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Vaccination, as a public health measure, offers effective protection of

populations against infectious diseases. Optimising vaccination efficacy,

part icular ly for h igher-r isk indiv iduals , l ike the elder ly whose

immunocompromised state can prevent the development of robust vaccine

responses, is vital. It is now clear that 24-hour circadian rhythms, which govern

virtually all aspects of physiology, can generate oscillations in immunological

responses. Consequently, vaccine efficacy may depend critically on the time of

day of administration(s), including for Covid-19, current vaccines, and any

future diseases or pandemics. Published clinical vaccine trials exploring diurnal

immune variations suggest this approach could represent a powerful adjunct

strategy for optimising immunisation, but important questions remain to be

addressed. This review explores the latest insights into diurnal immune

variat ion and the outcomes of circadian timing of vaccination

or ‘chronovaccination’.
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Introduction

Vaccination is a powerful and cost-effective public health strategy to protect against

infectious diseases, with ~2-3 million lives saved yearly through global infant

immunisation programmes (1, 2). However, heterogeneity in vaccine responses

remains problematic, including vaccine failure, due to individual factors such as age,

genetic background and overall health and immune status (3). The elderly are of
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particular interest, since age-associated immune decline and

chronic illness comorbidity increase susceptibility to infection,

with potentially less effective vaccine responses (3, 4). Hence,

new strategies to optimise vaccine-induced immunity are

needed. One innovative approach may be to exploit the impact

of circadian rhythms on immune responses, by controlling the

timing of vaccination to enhance protective immunity

through ‘chronovaccination’.
Circadian clock control

Pioneering 2017 Nobel Prize in Physiology or Medicine

recipient chronobiologists Hall, Robash and Young, elucidated

the mechanistic basis of circadian rhythms (Figure 1) (10).

Indeed, circadian rhythms govern virtually all elements of our

physiology, including the immune system (11). The temporal

organisation of physiology is driven by environment and

behaviour, and also by cell-intrinsic circadian oscillators (12).

Discoveries made under highly controlled conditions have

identified autonomous circadian rhythms. However, in the
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real-world, analysis is complicated by environmental factors

such as light-dark and behavioural rhythms, including sleep-

wake and feeding times (13, 14).

In humans, the central circadian clock is located in

the suprachiasmatic nucleus (SCN) of the hypothalamus,

where it receives information on light exposure via the

retinohypothalamic tract, a non-image forming mechanism of

‘entrainment’ which results in synchronisation of the internal

clock to external time cues (12, 15, 16) (Figure 1). However, most

body cells have intrinsic circadian oscillators which are

entrained to the SCN by autonomic and humoral pathways,

often indirectly regulated as a result of timed eating (12).

Approximately 50% of the expressed genes vary through

circadian time, with up to 40% of metabolic pathways showing

24-hour periodic oscillations (17–19). Importantly, most

immune system cells retain intrinsic circadian rhythmicity,

with impacts documented on immunological outputs such as

the relative size and functions of immune cell populations,

inflammatory responses, and responses to infection. It is no

surprise that some studies have identified a role for timing in

immune responses to vaccination (11).
FIGURE 1

Molecular mechanism of the mammalian circadian clock. The mammalian circadian clockwork comprises a set of conserved, self-sustaining
transcriptional- translational feedback loops that begin at ‘dawn’ with transcription factors CLOCK and BMAL1, the positive regulators of the
central loop. CLOCK and BMAL1 heterodimerize and bind E-box regulatory elements to drive the expression of target genes including Period
(Per) and Cryptochrome (Cry) clock genes (5). Accumulating in the cytoplasm over the course of the circadian day, negative regulators PER and
CRY, having complexed to form PER-PER homo- or PER-CRY heterodimers, translocate into the nucleus where they inhibit CLOCK : BMAL1
activity at E-box sites, thereby suppressing their own synthesis (6, 7). Subsequent PER and CRY degradation at ‘night’ allows resetting of the
clock, and CLOCK : BMAL1 activity to resume. This generates stable oscillations in target gene expression with a period of approximately 24
hours (8). PER and CRY stability is thus integral to circadian periodicity: mutations affecting their phosphorylation state, for example, dramatically
alter period length, as first demonstrated by Menaker’s tau mutant hamster, which is a gain of function mutation in CK1e (9). A second feedback
loop comprises CLOCK and BMAL1 driving expression of nuclear receptors RORa (NR1F1), REV-ERBa (NR1D1) and its paralogue REV-ERBb
(NR1D2), which act via ROR-response elements (RORE) in the proximal Bmal1 promotor to modulate Bmal1 expression; RORa as a
transactivator and the REV-ERBs as transrepressors (5). Figure created with BioRender.com.
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Circadian rhythms and the
immune response

There is increasing evidence for tight, bidirectional crosstalk

between the circadian and immune systems, resulting in temporal

gating of the magnitude of immunological responses (11, 20).

Rhythmicity in innate immune functions has been long established

(11, 21–23). Recent molecular evidence has similarly shown that

adaptive immunity is under circadian control. Intrinsic circadian

oscillator existence in T-cells was first demonstrated in 2011 by

clear rhythmicity of immune-gene (IFNg, CD40L) and clock-gene

expression in polyclonally- stimulated CD4+ T-cells isolated from

human blood over a 24-hour period (24). This discovery was soon

complemented with the first description of circadian oscillations in

B-cells from mice housed in 12:12 light:dark conditions or in

constant darkness (25). Clock gene expression in CD8+ T-cells has

yet to be formally demonstrated, although it is known that

rhythmicity in their antigen-specific proliferative responses

requires a functional intrinsic clock (26).

A comprehensive analysis of circadian clock influence on the

immune system is reviewed elsewhere (11). However, leukocyte

migratory behaviour, which is critical for induction of robust

adaptive (T-cell and/or B-cell) responses, is of particular interest.

In 2017, a seminal mouse study demonstrated that the cellularity

of lymph and lymph nodes (LN) oscillates throughout the day,

being highest during the behavioural ‘active phase’ of the

organism (at night for mice, and day for humans) due to cell-

intrinsic rhythmic expression of critical retention and egress

factors (27). Consistent with lymphocyte recirculation dynamics,

naïve CD4+ and CD8+ T-cell counts in human blood peak at

night (02:00) and decline during daytime to an early afternoon

(14:00) nadir (28, 29). Dendritic cell (DC) migration into lymph

nodes shows similar evidence of rhythmicity due to cell

autonomous clocks acting in both DC and lymphatic

endothelial cells (30). Even the expression and function of

molecules such as Toll-like receptor 9 (TLR9), ligation of which

can induce DC migration, is regulated in a temporal manner (31).

Several lines of evidence indicate that the outcome from

infection is determined by the time of day at which it is initiated

in a clock gene-dependent manner. Infection of mice with

Salmonella typhimurium during their rest phase, for example,

resulted in higher bacterial loads compared with those infected

in the middle of the active phase, and this is CLOCK-dependent

(32). Furthermore, Bmal1 (Figure 1) in monocytes can modulate

Leishmania parasite burden (33); and herpes, influenza A, RSV

and Paramyxoviridae respiratory virus infections are enhanced

when Bmal1 is disrupted (34, 35). These and other studies (36)

provide functionally-relevant in vivo evidence that the circadian

clock can regulate pathogen-specific immunity; further evidence

suggests it also regulates disease severity in experimental studies

of inflammatory diseases (31).
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From the foregoing, it is clear there are strong theoretical

and experimental lines of evidence supporting potentially critical

roles for timing in immunisation protocols. Making therapeutic

use of the link between chronobiology and immunity is a novel

concept that is rapidly gaining attention for its potential to

improve drug and vaccine delivery and efficacy (37, 38). We have

coined the term ‘chronovaccination’ for chronotherapy applied

in the context of vaccines, to embrace emerging evidence

suggesting that adjusting the time-of-day of vaccination to

align with the optimal circadian phase could be a powerful

tool to maximise vaccine immunogenicity.

Excitingly, taking biological timing of vaccination into

consideration might represent a simple, cost-effective

complementary approach to increasing vaccine immunogenicity

alongside other considerations in vaccine design. This is

particularly relevant given the slow pace of adjuvant discovery,

partly due to safety concerns (39), or where behavioural

interventions, like stress reduction or exercise before

vaccination, are impractical (40).

The new appreciation for circadian orchestration of immune

responses is translating into promising clinical chronovaccination

research (Figure 2). Leading the efforts, in 2016, Long and

colleagues (42, 43) performed the first large-scale randomised

controlled trial (RCT) assessing the effect of different vaccination

times: UK adults aged over 65 received seasonal influenza vaccines

either in the morning (9:00-11:00) or afternoon (15:00-17:00).

One month later, significantly higher specific antibody responses

were mounted against the A/H1N1 and B influenza strains (but

not the A/H3N2 strain) after vaccination in the morning

compared to the afternoon (42, 43).

A beneficial influence of morning vaccination is further

supported by subsequent trials. In 2020, de Bree and others (44)

assessed the effect of time of vaccination on specific and non-

specific immunity induced by the only licenced TB vaccine,

Bacillus Calmette-Guérin (BCG). When healthy adults from the

Netherlands (mean age 26 years) received the BCG vaccine in the

morning (08:00-09:00) or evening (18:00-18:30), Mycobacterium

tuberculosis (M.tb)-specific IFN-g production by cells in vitro was

elevated at 3 months post- vaccination in the group vaccinated in

the morning, but not in the evening (44). Furthermore, BCG

vaccination in the morning induced stronger trained innate

immune responses (‘innate memory’) against the heterologous

pathogen Staphylococcus aureus (44). Given growing interest in

the potential non-specific effects of BCG and other vaccines in

protecting against all-cause mortality, this could have broader-

reaching implications for vaccine effectiveness.

Most recently, there are early indications that morning

vaccination has a positive influence on the neutralising

antibody response to an inactivated vaccine against SARS-
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CoV-2 from a prospective cohort study of healthcare workers in

China (45). Participants vaccinated in the morning had

improved B-cell and T follicular helper (Tfh) cell responses at

8 weeks post-vaccination, and higher percentages of circulating

monocytes and dendritic cells. An observational study of UK

healthcare workers found that time of day of vaccination with

the Pfizer mRNA or Oxford-AstraZeneca adenoviral SARS-

CoV-2 vaccines was one of several factors influencing the

magnitude of anti-spike antibody responses induced (46).

While the mechanism by which time of day influences

vaccine-induced immunity remains unclear, studies have

considered the role of circulating steroid hormones which vary

diurnally and have been associated with immunoregulation and

vaccine responses (47–50). However, the time-of-day effects on

antibody response to influenza vaccination did not appear to be

mediated by these hormones (42, 43). Similarly, de Bree et al.

found no associations between circulating cortisol levels and

cytokine production in vitro following specific or non-specific

stimulation of cells from BCG vaccinated volunteers (44).

Previous studies have indicated a diurnal effect on BCG-

induced immune trafficking including neutrophil migration

(51–53), which may be relevant given the central role for

neutrophils in transferring BCG to the draining LNs (54).

Rather than circadian rhythms in soluble factors in the

circulation, peripheral molecular clocks in cells (coordinated

by the central clock in the SCN of the hypothalamus) may play a
Frontiers in Immunology 04
key role in timed vaccine effects. Indeed, circadian clock genes

have been shown to oscillate in immune cells (24). De Bree et al.

hypothesise that a molecular intrinsic clock within monocytes

and their progenitors, neutrophils or hematopoietic stem cells

could contribute to the observed effects of time of day of

vaccination on BCG-induced trained immunity (44). It is

similarly possible that clocks in other peripheral blood

mononuclear cells and vascular and lymphatic endothelial cells

play a role in time of day influences on vaccine responses, but

further work is required to understand this association.

Interestingly, epigenetic differences resulting in increased

chromatin accessibility in genes important for the mTOR

pathway at 3-months post-BCG vaccination have been

identified in morning- but not evening-vaccinated participants.

Morning-vaccinated individuals also showed enrichment of

transcription factors involved in mTOR signalling and

associated with active histone marks (44). As the mTOR

pathway is key to the induction of trained innate immunity,

this may in part account for diurnal variation in the non-specific

effects of BCG vaccination (55).

Future studies to validate these early findings might include

high-dependency, frailer populations to investigate whether

chronovaccination remains effective despite more complex

health profiles (56). It is clear that further functional studies

are also needed to clarify the molecular and cellular mechanisms

involved. Nonetheless, these timely clinical trials provide
FIGURE 2

Evidence for improved vaccine responses following morning compared with afternoon vaccination. Vaccination against influenza and hepatitis A
in the morning has been associated with increased peak antibody responses (41), and morning influenza vaccination with higher specific
antibody responses to the A/H1N1 influenza strain (42, 43). Cells taken following morning BCG vaccination demonstrated elevated M.tb-specific
IFN-g production and stronger heterologous innate immune responses in vitro compared with those taken following afternoon vaccination (44).
An inactivated COVID-19 vaccine induced higher neutralising antibody titres, improved B-cell and Tfh cell responses and higher percentages of
monocytes and dendritic cells when administered in the morning (45). HepA, Hepatitis A; BCG, Bacille Calmette Guérin; M.tb, Mycobacterium
tuberculosis; IFN-g, interferon-gamma; Tfh, T follicular helper. Figure created with BioRender.com.
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important preliminary evidence that chronovaccination may be

effective for improving the protective response to vaccination,

particularly in the elderly.
Population age and
chronovaccination outcomes

Evidence for a diurnal response to vaccination is less

convincing in younger adults. The literature for this

demographic is largely inconclusive: some investigators suggest

time-of-day dependent effects on post-vaccination antibody

responses (41, 57), while others find no difference (58, 59). This

apparent inconsistency between age groups is perhaps explained

(60) by reports that humans show heterologous chronotypes in

circadian clock timing (sleep/wake) even under entrained

conditions, exposing genetic and environmental complexity.

Hence, circadian phases are variable across a population, being

subject to both internal and external influences.

In 2016, three landmark genome-wide association study

(GWAS) analyses of self-reported chronotype (61–64)

identified multiple significant genetic associations, highlighting

the complex and individual nature of circadian timing. Human

populations are typically ‘masked’, referring to people following

external cues and living against their endogenous circadian

clock; such people experience circadian misalignment. A

prevalent, and extreme cause of circadian misalignment is

shiftwork. Interestingly, such individuals have independently

increased risk of immune disorders such as asthma (65),

cardiovascular disease (66, 67), type-2 diabetes (67), breast

cancer (68), Covid-19 infection (69), hospitalisation and

reduced vaccination efficacy (69, 70), indicating the potentially

serious effects of circadian disruption.

There are highly systematic age-dependent changes of

chronotype (60). Older adults become phase advanced (60)

perhaps owing to greater morning exposure to natural bright

light (71), which is widely accepted as the strongest zeitgeber (i.e.

entraining stimulus) (14). In contrast (72), delayed chronotypes

(‘late-risers’) were found in a university student population aged

17-26 years (60). Potentially, dramatic circadian phase

differences could confound data analysis, making comparisons

of chronovaccination outcomes difficult across different age

groups. Surprisingly, individual chronotype has been largely

overlooked as a variable in chronovaccination studies to date.

These potentially confounding inter-participant phase

differences need consideration in future studies for vaccination

timing between older and younger adults.

Beyond circadian phase, many studies document a decline in

circadian amplitude with age (73). Reduced immune responses

are shown by higher mortality in >65 year old patients, for

example for influenza, Covid-19, bacterial pneumonia (74), and
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progressively reduced responses to Covid vaccinations (75).

Some new intriguing mechanistic insights show diurnal

rhythm and some innate immune responses in murine

macrophages are abolished with ageing (73).

It is possible that chronovaccination, like other

unconventional approaches that seek to optimize the

circumstances surrounding vaccination, is only effective for

‘sub-optimal’ vaccination responses, as are typical in older age

(74). This controversial viewpoint from Edwards et al. (40)

suggests that acute exercise only enhanced the antibody

response in healthy young adults (mean age 22 years) when

participants were given a weakly-immunogenic half-dose of

pneumococcal vaccine, as opposed to the full-dose (40).

Strengthening this hypothesis will require evidence that non-

uniform vaccine responses to behavioural interventions

segregate with partic ipant immunocompetence. An

informative approach could include a group of participants

taking immunosuppressant medication, for example

therapeutic glucocorticoids.

Arguably, interventions optimising vaccine immunogenicity

should prioritise those where vaccine failure poses the greatest

concern, part icular ly those aged over 65 and the

immunocompromised (75–77). Such strategies must account

for inflammageing and immunosenescence as two essential

characteristics of ageing (74–76). Previous studies have

documented shifts in immune cell populations as people age:

for example, there is a relative predominance of memory and

effector T-cells over naïve T-cells in the elderly (77). Similar

changes have been observed for naïve B-cells, diversity of the B-

cell repertoire and B-cell production with age (78). Further

studies are clearly needed to clarify the impact of population

age on outcomes of timed vaccinations.
Clinical efficacy of
chronovaccination

Despite displays of statistical significance in terms of

immunogenicity (41–43, 57), elucidating the clinical significance

of chronovaccination for vaccine efficacy has received remarkably

little attention. It remains largely unknown how, or indeed if, the

observed increases in early post-chronovaccination antibody titre

and other immune parameters correspond to a better quality of

response and, crucially, whether this confers greater protection

against infection and/or disease over time. Critics question

whether time-of-day of vaccination can truly affect a slowly

mounted adaptive response that fundamentally depends on

chance and dynamic interactions between highly motile cells

(79, 80). This viewpoint is incompatible with the abundant

evidence that coordinated adaptive immune responses and

outcomes of infection depend also on biological time (11).
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Evidence of an increase in specific neutralising antibodies [which

are broadly predictive of immune protection from symptomatic

SARS-CoV-2 infection (81)] following morning compared with

evening COVID-19 vaccination could suggest a functionally-

relevant influence of the circadian clock (44). Establishing

whether the timing of vaccination meaningfully impacts on

immunogenicity and clinical protective efficacy from pathogen

infections and disease will be crucial before any clear

recommendations can be made to change current vaccination

practices (80). Indeed, in addition to ‘chronoefficacy’ being noted,

so has ‘chronotoxicity’, where deleterious effects might depend on

the time-of-day dosing (82).
Discussion

Chronovaccination may represent a paradigm shift in

vaccine immunology. However, pressing questions remain

concerning its practicalities. Given inter-individual chronotype

heterogeneity, chronovaccination may benefit from a

population-specific or personalised approach to accurately

predict optimal biological time, such as outlined by

Wittenbrink et al. (83) using a single blood sample. The

logistical and economic cost of this additional test may,

however, pose a barrier to the widespread implementation of

‘individualised’ chronovaccination. Moreover, repeated serial

measurements will undoubtedly be required to define the

complex immunobiology underlying vaccination responses.

Even sampling itself may be a confounding factor in being

able to interpret the outcomes of chronovaccination studies. The

fact that peripheral leukocyte circulation shows diurnal

oscillations (28) and that innate and adaptive response

components can diurnally fluctuate significantly in a

vaccinated individual (41–46), makes it perhaps surprising that

blood sample ‘collection time-of-day’ is not already considered

as a covariate in most chronovaccination trials, and that

unvaccinated or placebo control groups are not also included

in study designs. For example, differences in baseline number of

B-cells (59), or of the capacity of monocytes to produce

proinflammatory cytokines (44), vary between samples

collected in the morning compared to the evening. Utilising

big-data analytics, precise timing of vaccine delivery and sample

collection should be recorded in future clinical trials (59).

Chronovaccination protocols may also require tailoring to

the vaccine used and the type of protective response required

(42, 43). Speculatively, it might emerge that chronovaccination

has a different optimal time-of-day for different vaccine dose-

strengths, formulations, types, or adjuvants according to their

mode of action. Considering the superimposed effects that the

sequence of vaccinations may have on their efficacy is important,

particularly if chronovaccination is to be applied to infant
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immunization programmes. Aaby et al. (84) noted in an

observational study that oral polio vaccination in the first

weeks of life can render the second dose of measles vaccine

more effective in reducing overall mortality, and this was further

reduced when early BCG vaccination was added (84). This may

make the task of accurately evaluating the true clinical impact of

chronovaccination even more challenging.

Potentially, chronovaccination offers improved clinical

efficacy of current licensed vaccines, particularly those that are

partially-effective such as BCG, for the elderly, and to inform the

development of novel vaccines and adjuvants. There is strong

mechanistic evidence that circadian rhythmicity in immune

function influences the innate and adaptive responses according

to the time-of-day of initial antigen challenge. However, this is yet

to translate into conclusive results from clinical chronovaccination

trials due to methodological limitations and insufficient study of

the relevance, specifics and generalisability of findings for

useful recommendations.

Early reports of increased antibody titre following morning

influenza vaccination in the elderly are indeed promising but,

crucially, it remains unknown whether the immuno-enhancing

effect confers any clinically significant reduction in infection,

disease incidence and/or survival. At least, no harm appears

evident from morning vaccination. The current evidence does,

however, clearly highlight that the time of vaccination and even

sample collection can have major (and potentially misleading)

effects on study results and correlated outcomes. The most

immediate influence of chronovaccination research may lie in

its experimental consideration as a covariable in future vaccine

clinical trial designs. Further study is certainly needed to resolve

the important issues highlighted in this review before any

potential future clinical role for chronovaccination can be

safely implemented.

In the meantime, it would seem easy and reasonable that ‘time

of vaccination’ should be stratified into most vaccine trials for later

analysis. ‘Omics’ based deep phenotyping approaches may be key

to creating a phase translation map that would aid in identifying

translational potential and challenges (85, 86). Indeed, a pilot

study has demonstrated the feasibility of characterising the human

“chronobiome” at scale (85, 86), and a recent visualisation tool

identified rhythms in –omics scale datasets (85–87). Other near-

future steps to bridge the chronovaccination knowledge gap may

include greater recognition of circadian research within the

medical school curricula, vaccinology and immunology courses

(as done in the Oxford Masters in Integrated Immunology

Course), funding body incentivisation for inclusion in vaccine

trial proposals, and industry consideration in the vaccine

development pipeline. Although perhaps tempting to speculate

that morning vaccination might have higher clinical efficacy, more

work is needed to confirm and recommend this safely (82) for

general vaccine dosing.
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