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Abstract: The amyloid precursor protein (APP) is the parent polypeptide from which amyloid-beta
(Aβ) peptides, key etiological agents of Alzheimer’s disease (AD), are generated by sequential
proteolytic processing involving β- and γ-secretases. APP mutations underlie familial, early-onset
AD, and the involvement of APP in AD pathology has been extensively studied. However, APP
has important physiological roles in the mammalian brain, particularly its modulation of synaptic
functions and neuronal survival. Recent works have now shown that APP could directly modulate
γ-aminobutyric acid (GABA) neurotransmission in two broad ways. Firstly, APP is shown to
interact with and modulate the levels and activity of the neuron-specific Potassium-Chloride (K+-Cl−)
cotransporter KCC2/SLC12A5. The latter is key to the maintenance of neuronal chloride (Cl−) levels
and the GABA reversal potential (EGABA), and is therefore important for postsynaptic GABAergic
inhibition through the ionotropic GABAA receptors. Secondly, APP binds to the sushi domain of
metabotropic GABAB receptor 1a (GABABR1a). In this regard, APP complexes and is co-transported
with GABAB receptor dimers bearing GABABR1a to the axonal presynaptic plasma membrane. On the
other hand, secreted (s)APP generated by secretase cleavages could act as a GABABR1a-binding
ligand that modulates presynaptic vesicle release. The discovery of these novel roles and activities of
APP in GABAergic neurotransmission underlies the physiological importance of APP in postnatal
brain function.

Keywords: amyloid precursor protein (APP); amyloid-beta (Aβ); gamma-aminobutyric acid (GABA);
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1. Introduction

Alzheimer’s disease (AD) [1] is the most prevalent cause for aging-associated dementia [2]. The
amyloid cascade hypothesis [3] posits that the accumulation and deposition of the amyloid-beta (Aβ)
peptides in the brain parenchyma is a crucial step in disease development [4]. Aβ peptides are generated
from the amyloid precursor protein (APP) through sequential cleavages by theβ-secretase Beta-site APP
Cleaving Enzyme 1 (BACE1) and the Presenilin-containing γ-secretase complex [5]. However, a first
APP cleavage by theα-secretase ADAM10 [6] would effectively preclude Aβ formation. Much of the AD
research over the years has focused on attempts to better understand the BACE1-γ-secretase-mediated
amyloidogenic pathway, as well as searching for means to inhibit APP proteolysis or to decrease
amyloid load. Although it is now clear that proteolytic processing of APP is complex [6–9] and no
clinical trial of anti-Aβ drugs have shown any clear benefits to date [10], Aβ remains a prime AD
therapeutic target [11,12] and continues to garner research efforts and interests.

APP is itself known to have a range of activities in the brain that are indicative of its physiological
importance [13–15]. Mammals have three paralogous genes which encode APP and two APP-like
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proteins (APLP1 and APLP2) [16]. Although APP knockout in mice produce viable and fertile offspring,
APP-deficient adult mice exhibit decreased locomotor activity compared to wild-type, as well as signs
of neuroinflammation [17]. Various combinations of genetic deficiencies of the three members of the
APP family resulted in early postnatal death and neurodevelopmental defects [18,19], attesting to both
overlapping as well as non-redundant functions of the APP paralogues. Although fairly ubiquitous in
its expression, a good number of physiological roles for APP and its non-amyloid cleavage products
are known to affect neurons and neurotransmission. These include neurite/axon outgrowth [20–22],
axonal guidance [23], neural cell adhesion [24,25], neuronal survival [26–28], and neural progenitor
cell-fate determination [29,30]. Most importantly, APP is involved in the modulation of synaptic
neurotransmission and plasticity. Both pre- and post-synaptic protein compositions are altered in
neurons bearing APP mutant transgenes [31], or those in APP knockout [32] mice. The changes include
reductions in the key postsynaptic neurotransmission components Postsynaptic density protein 95
(PSD-95) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subunit GluR1.
APP is a synaptic adhesion molecule [25,33,34] and has both presynaptic [35,36] and postsynaptic [37]
localization and functions [38]. Aβ is well known for causing pathological dysregulation of
postsynaptic trafficking of both the AMPA [39] and N-Methyl-d-aspartate (NMDA) [40]-type glutamate
receptors. Notably, APP also has physiological roles in the function and trafficking of these glutamate
receptors [41–43] and may thus be important for synaptic plasticity and learning/memory [44–48]. The
actions of APP at the synapse are also known to be mediated by the secreted (s)APPs, mainly sAPPα
generated by α-secretase cleavage [49–53].

γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain, shapes brain
tissue activity and provides a balancing stability to neural systems and networks [54] by preventing
uncontrolled hyper-excitation (such as those occurring during epileptic episodes [55]). GABAergic
neurotransmission is mediated by the ionotropic GABAA receptors (GABAAR) [56], as well as
the metabotropic GABAB receptors (GABABR) [57]. GABAAR functions as ligand-gated chloride
(Cl−) channels and whether GABA binding would be depolarizing or hyperpolarizing is largely
determined by intracellular Cl− concentrations and the GABA reversal potential (EGABA). Resting
Cl− concentration in central nervous system (CNS) neurons is determined by the activity of two
major cation-chloride cotransporters, namely the Cl− influx-mediating Na+-K+-2Cl− cotransporter 1
(NKCC1) and the efflux-mediating K+-Cl− cotransporter 2 (KCC2) [58]. In the adult brain, GABA is
mainly hyperpolarizing and inhibitory, but it is primarily depolarizing and excitatory in developing
neurons, as demonstrated using rat embryonic and neonatal cortical slices [59]. This is largely because
embryonic or immature neurons have high levels of NKCC1 but low levels of KCC2. However, KCC2
expression is developmentally upregulated in mature neurons, resulting in an increase in intracellular
Cl−, with GABA thus becoming hyperpolarizing and inhibitory [60]. Changes in KCC2 expression
and activity may thus underlie neuropathological conditions [61–63] associated with weakened GABA
signaling due to a positive shift in EGABA.

Other than modulating the activity of excitatory glutamate receptors, recent works have now
shown that APP could also directly modulate GABA neurotransmission via its interaction with KCC2
and its alteration of intracellular Cl− [64,65]. Furthermore, APP or its soluble cleavage product could
interact with GABABR to modulate presynaptic GABABR-mediated inhibition or presynaptic vesicle
release [66,67]. In the paragraphs that follow, an update of these findings is provided and the new
perspectives brought about by these findings are discussed.

2. Amyloid Precursor Protein (APP) and Gamma-Aminobutyric Acid (GABA)ergic
Neurotransmission

There are some earlier indications that APP modulates GABAergic transmission. In the
loss-of-function context of the APP knockout mouse, an impairment in synaptic plasticity, as
demonstrated by deficiencies in Long-term potentiation (LTP) formation [68,69] and behavioral/learning
deficits [70], is associated with a reduction in GABA-elicited inhibitory post-synaptic currents [69]. Also,
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theta-gamma oscillation phase-amplitude coupling involving inhibitory transmission was strongly
diminished in recordings from the parietal cortex and hippocampus of APP knockout mice [71]. APP
is highly expressed in the GABAergic neurons in the neurogenic dentate gyrus, and selective deletion
of APP in GABAergic, but not glutamatergic neurons disrupted adult hippocampal neurogenesis [72].
In this regard, it is notable that the excitatory activity of GABA on newborn neurons at the dentate
gyrus is critical for synapse formation and dendritic development [73] and APP would thus play a
role in GABA transmission for newborn neurons in embryonic neonatal as well as adult neurogenic
settings. APP also appears to interact with and regulate the levels of Ca(v)1.2, the channel pore subunit
of L-type calcium channels downstream of depolarizing GABA neurotransmission in neurons of the
striatum and hippocampus. Changes in GABAergic short-term plasticity in these neurons with the loss
of APP may therefore be related to this interaction [74]. Taken together, perturbations in GABAergic
inhibitory transmission in CNS neurons resulting from the loss of APP attested to the latter’s function
in modulating the former.

Some findings in the context of APP over-expression are also in support of its role in GABAergic
neurotransmission. Controllable transgenic over-expression of APP in transgenic mice from birth (but
not over-expression in adults) resulted in epileptiform electroencephalogram abnormalities which
are not related to Aβ levels or plaque load, and are unaffected by a γ-secretase inhibitor [75]. In a
mouse model of Down syndrome (DS), with mice harboring an extra chromosome 16 on which APP is
located, GABAAR signaling was in fact found to be excitatory rather than inhibitory in hippocampal
slices from the DS mice [76]. This appears to be associated with an increase in hippocampal NKCC1
expression and an inhibition of NKCC1 activity was able to reverse the phenotype. Taken as a whole,
APP over-expression appears to have the effect of altering GABAergic neurotransmission by shifting
the neuronal GABA reversal potential. In the section below, new findings on how APP influences this
shift are discussed.

3. APP’s Modulation of GABAergic Neurotransmission through Potassium Chloride
Cotransporter 2 (KCC2)

In investigating changes in NKCC1 and KCC2 levels and GABA responses in rat cortical neurons
in culture, Doshina et al. [65] noted an increase in KCC2 and a decrease in NKCC1 levels with increasing
days in vitro (DIV). These changes corresponded with a reduction in the neurons’ GABA depolarizing
potential beginning 7 DIV, and which became greatly reduced by 13–17 days in vitro (DIV). Adenoviral
vector-mediated over-expression of human APP in these neurons decreased both the transcript and
protein levels of KCC2. However, unlike previous findings in the chromosome 16 trisomy mice [76],
NKCC1 levels were unaffected by APP over-expression. Downregulation of KCC2 by APP elicited a
more depolarizing GABA response, as indicated by an increase in intracellular Ca2+ due to signaling
downstream from GABAAR [77] in late DIV neurons. However, unlike previous observations made
with APP knockout mice [74], there were no significant changes in the levels of Ca(v)1.2. The notion that
APP-induced changes in GABA response are due mainly to changes in intracellular Cl− resulting from
KCC2 downregulation is supported by its reversal by the NKCC1 inhibitor bumetanide. Importantly,
the authors showed some in vivo relevance of their findings in culture neurons by showing that
Adenovirus-associated virus (AAV) construct-based transduction of APP in brains of mouse pups also
reduced KCC2 levels without affecting NKCC1.

How does over-expressed APP downregulate KCC2? This APP activity is independent of the APP
intracellular domain (AICD) (which is known for its transcriptional activities [78]), APP’s extracellular
domain, or γ-secretase cleavage. However, APP over-expression is correlated with a decrease in
the expression of upstream stimulating factor 1 (USF1), a known transcriptional regulator of the
KCC2-encoding SLC12A5 gene [79]. Although it is unclear at the moment how APP affects the
expression of USF1, the findings indicate that it is an important factor in maintaining KCC2 levels,
intracellular Cl−, and EGABA in adult brain neurons.
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In another report, Chen et al. [64] noted a depolarizing shift of EGABA in hippocampal slices of
APP knockout mouse. By patching a glutamatergic neuron in a hippocampal culture and recording for
post-synaptic unitary inhibitory postsynaptic current (uIPSC) of neighboring GABAergic interneurons,
the mean uIPSC amplitude is found to be significantly reduced in APP knockout neurons compared
to wild-type. Interestingly, analysis of hippocampal tissue lysates revealed a significant and specific
reduction in the levels of the α1-subunit of GABAAR (which mediates fast inhibition). As with
Doshina et al. [65], Chen et al. also noted a reduction in total and plasma membrane KCC2 levels
(but not NKCC1) in an APP-deficient hippocampus. Both KCC2 levels and function could in fact be
restored pharmacologically by Cl− extrusion enhancers such as CLP257 and CLP290 [80]. Importantly,
restoration of normal KCC2 expression and function in APP-deficient mice with the CLPs reversed
the changes in EGABA and GABAAR α1 levels as well as GABAAR mediated inhibition. The changes
observed in APP-deficient neurons could thus be largely attributed to the reduction of KCC2 levels
and activity, although it is yet unclear why GABAAR α1 levels were specifically reduced in the absence
of APP.

On the other hand, Chen et al. [64] elucidated a different mechanism for APP deficiency-induced
reduction in KCC2. The authors showed with co-transfection experiments that full-length APP, but not
its proteolytic fragments, stabilized KCC2 levels. Functional expression of KCC2 at the neuronal cell
surface is necessary for its Cl− efflux activity, and the trafficking of KCC2 to the cell surface and its
subsequent endocytic internalization is regulated by different cellular mechanisms, with defects in
these known to underlie a range of neuropathological conditions [58]. One such regulatory mechanism
is the tyrosine phosphorylation of KCC2 mediated by tyrosine kinases, such as Src [81–83], which
promotes KCC2 internalization from the plasma membrane and its subsequent lysosomal degradation.
Interestingly, Chen et al. found that APP and KCC2 interacts physically by co-immunoprecipitation
and proximity ligation assays. Moreover, levels of KCC2 tyrosine phosphorylation are increased in the
absence of APP, correlating with its lower levels, and this is effectively reduced by a Src family tyrosine
kinase inhibitor. It appears that APP’s interaction with KCC2 may limit its tyrosine phosphorylation,
thus maintaining the former’s expression and activity at the plasma membrane. Increased tyrosine
phosphorylation, however, is not the only reason why KCC2 is reduced in APP-deficient cells, as
the levels of non-phosphorylatable mutants of KCC2 (Y903A and Y1087A) are still low in cells not
co-expressing APP. Notably, the levels of ubiquitinated KCC2 in an APP-deficient hippocampus are
significantly increased compared to wild-type, and the proteasome inhibitor MG132 increased levels of
the mutant KCC2 only in the absence but not in the presence of the co-expressed APP. APP–KCC2
interactions thus appear to also limit KCC2 ubiquitination.

The findings of the two reports discussed above indicated that APP could be a physiological
regulator of KCC2 expression and function, which would be consequently critical for neuronal
intracellular Cl− concentrations and inhibitory neurotransmission. It appears that APP could regulate
EGABA by modulating KCC2 levels in different ways, both influencing the latter’s transcript level
through a major transcription factor as well as enhancing KCC2′s plasma membrane stability through
limiting its susceptibility to post-translational modifications in the form of tyrosine phosphorylation
and ubiquitination.

4. APP’s Modulation of Presynaptic GABAB Receptor (GABABR) Activity

Presynaptic glutamate and GABA receptors modulate neurotransmitter release [84] and the action
of presynaptic GABABR in this regard has been well-documented [85–87]. The two subtypes of GABABR,
namely GABABR1 and GABABR2, typically form functional heterodimers. There are two isoforms of
GABABR1, GABABR1a and GABABR1b, which differ by the presence of two N-terminal sushi domain
repeats that are unique to GABABR1a [88]. These sushi repeats confer differential plasma membrane
domain targeting of GABABRs. While GABABR1b-containing GABABRs are targeted dendritically and
mediate postsynaptic inhibition, GABABR1a-containing GABABR are axonal and inhibit glutamate
release from the presynaptic plasma membrane [88]. The sushi repeats appear to aid axonal targeting
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in this regard [89,90]. Proteomics analyses have shown that GABABR1a/GABABR2 receptors co-purify
with the kinesin-1 motor adapters, like the c-Jun N-terminal kinase-interacting protein (JIP) and
Calsyntenin [91], attesting to the notion that these are trafficked to axons via kinesin-1-mediated axonal
transport. However, as the sushi domains of GABABR1a are extracellular/luminal, they need to be
linked to the cytoplasmic kinesin-1 by yet-to-be-identified transmembrane domain-containing proteins.
A high-resolution proteomics screen has in fact identified some potential sushi domain interacting
membrane proteins, including APP [91].

Dinamarca et al. [66] have now further investigated APP, as well as two other proteins that bind
with high affinity to the sushi domains of GABABR1a and form distinct complexes with GABABR. These
molecules are of interest as they could potentially function in linking GABABR1a to the axonal-targeting
motor protein-adaptor complex. Among these sushi domain interactors, only the loss of APP impaired
GABABR-mediated presynaptic inhibition. In this regard, the GABABR agonist baclofen was less able
to reduce the amplitude of the evoked excitatory postsynaptic current (EPSC), as well as the frequency
of miniature EPSC, in APP-deficient compared to wild-type hippocampal slices. APP was previously
known to associate with both JIP [92] and calsyntenin [93], and confirmation of the interactions in
this regard attested to APP’s potential to function as a transmembrane linker that facilitates axonal
transport of GABABR. Interestingly, complex formation with GABABRs stabilizes APP at the cell
surface and appears to reduce amyloidogenic processing of APP to Aβ. Thus, other than APP serving
a GABABR axonal transport role to the presynaptic plasma membrane, the APP-GABABR complex
formation may potentially also influence APP proteolysis and Aβ formation.

If full-length APP could interact with GABABR1a, sAPPs which encompass APP’s ectodomain,
might be able to do likewise. A recent proteomics screen by Rice et al. [67] has indeed uncovered
that sAPPα’s extension domain (ExD) [94] binds directly to the sushi 1 domain of GABABR1a. This
sAPPα–GABABR1a interaction reduced the release probability of synaptic vesicles and suppressed
synaptic transmission. This inhibition of synaptic vesicle release underlies sAPPα’s apparent
enhancement of short-term plasticity at Schaffer collateral synapses of hippocampal slices in a
GABABR1a-dependent manner. In fact, a 17–amino acid peptide within sAPPα’s ExD was able to
replace sAPPα’s activity in this regard, and when infused into the hippocampal region suppressed
in vivo spontaneous neuronal activity of CA1 pyramidal cells in mice. These findings indicate that
GABABR1a act as a high-affinity synaptic receptor for sAPPα, mediating a physiological role for sAPPs
in modulating synaptic transmission.

5. New Perspectives

The findings described above (summarized in Figure 1) provided some fresh perspectives on
APP’s role in GABAergic neurotransmission. That APP could modulate KCC2 levels (and thus
intracellular Cl− levels) either at the transcriptional or post-translational level would mean that the
former has an important role to play in inhibitory neurotransmission, not just through the ionotropic
GABAAR but also through the glycine receptor [95], another ligand-gated chloride channel. APP could
thus moderate neuropathological conditions by maintaining intracellular Cl− levels and attenuate
depolarizing shifts in EGABA, which would heighten excitation-based neuropathology. However, the
actual in vivo relevance of APP’s function in this regard remains to be determined. Future work shall
reveal whether there are changes in APP levels under neuropathological conditions that might lead
to changes in KCC2 levels and intracellular Cl−, or APP polymorphisms that might predispose an
individual to conditions like epileptic seizures or neuropathic pain. From a cellular and molecular
perspective, much remains to be learned with regard to the physical and functional interactions
between APP and KCC2. As alluded to above, how APP deficiency affects KCC2 transcription is
not yet fully deciphered. Furthermore, the nature and dynamics of the APP–KCC2 interaction that
effectively reduces KCC2 access by tyrosine kinases and ubiquitin ligases remains unclear, and whether
this interaction has, in turn, any bearings on APP’s proteolytic processing is also not known.
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Figure 1. A schematic diagram illustrating amyloid precursor protein’s (APP’s) modulation of γ-
aminobutyric acid (GABA)ergic neurotransmission via its interaction with potassium chloride 
cotransporter 2 (KCC2) and GABAB receptor 1a (GABABR1a). A: APP modulates KCC2 expression by 
suppressing the levels of a KCC2 transcription factor UCF-1 in an unknown manner [65]. B: APP can 
also interact directly with KCC2, and maintains its levels and stability by inhibiting tyrosine 
phosphorylation and ubiquitination-based degradation [64]. APP’s modulation of KCC2 levels alters 
intracellular Cl- and shifts EGABA, thereby affecting inhibitory signaling through GABAARs. C: APP’s 
interaction with GABABR1a’s sushi domain allows it to effectively aid axon targeting of GABABR1a-
GABABR2 dimers [66]. D: Furthermore, secreted (s)APP generated by secretase cleavage could bind 
as a ligand to GABABR1a to modulate GABABR’s presynaptic roles [67]. See text for more details. 
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Figure 1. A schematic diagram illustrating amyloid precursor protein’s (APP’s) modulation of
γ-aminobutyric acid (GABA)ergic neurotransmission via its interaction with potassium chloride
cotransporter 2 (KCC2) and GABAB receptor 1a (GABABR1a). A: APP modulates KCC2 expression by
suppressing the levels of a KCC2 transcription factor UCF-1 in an unknown manner [65]. B: APP can also
interact directly with KCC2, and maintains its levels and stability by inhibiting tyrosine phosphorylation
and ubiquitination-based degradation [64]. APP’s modulation of KCC2 levels alters intracellular Cl−

and shifts EGABA, thereby affecting inhibitory signaling through GABAARs. C: APP’s interaction
with GABABR1a’s sushi domain allows it to effectively aid axon targeting of GABABR1a-GABABR2
dimers [66]. D: Furthermore, secreted (s)APP generated by secretase cleavage could bind as a ligand to
GABABR1a to modulate GABABR’s presynaptic roles [67]. See text for more details.

APP’s high-affinity interaction with the sushi domain of GABABR1a gives rise to two new
functional perspectives pertaining to metabotropic GABAergic signaling, particularly at the axonal
presynaptic compartment where GABABR1a-GABABR2 dimers are selectively targeted to. The basis of
this selective axonal targeting could now be, at least partly, attributed to GABABR1a’s interaction with
APP as the latter is primarily an axonal protein by way of its engagement of the axonal trafficking
kinesin-1 and the motor adaptors JIP and Calsyntenin. This presynaptic targeting of GABABR is
important for the latter’s modulation of excitatory neurotransmitter release in hippocampal neurons [96].
Intriguingly, APP proteolytic products containing the APP ectodomain harboring the sushi domain
interacting motif (the ExD) could also bind GABABR1a at the presynaptic compartment. sAPP, acting
as an agonistic GABABR ligand, thus provides an added dimension to the regulation of GABABR
activity at the presynaptic compartment. Again, the extent to which this sAPP-based modulation
occurs in vivo is not yet clear. Presumably though, sAPP’s effect on postsynaptic GABABR signaling
would be minimal, as these would largely consist of GABABR1b-GABABR2 which lack the sushi
domain [88]. Like APP’s modulation of KCC2 levels and stability, the gross effect of APP’s action on
GABABR appears therefore to be one that limits excitatory neurotransmission.

There are two neurological implications associated with the findings discussed above. The first
pertains to the role of APP and its proteolytic products in synaptic plasticity. In this regard, it is notable
that (1) APP proteolytic processing is enhanced by synaptic activity [97,98] and (2) GABABR is an
important mediator of homeostatic synaptic plasticity [96]. As pointed out by Rice et al., the authors’
observation “...raised the possibility that the sAPP-GABABR1a interaction acts as an activity-dependent
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negative-feedback mechanism to suppress synaptic release and maintain proper homeostatic control
of neural circuits” [67]. That APP and its cleavage product have key roles in homeostatic plasticity
is very much in line with the abundance of APP at the synapse [99], as well as the synaptic deficits
associated with loss of APP in mice [68,69], the latter of which could be at least partially rescued by
sAPPα [44,100]. GABABR has also been implicated in several neurological disorders [101,102] and is a
recognized therapeutic target in this regard [103]. The APP-interacting sushi domain could thus be a
drug target that is unique to presynaptic GABABR1a.

The second neurological implication concerns APP’s role in AD pathology, beyond that of being
a source of Aβ. APP has been shown to act as a cellular receptor for Aβ [104–106] and is known to
mediate the pathological effects of Aβ and tau [107,108] in AD models. On the other hand, sAPPα’s
neuronal pro-survivor activity is well known [26,28] and in this regard appears to be antagonistic to
the neurotoxic nature of Aβ. APP’s role in AD pathology could thus be rather context-dependent.
Interestingly, GABABR antagonists can improve memory and enhance cognition [109], and have some
demonstrated benefits in animal models and patients with mild cognitive impairment (MCI) [110].
Given that hyper-excitability, interneuron dysfunctions, and network abnormalities are features often
associated with, and could precede full clinical onset of, AD [111], APP and sAPPα are therefore
potentially useful in countering MCI and certain aspects of AD pathology, as demonstrated recently in a
mouse AD model [52]. Furthermore, as α-secretase cleavage and sAPPα generation effectively exclude
BACE1 processing, therapeutic strategies that enhance α-secretase processing have been proposed to
be beneficial to AD in terms of a lowering of amyloid load and enhancing neuroprotection [112,113].
These possibilities, however, remain to be more fully explored. Conversely, APP’s interaction with
KCC2 and GABABR1a at the plasma membrane might influence proteolytic processing of the former
in a manner that is AD-relevant. While a reduction of proteolysis of APP to Aβ is shown to result from
its interaction with GABABR1a [66], the situation is less clear for KCC2. These are all points that might
be worth pursuing from a therapeutics perspective.

The growing appreciation of APP’s activity in modulating both the excitatory and inhibitory
neurotransmission suggests that it has fundamental, non-pathological roles in the development,
maintenance, and functioning of the mammalian CNS. This fresh perspective would guide future
investigations and may even help to innovate disease intervention strategies.
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