Expression of genes critical in triple-negative breast 
cancer and healthy tissues

Samples of 140 TNBC tissues and 13 corresponding healthy 
tissues were used to explore the expression of candidate genes. 
Differences in gene expression between the 2 groups were 
analyzed using the Mann-Whitney U test in SPSS Statistics 
version 20.0 software (IBM Corp.). Data were visualized 
using GraphPad Prism 7.0 (GraphPad Software Inc, CA, 
USA). A P-value of <.05 was considered to be statistically 
significant.

Statistical analysis of clinical covariates

We separated the TNBC cases into metastatic and non-meta-
static cases. Then, we calculated the significant differences 
between different ages, T, N, and stages between groups. A 
Chi-square test was used to compare binary variables, and con-
tinuous variables were analyzed using t-tests. A P-value of 
<.05 was considered statistically significant.

Results
Expression value analysis of mRNA-seq data of 
triple-negative breast cancer

A total of 140 TNBC samples were obtained from TCGA. 
Clinical information for TNBC patients is shown in Table 1. 
We transformed the RNA-seq data to gene expression infor-
mation. Genes with missing and negative values were elimi-
nated. As a result, 25% of the genes before the variance were 
obtained. A total of 13 845 expression values of genes were 
selected for analysis using the WGCNA package.

Figure 1. Study workflow.
Abbreviations: TCGA, the Cancer Genome Atlas; TNBC, triple-negative breast 
cancer; WGCNA, weighted gene co-expression network analysis; GO, gene 
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://www.kmplot.com
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Construction of the co-expression module and 
identif ication of the key module of triple-negative 
breast cancer

The WGCNA algorithm was used to construct the co-expres-
sion modules most associated with the TNBC clinical traits 
(Figure 2). Clinical information of the TNBC samples such as 
age, TNM, and the stage was retrieved from TCGA (Figure 2A). 
Age was expressed as the mean ± standard deviation and T, N, 
and stage were binary variables, for which a Chi-square test was 
used to analyze differences. Our results show that there was no 
difference in the mean age of the metastatic and non-metastatic 
groups, while there were significant differences in T, N, and stage 
between the 2 groups (Supplemental Table 1). We set the soft-
thresholding power as 8 for further analysis and set the cut height 
as 0.25, and we eventually constructed 39 modules (Figure 2B-D).

Metastasis-associated module analysis

Using the module-trait correlations heatmap, we identified 
that the pale turquoise module was the most highly related to 
the characteristic of metastasis (correlation coefficient = 0.26, 

Table 1. Tumor characteristics for TNBC patients in the present study.

CHARACTERiSTiCS iNFORMATiON SAMPLE NUMBER
N = 140

Age (years) 55.90 ± 12.50

T

 T1-T2 122 (87.1%)

 T3-T4 18 (12.9%)

N

 No 88 (62.8%)

 Yes 52 (37.1%)

M

 No 128 (91.4%)

 Yes 12 (8.6%)

Stage

 Stage i-ii 117 (83.6%)

 Stage iii-iV 23 (16.4%)

Figure 2. Weighted gene co-expression network analysis to construct the co-expression module network. (A) Clustering dendrograms of genes. Color 

intensity varies with age, T, N, M, and stage. (B) Scale-free fit index (left) and the mean connectivity (right) for soft-thresholding powers. (C) Clustering of 

module eigengenes. The height of the red line is 0.25. (D) Clustering dendrograms of all genes. As a result, 39 co-expression modules were constructed 

and highlighted with different colors.
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P = 0.002; Figure 3). The pale turquoise module contained a 
total of 64 genes (Figure 4A, correlation coefficient = 0.67, 
P = 1.4e-09 of MM in pale turquoise). All 64 genes in the pale 
turquoise module were subjected to further analysis. We per-
formed GO and KEGG enrichment analyses to reveal potential 
biological functions of the genes in the pale turquoise module. 
As presented in Figure 4B, KEGG pathway analyses showed 
that genes were primarily enriched in the pathways of hsa05202 
(transcriptional misregulation in cancer), hsa05206 (microR-
NAs in cancer), and hsa04360 (axon guidance). As shown in 
Figure 4C, the enriched base-pair terms of GO in the pale tur-
quoise module were mainly about the GO:0016525 (negative 
regulation of angiogenesis), GO:0060021 (palate development), 
and GO:0035988 (chondrocyte proliferation). The enriched 
CC terms of GO in genes were functional at GO:0031012 
(extracellular matrix) and GO:0005576 (extracellular region). 
The enriched MF terms of GO in the key module were mainly 
about GO:0008201 (heparin binding) and GO:0001078 (tran-
scriptional repressor activity, RNA polymerase II core promoter 
proximal region sequence-specific binding). The detailed results 
of the GO and KEGG analyses are illustrated in Table 2.

Novel candidate genes analysis in metastasis-
associated module

Among the 30 top genes in the pale turquoise module based on 
intramodule connectivity and by setting MM at >0.85 and gene 
significance (GS) at >0.15, 26 genes with high connectivity in 

the pale turquoise module were identified as hub genes. Among 
these genes, IGSF10, RUNX1T1, XIST, and TSHZ2 were nega-
tively associated with relapse-free survival and have seldom been 
reported before in TNBC. As shown in Figure 5, we found that 
all of the genes were significantly downregulated (P < .05) in 
140 TNBC samples compared with 13 adjacent healthy samples. 
Furthermore, the Kaplan–Meier curve and the log-rank test 
were used to assess relapse-free survival in patients. Kaplan–
Meier curves showed that the lower the expression of these 
genes correlated significantly with poor relapse-free survival 
(Figure 6). Detailed HR and the log-rank P-values are presented 
in Table 3. Notably, 4 novel candidate genes in the pale turquoise 
module showed good prognostic values.

In addition, receiver operating characteristic (ROC) curve 
analysis was used to evaluate the capacity of candidate genes to 
the diagnosis of TNBC (Figure 7). Area under the ROC curve 
values for 4 novel candidate genes are presented in Table 4.

Discussion
Breast cancer is a complex and heterogeneous disease at the 
tumor genetics and patient’s prognosis levels. Compared with 
other breast cancers subtypes, TNBC behaves more aggres-
sively and those patients with TNBC have higher death rates.15 
What is worse is that metastasis is the vital tab in cancer. 
Patients with metastasis TNBC have an additional challenge 
to finding targets and treatments. In the current study, we 
aimed to explore the prognosis biomarker of metastasis associ-
ated TNBC using WGCNA. We downloaded gene expression 

Figure 3. Heatmap of the correlation between clinical traits and eigengenes of triple-negative breast cancer. Each module contains a correlation 

coefficient and P-value.
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Figure 4. Metastasis-related module analyses and functional annotation. (A) Scatterplot of genes in the pale turquoise module. (B) Kyoto Encyclopedia of 

Genes and Genomes (KEGG) analysis for genes in the pale turquoise module. (C) Gene ontology (GO) analysis for genes in the pale turquoise module.

Table 2. The GO and KEGG analysis of key module.

CATEGORY TERM iNVOLVED iN P

GO

 GOTERM_BP_DiRECT GO:0016525 Negative regulation of angiogenesis .009

 GOTERM_BP_DiRECT GO:0060021 Palate development .014

 GOTERM_BP_DiRECT GO:0035988 Chondrocyte proliferation .021

 GOTERM_BP_DiRECT GO:0001886 Endothelial cell morphogenesis .025

 GOTERM_BP_DiRECT GO:0035909 Aorta morphogenesis .030

 GOTERM_BP_DiRECT GO:0021591 Ventricular system development .032

 GOTERM_BP_DiRECT GO:0007275 Multicellular organism development .034

 GOTERM_CC_DiRECT GO:0031012 Extracellular matrix .036

 GOTERM_CC_DiRECT GO:0005576 Extracellular region .041

 GOTERM_MF_DiRECT GO:0008201 Heparin binding .004

 GOTERM_MF_DiRECT GO:0001078 Transcriptional repressor activity, RNA 
polymerase ii core promoter proximal 
region sequence-specific binding

.02

KEGG

 KEGG_PATHWAY hsa05202 Transcriptional misregulation in cancer .001

 KEGG_PATHWAY hsa05206 MicroRNAs in cancer .006

 KEGG_PATHWAY hsa04360 Axon guidance .013
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Figure 5. The mRNA expression levels of candidate genes in triple-negative breast cancer and corresponding healthy tissues based on the Cancer 

Genome Atlas dataset. (A) Messenger RNA expression of IGSF10. (B) Messenger RNA expression of RUNX1T1. (C) Messenger RNA expression of XIST, 

(D) Messenger RNA expression of TSHZ2.
*P < .05, **P < .01, and ***P < .001.

Figure 6. Associated candidate gene expression and recurrence-free survival time using the K-M plotter online platform. (A) Kaplan–Meier curves for 

IGSF10. (B) Kaplan–Meier curves for RUNX1T1. (C) Kaplan–Meier curves for XIST. (D) Kaplan–Meier curves for TSHZ2.
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profiles from TCGA to construct a co-expression network and 
identified metastasis-associated candidate genes. After setting 
GS > 0.15 and MM > 0.85, we eventually obtained 26 hub 
genes. Some of them have been demonstrated to exert vital 
roles in breast cancer.16 Among these genes, we chose 4 genes 
that have seldom been reported in TNBC metastasis, namely 
IGSF10, RUNX1T1, XIST, and TSHZ2, to further explore 
their prognostic and diagnosis value.

IGSF10, namely immunoglobulin superfamily member 10, 
is related to differentiation and developmental processes, and 
IGSF10 is the genetic basis of delayed puberty and disorders 
of neuronal development.17 Previous studies have reported 
that IGSF10 is possibly involved in radiation-induced rat 

osteosarcomas.18 However, the IGSF10 gene has rarely been 
associated with cancer. One study showed that mutation in 
IGSF10 might be associated with gastric and rectal cancer.19 
Whole-exome sequencing of 14 endometrial cancer tissue 
samples showed that IGSF10 was the potential cancer-related 
gene.20

RUNX1T1 is a member of the transcriptional corepressors 
of the MTG family. It has been demonstrated that it is closely 
involved in the pathogenesis of acute leukemia.21 An RNA 
sequencing study revealed that RUNX1T1 was upregulated in 
clear renal cell carcinoma, which suggests that this gene is vital 
for tumorigenesis.22 RUNX1T1 has also been reported in other 
cancer types. Nasir et al23 revealed that RUNX1T1 might be a 
novel biomarker for the prediction of liver metastasis in pri-
mary pancreatic endocrine tumors. Since the dysregulated of 
TGFb/SMAD4 signaling may result in epigenetic silencing of 
RUNX1T1, this suggests that RUNX1T1 is crucial for ovarian 
carcinogenesis.24

XIST is involved in the inactivation of the X chromosome, 
which is a non-coding RNA. It has been demonstrated that its 
expression has been dysregulated in numerous cancers, espe-
cially in breast cancer. BRCA1, which interacts with XIST 
RNA, takes part in the correct inactive X chromosome hetero-
chromatin superstructure.25 The loss of Xi might present more 
aggressively in breast cancer. This might suggest that XIST 
performs a vital role in the regulation of cancer-related path-
ways in breast cancer.26

TSHZ2 is a member of the TSHZ family, which includes 
TSHZ1, TSHZ2, and TSHZ3. It has been demonstrated that 
the silence of the TSHZ2 gene may play a critical role in car-
cinogenesis. The expression of TSHZ2 is downregulated in 
some cancers. This suggests that it might function as a tumor-
suppressor gene.27 However, the underlying molecular mecha-
nism is not fully understood. A study reported that TSHZ2 
participated in mammary tumorigenesis via activation of 
GLI1.28

However, our present study has some limitations. First, the 
candidate genes should have been validated using samples 
from our institution via quantitative PCR or western blots. 
Thus, we will collect tissue samples for further investigation. 
Second, the biological molecular mechanisms of candidate 
genes in TNBC requires further exploration.

Table 3. The survival analysis of candidate genes.

GENE FULL NAME PROBE HiGH 
EXPRESSiON

LOW 
EXPRESSiON

HR LOGRANK P

iGSF10 immunoglobulin superfamily 
member 10

1556579_s_at 180 180 0.61 (0.44-0.84) .0026

RUNX1T1 RUNX1 partner transcriptional 
co-repressor 1

205528_s_at 305 313 0.72 (0.56-0.92) .0095

XiST X inactive specific transcript 224589_at 180 180 0.72 (0.52-0.99) .043

TSHZ2 Teashirt zinc finger homeobox 2 244521_at 177 183 0.73 (0.53-1.01) .055

Figure 7. Receiver operating characteristic (ROC) analysis of candidate 

genes. These curves were used to evaluate the capacity of candidate 

genes in the diagnosis of triple-negative breast cancer.

Table 4. The AUC of candidate genes.

GENE AUC 95% Ci 
(LOWER)

95% Ci 
(UPPER)

P

iGSF10 0.918 0.857 0.979 .000

RUNX1T1 0.957 0.920 0.994 .000

TSHZ2 0.977 0.954 1.000 .000

XiST 0.749 0.585 0.913 .003

Abbreviations: AUC, area under the curve; Ci, confidence interval.
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In summary, this study focused on metastasis-associated 
genes in TNBC. By combining WGCNA and other bioinfor-
matics tools, we identified significant gene modules related to 
metastasis in TNBC. Four candidate genes, IGSF10, RUNX1T1, 
XIST, and TSHZ2, were strongly downregulated in TNBC tis-
sues. Further survival analysis suggested that these genes have 
significant prognostic and diagnosis values in TNBC.
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