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Arterial Stiffness: Different
Metrics, Different Meanings
Findings from basic science and clinical studies agree that arterial stiffness is fundamen-
tal to both the mechanobiology and the biomechanics that dictate vascular health and
disease. There is, therefore, an appropriately growing literature on arterial stiffness.
Perusal of the literature reveals, however, that many different methods and metrics are
used to quantify arterial stiffness, and reported values often differ by orders of magnitude
and have different meanings. Without clear definitions and an understanding of possible
inter-relations therein, it is increasingly difficult to integrate results from the literature to
glean true understanding. In this paper, we briefly review methods that are used to infer
values of arterial stiffness that span studies on isolated cells, excised intact vessels, and
clinical assessments. We highlight similarities and differences and identify a single theo-
retical approach that can be used across scales and applications and thus could help to
unify future results. We conclude by emphasizing the need to move toward a synthesis of
many disparate reports, for only in this way will we be able to move from our current
fragmented understanding to a true appreciation of how vascular cells maintain,
remodel, or repair the arteries that are fundamental to cardiovascular properties and
function. [DOI: 10.1115/1.4043486]
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Introduction

Mechanical factors have long been known to play vital roles in
arterial health, disease, and treatment. Studies dating back to the
late 19th century showed that altered blood flow and pressure typi-
cally result in changes in luminal radius and wall thickness [1,2],
thus foreshadowing the need to quantify the mechanoregulation of
arterial structure and function. It was not until the 1970s, however,
that it was discovered how such changes occur. Experiments on
cultured endothelial cells and vascular smooth muscle cells
revealed flow- and stretch-induced changes in secreted proteins
that resulted from altered gene expression [3,4]. Hence was born
the field of vascular mechanobiology, reviews of the first three
decades of which can be found elsewhere [5,6]. Importantly, care-
ful studies of the aorta during this same defining period revealed
that circumferential lamellar tension (�2 N/m), and by inference
circumferential lamellar stress (�150 kPa), is similar within the
medial layer across multiple mammalian species [7]. This finding,
coupled with subsequent observations that aortic material stiffness
at mean arterial pressure is also similar (�500 kPa) across inverte-
brates and vertebrates [8], strongly suggests the existence of a
“mechanical homeostasis”—that is, vascular cells seek to estab-
lish and then maintain particular mechanical quantities near target
(homeostatic) values. Indeed, findings at subcellular, cellular, tis-
sue, and organ levels suggest that such homeostatic processes
exist across many spatial and temporal scales [9].

Two seminal contributions by Fung and his colleagues
advanced our ability to quantify arterial wall stress and the associ-
ated stiffness, which are important both for assessing the mechan-
ics of the wall and understanding its mechanobiology. First, Fung
observed via uniaxial experiments on soft tissues that material
stiffness (in this case, a change in the first Piola-Kirchhoff stress
with respect to stretch) relates nearly linearly to the stress itself
[10]. Importantly, this finding suggests directly that the first Piola-
Kirchhoff stress increases nearly exponentially with stretch.
Indeed, a similar observation had previously been reported for the
overall structural stiffness of the pressurized eye based on its
pressure–volume relation [11]. Motivated by these findings, Fung

later hypothesized the existence of an exponential stored energy
function W that yields an exponential relationship between the
second Piola-Kirchhoff stress S and Green strain E, where
S ¼ @W=@E. Now known as Fung elasticity, this hyperelastic
function can be written as W ¼ cðexpðQÞ � 1Þ, where c is a mate-
rial parameter and the scalar function Q depends quadratically on
E [12]. An associated metric of material stiffness, in referential
form, is thus C ¼ @S=@E ¼ @2W=@E@E. Notwithstanding the
importance of Fung’s constitutive hypothesis in quantifying the
mechanical behavior of many soft tissues and solving associated
initial-boundary value problems, the observation that material
stiffness relates linearly to stress implies that it should be chal-
lenging to delineate whether mechanobiological responses corre-
late better with stress or stiffness, consistent with the
aforementioned observations that homeostatic values of aortic
stress and material stiffness are similar across species [7,8]. Sec-
ond, Fung showed that the existence of residual stress in arteries
dramatically affects the calculated distribution of Cauchy stress t
across the arterial wall [13], which in combination with basal
smooth muscle cell tone results in a nearly homogenized trans-
mural distribution [12]. This finding supports the concept that vas-
cular cells seek to establish and then maintain mechanical stress
or stiffness near a homeostatic target, regardless of location within
the wall. Importantly, it now seems that different homeostatic tar-
gets may exist for different cell types that populate different layers
of the wall [14], thus reinforcing the concept of a cell-specific
mechanical homeostasis that can manifest at the vessel level as
well.

The importance of arterial stiffening in human disease was
anticipated as early as the turn of the 20th century by Sir Wm

Osler, one of four founding fathers of Johns Hopkins medicine,
but confirmation had to await a seminal clinical study at Paris,
France that revealed that an increased pulse wave velocity (PWV)
is an initiator and indicator of diverse cardiovascular, neurovascu-
lar, and renovascular disease and thus all-cause mortality [15].
Carotid-to-femoral PWV is now considered to be the gold stand-
ard for clinical assessment of arterial stiffness [16], which
increases with diabetes, hypertension, natural aging, particular
connective tissue disorders, and so forth [17–19]. This metric of
stiffness is best measured by dividing the vascular centerline dis-
tance between two recording sites by the time that it takes the
(foot of the) pressure pulse wave to travel between these sites
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(“foot-to-foot” PWV). Intuitive understanding of the PWV often
comes from the Moens–Korteweg equation, derived in the 1870s
and commonly written as PWV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh=2qa

p
, where E is an

intrinsic (linear) material stiffness, h is the wall thickness, a is the
luminal radius, and q is the mass density of the fluid. Understood
in this way, we see that PWV depends on both the intrinsic mate-
rial stiffness and the geometry of the wall, hence rendering it an
integrated (along the centerline distance) measure of structural,
not material, stiffness.

Not surprisingly, there continues to be increasingly greater
interest in measuring and understanding arterial stiffness in basic
science studies and clinical assessments. Quantifying stiffness
helps us to understand critical questions related to, among other
issues, fundamental aspects of vascular mechanobiology, effects
of a distensible wall on the hemodynamics, disease progression,
and even the efficacy of particular clinical treatments. In this
paper, we briefly review and contrast different methods for meas-
uring and interpreting arterial stiffness both to emphasize that
which has been learned and that which remains unclear. In partic-
ular, we emphasize that many different metrics of arterial stiffness
reported in the literature have different theoretical underpinnings
and thus different meanings. Caution is thus warranted when com-
paring values of stiffness across studies as well as when interpret-
ing fundamental implications of a particular metric on either the
cell biology or the systems physiology.

Approaches

We first review the theoretical basis for some of the experimen-
tal methods that are commonly used to infer material properties of
the arterial wall and its constituent parts. The presentation is
organized by physical scale, not chronological introduction within
the field. Regardless of scale, it is critical to delineate concepts of
material versus structural stiffness, and similarly, it is essential to
note that values of stiffness depend on the type (tensile, compres-
sive, or shear) and magnitude (small or large) of the loading as
well as the mechanical state in which the experimental loads are
imposed, especially if the sample is otherwise unloaded during
testing. Unfortunately, many papers often simply report a value
for stiffness without emphasizing the precise definition or experi-
mental conditions, hence obscuring the range of applicability.
Here, we attempt to delineate some of these issues.

Atomic Force Microscopy. Invented in the early 1980s at
IBM, atomic force microscopy (AFM) uses a laser to detect small
deflections of a cantilever probe as it interacts with the surface of
a specimen. The atomic force microscope can be used in various
modes to assess the topography of a surface or to probe mechani-
cal properties. With regard to the latter, one can perform precise
indentation (compression) tests or functionalize the probe to ena-
ble tractions (tension) to be applied at the surface. As implied by
its name, the most precise atomic force microscopes measure
nanoscale forces and motions, thus it is not surprising that AFM
has been used extensively in biology, biophysics, and bioengin-
eering, often to assess aspects of cell stiffness, cell-matrix interac-
tions, or local matrix stiffness. With larger probes, one can also
assess bulk tissue stiffness. Associated data consist primarily of
the applied force (inferred from knowledge of the cantilever prop-
erties and deflections) and the imposed motion of the probe, often
the depth of penetration into the surface. Quantities such as stress
and stiffness can be determined by solving the associated initial-
boundary value problem.

Data on indentation force (f ) and depth (d) are often interpreted
using a classical 19th century solution by Hertz for the localized
indentation of a semi-infinite half-space that exhibits a linearly
elastic and isotropic material behavior under small strains and
rotations [20]. In this way, one can infer an associated Young’s
modulus E, a measure of the intrinsic compressive material stiff-
ness for a specialized class of material behaviors. Albeit often not
noted, this classical Hertz solution also assumes that the half-

space is unloaded prior to the indentation by the probe. Of course,
all arteries and their attendant cells are under significant loads
in vivo and often are loaded in vitro in cell or organ culture, hence
any Young’s modulus inferred from the Hertz equation must be
viewed cautiously. In particular, it has been shown both analyti-
cally [21] and numerically [22] that the indentation force-depth
relationship, and thus inferred stiffness, depends strongly on the
pre-existing state of stress/strain in the material. Because analyti-
cal findings typically provide more intuitive insight than numeri-
cal results, note that an exact solution relevant to AFM can be
obtained using a theory of small deformations superimposed on
large (Appendix A) for the special case of an initially isotropic
planar specimen subjected to finite equibiaxial in-plane stretching
prior to a superimposed small indentation in the out-of-plane
direction [23]. In this case, the indentation force f and (small)
depth of penetration d are related linearly via f ¼ ad where the
“transverse structural stiffness” a depends nonlinearly on the finite
in-plane stretch experienced by the specimen as well as on the
intrinsic material stiffness of the material and the geometry of the
rigid probe. For example, for a neo-Hookean material behavior
defined by a stored energy function W ¼ lðtrC� 3Þ, where l is
the shear modulus and C ¼ FTF is the right Cauchy–Green tensor,
with F being the deformation gradient tensor, it can be shown that
the transverse stiffness, having units of N/m, can be written as [21]

a ¼ 8rol
ðk9 þ k6 þ 3k3 � 1Þ

k4ðk3 þ 1Þ
(1)

where 2ro is the diameter (do) of a flat-ended cylindrical probe
and k is the equibiaxial in-plane stretch. A Hertz-type solution can
be recovered as k! 1, for which a! 16rol ¼ 4doE=3, with
Young’s modulus Eð¼ 6lÞ having units of N/m2. Hence, E can be
computed easily given the diameter of the probe and the slope of
the force-depth data (f ; d) for an otherwise unloaded specimen. Of
course, because of inherent uncertainty in all experimental data,
the stiffness parameter(s) should be estimated using least-squares
regressions of data via an over-determined system of equations.
Moreover, in the case of a nonlinear behavior, the intrinsic mate-
rial stiffness (e.g., shear modulus l for a neo-Hookean response)
should be inferred from force-depth data over a range of in-plane
stretches that are relevant to the biological or physiological
regime of interest in order to characterize well the overall material
behavior. Noting that adherent cells spread out and develop signif-
icant cytoskeletal stress when cultured on any substrate, which is
to say that they develop a finite nearly in-plane state of stress or
stretch, it has been shown that a small-on-large framework can be
used to assess cell stiffness from AFM for more general exponen-
tial stored energy functions [24].

Indeed, although a neo-Hookean relation admits a simple ana-
lytical solution that allows one to intuit effects of finite in-plane
stretches on AFM measured stiffness (Eq. (1)), the Fung exponen-
tial model is more appropriate for most soft tissues and even cells.
Appendix B summarizes a general Fung model and Appendix C
provides results for a small-on-large solution for AFM based on
an isotropic Fung exponential model. As expected, the numerical
implementation is straightforward. Nevertheless, results from
AFM for assessing vascular cell stiffness [25,26] and arterial
properties [27–30] typically have been interpreted in terms of a
single Young’s modulus inferred from the Hertz solution, which
tacitly ignores the important nonlinear dependence on in-plane
prestretch and the nonlinear (often exponential) material behavior.
Hence, the inferred values of stiffness are typically well below
in vivo values and could be misleading regarding in vivo
mechanobiology.

Although not discussed in detail here, additional methods are
also used to assess cell stiffness, including magnetic twisting
cytometry (MTC) and optical tweezers [31]. MTC is similar to
AFM except that one either affixes onto or embeds within a living
cell a ferromagnetic bead that can be cyclically twisted using a
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magnetic field. Associated data are often interpreted in terms of
the so-called storage (G0) and loss (G00) shear moduli, which are
basic descriptors of a one-dimensional (1D) linearly viscoelastic
behavior over small strains and rotations [32]. For example, MTC
was used to show that the stiffness of vascular smooth muscle
cells (i.e., elastic storage and dissipative loss moduli) increases in
aging [33]. Similar to the Hertz solution, however, this inference
of material properties does not explicitly account for the underly-
ing nonlinear material behaviors or the finite deformations that
adherent cells experience in vitro when spreading on a surface or
to which they are likely exposed in vivo. Again, a small-on-large
approach for data analysis could be more appropriate.

Biaxial Biomechanical Testing. Arteries are subjected in vivo
to complex multiaxial loads due to blood pressure and flow as
well as axial prestresses that develop largely due to somatic
growth [12]. Flow-induced shear stresses are important mechano-
biologically and can be determined by solving equations that gov-
ern the hemodynamics (e.g., Navier–Stokes solutions within the
context of fluid–solid interactions), yet they are typically five
orders of magnitude smaller (1.5 Pa) than the in-plane intramural
stresses (�150 kPa) and thus are neglected in most analyses of the
wall stress field. The in-plane circumferential (thh) and axial (tzz)
components of Cauchy stress are tensile, whereas the out-of-plane
Cauchy radial (trr) stress is compressive, on the order of �15 kPa,
and typically dictated largely by the traction boundary conditions.
For these reasons, biaxial loading has long been preferred for
studying the biomechanical properties and function of blood ves-
sels, particularly arteries and veins [34]. Associated pressure-
diameter and axial force-length data provide direct insight into the
structural stiffness of these vessels. Material stiffness can be
inferred from a global equilibrium solution that relates the loads
that are measured during standard biaxial tests on excised cylin-
drical samples to components of the Cauchy stress as [12]

P ¼
ðro

ri

thh � trr

r

� �
dr; L ¼ p

ðro

ri

ð2tzz � trr � thhÞrdr (2)

where r 2 ½ri; ro�, with ri and ro being the inner and the outer
radius of the sample, respectively, P is the distending pressure,
and L is the reduced axial load. If only the mean (i.e., radially
averaged, h…i) values of stress are of interest, then these two inte-
gral relations can be replaced with algebraic ones, hthhi � rhh ¼
Pri=h and htzzi � rzz ¼ ðLþ pri

2PÞ=phð2ri þ hÞ, where h ¼
ro � ri is the wall thickness. Mean values of stress are surprisingly
useful because of the aforementioned effect of residual stress in
homogenizing the transmural distribution of stress. Regardless,
some investigators infer stiffness from plots of stress versus
stretch or strain (yielding so-called tangent moduli), but stiffness
depends on the full multiaxial deformation and is best computed
from an appropriate constitutive relation as noted above for the
referential stiffness (@S=@E). Given the complex microstructure
of the vascular wall, most investigators now prefer the so-called
fiber-family constitutive models [35–37] to characterize multiax-
ial data, though the Fung exponential provides good fits to data in
many cases (recall that Appendix B reviews a general orthotropic
Fung relation). Best-fit values of material parameters for any
appropriate constitutive relation can be determined via nonlinear
regression of pressure-diameter and axial force-length data, with
data from multiple biaxial protocols typically combined to
improve the parameter estimation, again via (nonlinear) least
squares regression. In this regard, it is important to note that many
studies nevertheless report only pressure-diameter data at a single
value of axial stretch and often do not measure the associated
axial force. Such data are essentially one-dimensional and not use-
ful for calculating in vivo relevant biaxial stress or stiffness [38].

There are, in addition, a few other issues regarding the in vivo
applicability of constitutive relations that are inferred in vitro.
First, values of arterial stiffness change with pressure over a

cardiac cycle, hence the theory of small deformations superim-
posed on large has been used to compute “single” values of the
spatial material stiffness C that are often representative over a
cardiac cycle and thereby render computations of fluid-solid-
interactions more efficient [35]. In component form, we have (see
Appendix A)

Cijkl ¼ 2dikFo
lAFo

jB

@W

@CAB

����
Co

þ 2djkFo
iAFo

lB

@W

@CAB

����
Co

þ 4Fo
iAFo

jBFo
kPFo

lQ

@2W

@CAB@CPQ

����
Co

(3)

where dij is the Kronecker delta and a superscript o denotes a
deformation quantity that is associated with an original finite
deformation about which the small superimposed deformation
occurs. For example, the large deformation could be for an artery
from a traction-free reference configuration to a finitely distended
and extended in vivo configuration near mean arterial pressure
about which relatively small motions occur over a cardiac cycle.
Second, there is a pressing need to understand better how central
arterial stiffness and resistance vessel function interact to affect
both local and global hemodynamics and cardiovascular function
[19,39]. Third, the effects of perivascular tethering can be as
important as the structural stiffness (i.e., material stiffness and
geometry) in affecting the hemodynamics though there has not
been much quantification of this effect [40,41]. Fourth, constitu-
tive relations that are inferred in vitro are generally established
under quasi-static conditions, whereas in vivo loading is pulsatile
and hence intrinsically dynamic. Associated differences in strain-
rate may influence calculated values of measured stiffness
[42,43]. Finally, although well suited for nearly cylindrical sam-
ples, standard distension–extension tests are not sufficient for
more complex arterial geometries, particularly those manifesting
in disease. Fortunately, new methods are emerging that enable
local material properties to be inferred using full-field strain meas-
urements and inverse methods for material characterization
[44,45].

Although not discussed in detail here, there are also many
reports of vascular function and properties based on either
uniaxial loading tests (e.g., Ref. [46]) or ring myography (e.g.,
Ref. [25]). Originally conceived to study isometric contraction,
ring tests are performed by placing a short ring-like sample of the
vascular wall on two mounting fixtures that are separated by a
finite distance. The sample thus stretches primarily in the circum-
ferential direction as the fixtures are separated and the sample
deforms from a circular to an oval to a more uniaxial geometry
within the central region of measurement. Measurement of the
force acting on (passive) or generated by (active) the sample thus
allows one to estimate 1D stress-stretch information or to con-
struct dose-response curves while holding a sample at a fixed sep-
aration distance (isometric). This approach is particularly valuable
for high-throughput comparisons of different drugs or their doses,
but the associated contraction of the smooth muscle is under non-
physiological loading [47]. Inference of passive or active stiffness
from these ring tests is further compromised by the lack of an
exact solution to the full boundary value problem (finite bending
and uniaxial extension of an annulus) and the lack of biaxial load-
ing [12,34]. In particular, both the radial and axial stretches reduce
below one as circumferential stretch increases with the separation
of the mounting fixtures. Axial stretch is typically much greater
than unity in vivo and is important to both the mechanics and the
mechanobiology [48]. Finally, in-plane biaxial tests can be per-
formed on excised samples (e.g., Ref. [49]) and are generally very
informative for they can largely mimic the in vivo state of stress,
with the exception of radial compression due to a distending blood
pressure. The primary caveat with in-plane biaxial tests is that
large specimens can retain some of their natural cylindrical curva-
ture in the unloaded state, thus requiring combined bending and
extension to load the sample biaxially. Uniaxial tests performed
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on different samples with different gross orientations can avoid
some issues of residual curvature, but associated protocols are
limited and cannot explore directly the inherent coupling that is
important in dictating the multiaxial mechanical behavior.

Pulse Wave Velocity and Distensibility. Whereas AFM,
MTC, biaxial testing, ring myography, and allied methods are
employed in vitro on excised samples, which generally enables
significant experimental control, clinical studies necessarily
require less invasive in vivo methods, measurements, and metrics.
As noted earlier, the current clinical gold standard metric of arte-
rial stiffness is the carotid-to-femoral pulse wave velocity, which
is a measured quantity that represents a structural response that is
integrated over a particular vascular path. There are, in addition,
more local metrics of structural stiffness that are used clinically.
One such metric is the so-called distensibility

D ¼ ðdn
sys � dn

diasÞ=dn
diasðPsys � PdiasÞ (4)

where d is the luminal diameter, with sys and dias denoting values
at systole and diastole, respectively. The parameter n¼ 1 or 2,
yielding values of D that differ numerically by approximately a
factor of 2. Taking n ¼ 2 implies using cross-sectional area rather
than diameter, which potentially avoids problems with low spatial
imaging resolution. Note further that the Bramwell–Hill form for
pulse wave velocity can be written as PWV ¼

ffiffiffiffiffiffiffiffiffiffiffi
1=qD

p
for n ¼ 2,

hence localizing the value of PWV. Another local measure of
structural stiffness (the pressure–strain or Peterson modulus) can
be computed as

EP ¼ ðPsys � PdiasÞddias=ðdsys � ddiasÞ (5)

Clinical findings confirm that local measures such as EP can corre-
late well with the more global PWV [50], hence suggesting that
these metrics are complementary. We end this overview by noting
that PWV, D, and EP all intrinsically depend on the operating
point (i.e., blood pressure) about which they are measured/
calculated [51,52]. In a research setting, such dependence can
sometimes be controlled post hoc using regression methods, but
this is less feasible in clinical practice. Regression may be

especially problematic in studies of hypertension where (a change
in) blood pressure may have both direct (through nonlinear
mechanics) and indirect (causing arterial remodeling) effects on
the measured metric of stiffness, a distinction that cannot be made
with regression analyses [53]. This issue motivated considerable
research for “pressure-corrected” metrics of stiffness. As should
be clear from the preceding text, however, arterial mechanics is
highly nonlinear and fully capturing it requires complex constitu-
tive relations with many parameters, with value(s) of stiffness
always dependent on the level of stress. Nevertheless, simple met-
rics have been proposed that, within individual limitations, work
surprisingly well [54,55]. Examples include the cardio-ankle vas-
cular indices (CAVI and CAVI0), which are metrics of global
structural stiffness that essentially correct a measured foot-to-foot
PWV for its pressure dependence via another metric of local
structural stiffness (b and b0), namely

CAVI ¼ ln
Psys

Pdias

� �
PWV2 � 2q
Psys � Pdias

;

CAVI0 ¼
PWV2 � 2q

Pdias

� ln
Pdias

Pref

� �
(6)

b ¼ ln
Psys

Pdias

� �
ddias

dsys � ddias

; and b0 ¼ b� ln
Pdias

Pref

� �
(7)

with Pref being an arbitrary but constant reference value of pres-
sure [56]. These so-called pressure-corrected metrics are moti-
vated by the observation that blood pressure relates approximately
exponentially with diameter [55]. CAVI0 and b0 represent modifi-
cations to the original metrics (CAVI and b) to correspond better
with an actual exponential relationship; additionally, CAVI0

assumes PWV to scale with diastolic instead of mean blood pres-
sure, which seems more in line with experimental observations on
the pressure dependency of PWV [51,56].

Of course, PWV can also be estimated using computational
methods given much more information: the spatially distributed
geometry, material properties, and boundary conditions. Such
calculations avoid implicit assumptions inherent in the
Moens–Korteweg and related equations and they enable informa-
tive parametric studies, as, for example, how vascular taper or
distal resistances affect the pulse wave. Unsteady 1D and three-
dimensional models have been used to compute PWV [57,58], but
again additional intuitive insight can be gleaned from analytical
solutions. Toward this end, the theory of small deformations
superimposed on large has also been used to obtain analytical
results for a simple cylindrical geometry [59]. This solution shows
explicitly that both the diastolic distension and the axial prestretch
are important contributors to the computed values of PWV; in the
limit as the strains become small, this relation recovers the
Moens–Korteweg equation. As in the case of the AFM, however,
this analysis shows clearly that complexities due to nonlinear
material behaviors and finite deformations play important roles in
determining the precise value of stiffness that is computed.

Comparisons

Fung and colleagues used nonlinear regression to determine
best-fit values of the seven material parameters in an exponential
stored energy function W (Eqs. (A1) and (A2) in Appendix B)
from both uniaxial (radial compression [60]) and biaxial (pres-
sure-diameter-axial force-stretch [13]) data for a rabbit thoracic
artery. Not surprisingly, the parameter values differed for the
predominantly compressive versus tensile behaviors. Figure 1
compares these results together; note the anisotropy and strong
nonlinearity in the tensile (circumferential and axial) behaviors
and the asymmetry between the tensile and compressive behaviors
even at modest strains. Results are not shown for greater compres-
sive strains since the original tests used modest levels of compres-
sion and the associated analytical solution reveals potential

Fig. 1 Intrinsic differences in tensile and compressive Fung-
elastic behaviors. Tensile stress-stretch responses are shown
for a simulated equibiaxial stretching experiment (kh 5 kz > 1) in
circumferential (rhh versus kh) and axial (rzz versus kz ) direc-
tions for mean values of stress (i.e., averaged through the thick-
ness of the sample); note the nonlinear anisotropic behavior. A
stress-stretch response is also shown for a simulated uniaxial
compression experiment in the radial direction (kr < 1): mean
radial Cauchy stress as a function of radial stretch (rrr versus
kr ). The assumed constitutive behaviors were reported by
Chuong and Fung [13,60].
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bifurcations in the equilibrium solutions at higher compressive
strains. Importantly, given that the slope of the stress-stretch
curves reflects (but does not define) the stretch-dependent spatial
material stiffness, note the expected tremendous differences
between the low values of material stiffness near the unloaded
configuration (low stress) and high values near the in vivo config-
uration (physiologic stress). Figure 2 shows calculated circumfer-
ential behaviors for different degrees of fixed axial stretch from
one to the in vivo value (1.691 for this particular rabbit artery).
This result reveals the strong biaxial coupling, with circumferen-
tial stress and stiffness affected dramatically by the value of axial
stretch. The aforementioned ring myography and uniaxial tests
disregard such coupling and thus can underestimate the actual
stiffness dramatically.

Figure 3 shows calculated results for a simulated AFM indenta-
tion test with the material modeled with the same Fung-
exponential type of constitutive relation and the indentation
performed at different levels of fixed equibiaxial in-plane stretch.
Since the analytical small-on-large solution holds for isotropic
material behaviors [21], we first estimated new values of the mate-
rial parameters in the Fung-exponential that yield an isotropic
response similar to the mean of the anisotropic response shown in
Fig. 1. Again, it can be seen that there is a strongly coupled
response between different directions of loading, here out-of-

plane versus in-plane. Most published works on arterial wall and
vascular cell stiffness disregard this coupling effect and use AFM
to test samples, in the absence of a pre-existing in-plane stress, to
compute Young’s modulus that strictly holds only for small
strains. Such a situation is not physiological and again is expected
to underestimate the actual in vivo stiffness dramatically.

Fig. 2 Circumferential behavior depends strongly on axial
stretch. Stored energy W (panel a), mean circumferential
Cauchy stress rhh (panel b), and linearized circumferential
material stiffness Chhhh (panel c) are shown as a function of cir-
cumferential stretch (abscissa) as well as for different values of
(constant) axial stretch from 1.0 to 1.7 (8 lines). Black dots cor-
respond to values at a distending pressure of 120 mmHg. Note
that mean Cauchy stresses (i.e., integrated through the thick-
ness) are on the order of 150 kPa under physiologic loads,
whereas stiffness values are on the order of 1–2 MPa, particu-
larly in a physiologic range of loads.

Fig. 3 In-plane prestretch has an important effect on out-of-
plane indentation stiffness. The schematic drawing shows a
potential arterial wall sample isolated for AFM testing. This pla-
nar sample could similarly represent an adherent cell after
spreading on a surface. Panel a shows the effect of equibiaxial
stretching (kh 5 kz � k > 1) on mean (integrate through the thick-
ness) in-plane Cauchy stress for an assumed isotropic behav-
ior. Panel b shows the relationship between indentation force
(f ) and indentation depth (d) for values of in-plane stretch k
increasing from 1.0 to 1.8 in steps of 0.1. The slope of these
lines, effectively the transverse structural stiffness a, is plotted
as a function of in-plane equibiaxial stretch k in panel c. Closed
dots (panels a and c) indicate approximate values of the in vivo
in-plane stretch (kh 5 kz 5 1:70); open dots indicate the absence
of in-plane stretch (kh 5 kz 5 1:00), consistent with many reports
in the literature. The thick line in panel b similarly corresponds
to kh 5 kz 5 1:70. Note the marked effect of in-plane stretching
on the out-of-plane (transverse) stiffness as measured, for
example, in atomic force microscopy.
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Fig. 4 Linearized spatial material stiffness depends strongly and biaxially on operating point. Panels, from top to bot-
tom, show stored strain energy (W ), mean circumferential stress (rhh), mean axial stress (rzz ), circumferential material
stiffness (Chhhh), and axial material stiffness (Czzzz ), all as a function of axial stretch (kz ) and circumferential stretch (kh).
The left two columns correspond to an isotropic Fung relation (Appendix C); the right two columns to an anisotropic
Fung relation (Appendix B). Closed dots indicate a possible in vivo operating point at systole (kz 5 1:69; kh 5 1:69/1:63
(isotropic/anisotropic), corresponding to a blood pressure of �120 mmHg). Open dots indicate an unloaded state
(kz 5 kh 5 1:00). Note the large, two orders of magnitude, difference in Chhhh between unloaded (Chhhh 5 0:018/0:024 MPa
(isotropic/anisotropic)) and loaded (Chhhh 5 1:9/2:0 MPa (isotropic/anisotropic)) states. Black lines on three-dimensional
surface plots are projections of the (gray) kh and kz gridlines.
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To emphasize further both the multiaxial nature of stress and
stiffness, and couplings therein, we show three-dimensional plots
in Fig. 4 for simple cases of combined circumferential and axial
extensions of Fung elastic materials. That is, assuming principal
homogeneous deformations and incompressibility, the stored
energy function and thus associated wall stress and stiffness
depend on the in-plane principal stretches alone. The primary in-
plane components of the mean Cauchy stress can thus be thought
of conceptually in terms of components of the left stretch tensor

V ¼
ffiffiffiffiffiffiffiffiffi
FFT
p

, namely rhh ¼ r̂hhðkh; kzÞ and rzz ¼ r̂zzðkh; kzÞ. As it
can be seen in the figure, for both isotropic (left columns; cf. Fig.
3) and anisotropic (right columns; cf. Figs. 1 and 2) behaviors, cir-
cumferential and axial deformations contribute similarly to the
overall elastic energy storage and thus stress and material stiff-
ness, here in a spatial rather than referential description since spa-
tial quantities (defined relative to the current configuration) are
most relevant in vivo.

Discussion

It is now widely accepted that both cell- and matrix-level stiff-
ness are fundamental to mechanobiological responses within the
vasculature, including modulation of cell phenotype. Similarly, it
is widely accepted that tissue-level stiffness is fundamental to the
hemodynamics, particularly propagation of the arterial pressure
wave that dictates many aspects of end organ health or disease.
There is, therefore, an appropriately growing literature on arterial
stiffness. Yet, the many different reported metrics have different
meanings because of different types of loads that are imposed rel-
ative to different biomechanical states. We summarize in Table 1
some of these methods and metrics and, for purposes of illustra-
tion, we list in Table 2 some values of stiffness resulting from
these different methods. As it can be seen, reported values of stiff-
ness (some compressive, some shear, most tensile) differ by
orders of magnitude, as should be expected for highly nonlinear
material behaviors when assessed relative to different configura-
tions, ranging from otherwise unloaded to in vivo relevant.
Assuming that the associated calculations were performed cor-
rectly, each of these different values of stiffness should be viewed
as reliable. The key question, which we do not attempt to answer
here, is therefore: How can we extract from these disparate met-
rics, having different meanings, a unified understanding of vascu-
lar cell mechanobiology and biomechanics and their roles in
dictating vascular health or disease progression? We submit that
focused effort should be directed toward answering this question,
for without such our ability to use basic science findings to inform
clinical decisions will remain largely wanting since understanding
will remain largely fragmented and incomplete.

In some ways, we have emphasized the obvious—the value of
stiffness depends on its definition (material versus structural), the
configuration to which it refers (referential-unloaded, versus
spatial-current), and the conditions under which it is evaluated
(compression versus tension versus shear in an otherwise
unloaded state or not). Yet, we are not aware of a prior consistent
discussion of methods used in vascular mechanics across scales
from atomic force microscopy to biaxial tests on cylindrical seg-
ments to in vivo measurements. As we have noted, a number of
metrics reported in the literature are based on solutions from
classical elasticity because of the associated simplicity, not the
theoretical relevance. Strictly speaking, therefore, most of these
results are applicable only for linearly elastic isotropic responses
under small strains and rotations when measured about an
unloaded state—conditions not applicable to mechanobiologi-
cally, physiologically, or clinically relevant situations. Although
we noted two analytical examples wherein a material stiffness
applicable to a nonlinear behavior can be compared directly in the
limit to a small strain Young’s modulus [21,59], it is generally
problematic and uninformative to compare findings based on
Hertz, Moens–Korteweg, or similar equations with those based on
nonlinear constitutive relations or appropriate linearizations
thereof, including the theory of small deformations superimposed
on large. Yet, values of Young’s modulus continue to be reported
and, in some cases, results are similarly presented based on con-
cepts from linearized viscoelasticity, including storage and loss
moduli. Of course, one could argue that such results can be
insightful when one consistently compares values across studies
using the same methods and metrics whether they strictly hold
theoretically or not in configurations relevant to in vivo conditions
or not. For example, a compressive Young’s modulus inferred
from AFM has been reported by multiple groups to increase for
isolated smooth muscle cells in aging and hypertension relative to
that in normalcy [25,69], hence these data are trying to tell us
something—the question is, What? That is, although results may
be reproducible and reliable, the key question should focus on
their possible relevance in vivo. Similar methods have been used
to show that the nuclear protein lamin-A scales with tissue stiff-
ness [70], with tissues ranging from compliant (adipose or liver)
to stiff (ligaments and bones). Again, the results are reproducible,
reliable, and provocative, though not evaluated at in vivo values
of stiffness. How such results should be interpreted or compared
to values that are relevant to the in vivo condition remains an
open question.

We submit that in vivo relevant conditions and metrics should
be used when possible. Toward this end, the theory of small defor-
mations superimposed on large deformations [71] can serve as a
theoretically appropriate method to compute linearized values of

Table 1 Arterial stiffness—measurement modalities, metrics, and characteristics

Modality Application
Configuration for

stiffness measurement
Vascular axes of

stiffness measurement
Mode of stiffness

measurement Loading rate
Typical

output metric (s)

Atomic force microscopy In vitro Unloaded1 Radial or axial Compressive Quasi-static E (M)
Wire myography In vitro Uniaxially loaded Circumferential Tensile Quasi-static2a E (M), C (S)
Pressure myography In vitro Uniaxially or

biaxially loaded
Circumferential

and axial
Tensile Quasi-static2b E (M), W (M), C (S)

Biomechanical biaxial testing In vitro Biaxially loaded Circumferential
and axial

Tensile Quasi-static W (M), C (S)

Surface transit time PWV In vivo Loaded — Tensile Dynamic PWV (S)
Magnetic Resonance Imaging In vivo Loaded Circumferential Tensile Dynamic C (S), D (S), PWV (S)3,4

Ultrasound echotracking In vivo Loaded Circumferential Tensile Dynamic E (M), C (S),D (S),
PWV (S)3

C, compliance coefficient; D, distensibility; E, Young’s modulus; W, strain energy; PWV, pulse wave velocity. M, material stiffness metric; S, structural
stiffness metric.
1Typically unloaded, but has been performed on tissue maintained in a biaxially loaded state [61];
2typically quasi-static, but has been performed under dynamic loading (a[62], b[63]);
3calculated using the Bramwell–Hill relationship;
4measured by estimating transit time.
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stiffness while accounting for underlying nonlinear material
behaviors and in vivo relevant finite deformations, with applic-
ability including interpretations of AFM data [21], defining biax-
ial material stiffness in intact excised vessels for simulations of
hemodynamics [35], and computing PWV either analytically [59]
or numerically [58]. With regard to the need to measure and report
metrics that are relevant to the in vivo conditions, it would be pru-
dent to remember the words of Y. C. Fung written �50 years ago.
First, “The main difficulty [problem] lies in the customary use of
infinitesimal theory of elasticity to the media which normally
exhibit finite deformations” [10] and “the greatest need lies in the
direction of collecting data in multiaxial loading conditions and
formulating a [constitutive] theory for the general rheological
behavior of living tissues…” [72].

In conclusion, it is critical to quantify arterial stiffness—
material and structural—because deviations from normal values
associate with both the phenotypic modulation of vascular cells
and the clinical severity of disease or disease risk. That said, there
is also a fundamental conceptual issue that must be considered
carefully as we seek to advance our understanding of the underly-
ing mechanobiology. Although vascular cells clearly attempt to
establish and then maintain certain mechanical quantities near
homeostatic values [9,73], the continuum quantities of stress and
strain, and metrics such as material stiffness that are derived from

them, are actually mathematical concepts, not physical realities
[74]. Hence, even though it appears that mean wall stress and
stiffness are normally regulated near homeostatic targets across
mammalian species [7,8,75], we should not expect a cell to neces-
sarily respond to a stress (i.e., a linear transformation, or tensor,
that transforms an outward unit vector into a traction vector at a
point). Rather, it is more likely that forces acting at the molecular
level change the conformation of important biomolecules and
thereby stimulate cell signaling and downstream gene products.
There is, therefore, a pressing need to understand better the micro-
mechanics of mechanosensing by cells and the associated mecha-
noregulation of matrix [76] and to associate such phenomena with
convenient continuum metrics such as stress and stiffness. Never-
theless, until, and possibly after, such multiscale understanding is
achieved, direct correlations of mechanobiological and (patho)-
physiological responses with wall stress and stiffness should con-
tinue to be identified. Toward this end, an increased use of
concepts of nondimensionalization and allometric scaling [77]
should also become a priority. There is, therefore, a need for con-
tinued development of new concepts and techniques in vascular
mechanics and mechanobiology and we conclude with words of
Fung in his foreword to the inaugural issue of the journal Biome-
chanics and Modeling in Mechanobiology in 2002 [78]—“let us
enjoy the work.”

Table 2 Values of aortic stiffness (mouse) depend strongly on methodology

Vessel/mouse Modality Definition/state Value, units, age Reference

Thoracic aorta, C57BL/6J AFM In Vitro, unloaded, cut open, radially
indented from luminal side (endothe-
lium intact)/compressive

E¼ 3.1 kPa (2 months) [29]
E¼ 3.6 kPa (6 months)(age 2–18 months)
E¼ 16.9 kPa (12 months)
E¼ 21.8 kPa (18 months)

Suprarenal abdominal aorta,
C57/Sv129

AFM In Vitro, unloaded or pressurized to
100 mmHg and elongated to In Vivo
axial stretch, ring, axially indented/
compressive

E¼ 18.7 kPa (unloaded) [61]

(age 10–13 months)

E¼ 12.3–76.4 kPa
(loaded; bimodal distribution)

Aorta, C57BL/6J AFM In Vitro, unloaded, cut open, radially
indented from luminal side (endothe-
lium removed)/compressive

E¼ 24 kPa [28]

(age 11 months)

Ascending thoracic aorta,
C57BL/6J

AFM In Vitro, unloaded, cut open, radially
indented from luminal side (endothe-
lium intact)/compressive

E¼ 2.8–12.7 kPa (0.5 months)1 [30]

(age 0.5–3.5 months) E¼ 5.0–38.8 kPa (2 months)1

E¼ 4.4-36.7 kPa (3.5 months)1

Ascending thoracic aorta,
C57BL/6J

Biaxial testing In Vitro, loaded, intact, pressurized
to 128 mmHg, elongated to In Vivo
axial stretch/tensile

Chhhh¼ 2.76 MPa [64]
Czzzz¼ 2.26 MPa

(age 15.260.1 weeks)
Suprarenal abdominal aorta,
C57BL/6J

Biaxial testing In Vitro, loaded, intact, pressurized
to 100 mmHg, elongated to In Vivo
axial stretch/tensile

@Shh/@Ehh¼ 1.33 MPa [65]
@Szz/@Ezz¼ 0.082 MPa

(age 5–6 months)

Carotid-to-femoral arterial bed,
C57BL/6J

Applanation tonometry In Vivo, 4–5% sevoflurane or 75 mg/
kg sodium pentobarbital anesthesia,
noninvasive/PWV

PWV¼ 3.96 m/s (sevoflurane)2 [66]

(age 5.660.2 months) PWV¼ 2.89 m/s
(sodium pentobarbital)2

Abdominal aorta, C57BL/6 Ultrasound echotracking In Vivo, 125 mg/kg tribromoethanol
anesthesia, noninvasive/PWV

PWV¼ 2.70 m/s3 [67]

(age 3–4 months)
Aorta (regionally dependent),
C57BL/6J

Ultrasound echotracking/
pressure catheter

In Vivo, 1.5% PWV¼ 5.2 m/s4 [68]
Isoflurane anesthesia, noninvasive
(ultrasound), invasive (catheter)/
PWV

PWV¼ 3.0 m/s5

(age 3 months) PWV¼ 3.5 m/s6

E, Young’s modulus.
1Computationally separated, numbers denote intimal/medial moduli. AFM, atomic force microscopy; PWV, pulse wave velocity; Chhhh and Czzzz, linear-
ized circumferential and axial spatial material stiffness obtained using the theory of small-on-large. @Shh/@Ehh and @Szz/@Ezz, referential material stiffness
defined as the derivative of second Piola-Kirchhoff stress with respect to Green strain;
2carotid-to-femoral transit-time PWV;
3PWV in the window of an ultrasound probe;
4aortic arch-to-femoral bifurcation transit-time PWV (ultrasound);
5abdominal transit-time PWV (blood pressure catheter, 2 cm path length);
6distensibility-based local abdominal PWV obtained from Bramwell–Hill equation. In studies where interventions were performed, control groups are
displayed here.
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Appendix A: Small on Large

The polymath A. Cauchy knew equations of nonlinear elasticity
in the 1820s, but analytical solutions to this class of problems had
to await the semi-inverse approach of R. Rivlin in the late 1940s.
Because of the inherent complexities, analytical solutions to prob-
lems in nonlinear elasticity were yet possible for only a relatively
small class of motions [79] and many employed the advances in
finite element methods that soon arrived [80]. It is often difficult
to develop intuition from numerical solutions of highly nonlinear
problems, however, thus the concept of “small deformations
superimposed on large deformations” became useful in extending
the range of possible analytical solutions. As noted herein, small-
on-large solutions have been found useful in interpreting experi-
mental results associated with atomic force microscopy [21],
quantifying mechanical properties from biaxial tests on excised
arteries [35], and relating the structural stiffness that can be
inferred in vivo from measurements of pulse wave velocity to the
material stiffness inferred from in vitro tests [59]. It seems appro-
priate, therefore, to briefly outline steps of this approach; the inter-
ested reader is referred elsewhere for more details [71].

Briefly, let the location of a material particle in an original con-
figuration be denoted by X and in a finitely deformed configura-
tion by x. In addition, let the location of this particle in a
configuration that is close to the finitely deformed one be denoted
by y. The total deformation gradient is thus F ¼ ð@y=@xÞ
ð@x=@XÞ, which can be written as F ¼ FsFo, where subscript o
denotes the original finite deformation and subscript s denotes the
superimposed small deformation. It proves convenient to write
y ¼ xþ u, where u is a small displacement vector. Hence, Fs ¼
@x=@xþ @u=@x which we write as Fs ¼ Iþ h, where h is a

displacement gradient with hj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðhhTÞ

p
� 1. The right

Cauchy–Green tensor can then be written as C ¼ FTF ¼
½ Iþ hð ÞFo�T Iþ hð ÞFo½ � ¼ FT

o Fo þ FT
o hTFo þ FT

o hFo þ FT
o hThFo

ffi Co þ FT
o hT þ hð ÞFo ¼ Co þ FT

o 2eð ÞFo if we neglect terms that
are higher order in the (small) displacement gradient and we rec-

ognize the small strain tensor e ¼ ðhþ hTÞ=2. Hence, the right
Cauchy–Green tensor in the final configuration simply equals that
in an intermediate (finitely deformed) configuration, denoted by
subscript o, plus a part that is linear in the small displacement
gradient.

Just as the total deformation gradient F ¼ Iþ hð ÞFo ¼
Fo þ hFo consists of a contribution that is due to a finite deforma-
tion to an intermediate configuration plus an addition, one can
also assume that the total second Piola-Kirchhoff stress can be
computed as S ¼ So þ S
, where the first contribution is associ-
ated with the original finite deformation and the second with a
superimposed small deformation, namely S
 ffi ð@S=@CÞjo : C


with S ¼ @W=@Cjo and C
 ¼ C� Co ¼ FT
o 2eð ÞFo from above.

Importantly, it can be shown that we can write the total Cauchy

stress t, for an incompressible response and to order hj j, as [35]

t ¼ to þ ĥto þ t̂ohT � p
Iþ FoŜ


FT

o , where t̂o is the extra (i.e.,
deformation-dependent) part of the Cauchy stress in the finitely
deformed intermediate configuration and p
 is a Lagrange multi-
plier that enforces isochoric motions during the small superim-
posed deformation. Finally, using the result above for the second

Piola-Kirchhoff stress in terms of the stored energy function W,
and recognizing that a small displacement gradient can be written
in terms of the infinitesimal strain and rotation (i.e.,

h ¼ hþ hTð Þ=2þ ðh� hTÞ=2, or, h ¼ eþX), we arrive at our
final result: tþ p
I ¼ to þCeþDX, where the spatial material
stiffness (fourth order) tensor C can be written for an artery as
given in component form in the third equation in the main text.
Noting that the infinitesimal rotation tensor X vanishes with
assumed principal deformations, this derivation reveals clearly
that the spatial material stiffness associated with a superimposed
small deformation depends directly and strongly on the prestress
(or prestretch) and the nonlinear properties represented by W,
which are amplified nonlinearly by the initial finite deformation
when evaluated in the current (spatial) configuration [35].

Appendix B: Fung Elasticity

The illustrative solutions in Figs. 1–4 were obtained using the
same Fung exponential strain energy function to facilitate compar-
isons across methods. This function is defined by [12]

W ¼ 1

2
c eQ � 1ð Þ (A1)

where, in terms of principal Green strains,

Q ¼ b1E2
HH þ b2E2

ZZ þ b3E2
RR þ 2b4EHHEZZ þ 2b5EZZERR

þ 2b6ERREHH (A2)

with c and bj (j ¼ 1; 2;…; 6) being material parameters that need
to be determined from nonlinear regressions of data. For principal
deformations, as of interest herein, the Green strains

Eii ¼ ðk2
i � 1Þ/2 for (no sum on) i ¼ H;Z;Rf g.

Uniaxial Compression. Uniaxial radial compression testing
comparable to that reported by Chuong and Fung [60] was
simulated by prescribing radial stretches kr from 1 to 0.85 (Fig. 1,
negative abscissa). Incompressibility was assumed, and circumfer-
ential and axial directions were assumed to be traction-free con-
sistent with the reported experiment, though it would have been
better, albeit difficult, to have induced a finite in-plane deforma-
tion prior to the radial compression. Nonetheless, given the
assumption of a homogeneous deformation, the in-plane Cauchy
stresses in the actual experiment were thh ¼ tzz ¼ 0. Constitu-
tively, Cauchy stress was calculated from W as

tii ¼ �pþ k2
i

@W

@Eii
;with no sum on i ¼ h; z; r or H;Z;Rf g (A3)

with p being a Lagrange multiplier enforcing incompressibility.
From the traction-free conditions and homogeneous state of defor-
mation, the Lagrange multiplier p for compression tests (pcompÞ
can be determined from Eq. (A3) using either

pcomp ¼ k2
h
@W

@EHH
or pcomp ¼ k2

z

@W

@EZZ
(A4)

after which either kh was determined as kh ¼ 1= kzkrð Þ with kz

determined iteratively to satisfy tzz ¼ 0 or vice versa for the axial
stretch. Numerical simulations revealed equivalent outcomes
using these two constraints.

Simulations of the compression experiment were then performed
using reported values of the constitutive parameters for a
rabbit thoracic artery (sample 11, incompressible case) given in
Ref. [60]: c¼ 43:12 kPa, b1 ¼ 0:8230, b2 ¼ 0:9125, b3 ¼ 1� 10�7,
b4 ¼ 1:1237, b5 ¼ 0:4125, and b6 ¼ 0:3768.

Biaxial Stretching. Equibiaxial in-plane stretch testing similar
to that performed by Vande Geest et al. [49] was simulated by
prescribing kh ¼ kz from 1.0 to 1.8 (Fig. 1, positive abscissa),
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with kr ¼ 1= khkzð Þ. Cauchy stress was then obtained using
Eq. (A3), with p (ptension) determined from trr ¼ 0, because of the
traction-free condition on the top and bottom surfaces and the
assumed homogeneous deformation, as

ptension ¼ k2
r

@W

@ERR
(A5)

Simulations of tensile loading were performed using values of
the constitutive parameters, again for a rabbit thoracic artery
[13]: c ¼ 22:40 kPa, b1 ¼ 1:0672, b2 ¼ 0:4775, b3 ¼ 0:0499,
b4 ¼ 0:0903, b5 ¼ 0:0585, and b6 ¼ 0:0042. Note the differences
between the values for compression and tension despite the same
functional form of W and the same sample tested by the same
investigators.

Additional in-plane biaxial tension experiments (tension in h
and z directions), with kh 6¼ kz but trr ¼ 0, were simulated with
the same tensile constitutive parameters (c, b1–b6) that were used
in the prior section. Such loading simulates possible in-plane biax-
ial testing [49] but also mimics mean values of stress in possible
distension–extension tests [38]. Indeed, corresponding in vivo
loading states were determined by simulating pressure-diameter
testing as follows. Unloaded inner and outer radii were Ri ¼
li= 2pð Þ and Ro ¼ lo= 2pð Þ, with li ¼ 8:75 mm and lo ¼ 12:5 mm
the inner and outer unloaded circumferences given in Ref. [13],
with unloaded thickness H ¼ Ro � Ri. Loaded inner radius ri was
varied iteratively and loaded outer radius ro was computed as

ro ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

i þ
R2

o � R2
i

kz

s
(A6)

with loaded thickness h ¼ ro � ri. The mean circumferential
stretch kh is then

kh ¼
ri þ

h

2

Ri þ
H

2

(A7)

Prescribing axial stretch kz allows the radial stretch kr to be deter-
mined from incompressibility (kr ¼ 1= khkzð Þ). Components of
Cauchy stress again follow from Eq. (A3) and p from Eq. (A5).
Luminal distending pressure P is now obtained from the mean
value of Cauchy stress and geometry as

P ¼ h � rhh

ri

(A8)

Increasing values of ri thus yield desired increases in pressure
(e.g., up to 120 mmHg).

Appendix C: Simulations of Atomic Force Microscopy

for Fung Elasticity

The effect of in-plane prestretch on out-of-plane indentation
testing, as in AFM, was simulated using the solution in Ref. [21].
For these derivations to hold, the in-plane stretch must be equi-
biaxial and the material must be isotropic. For consistency with
our other simulations (Appendix B), we again used a Fung expo-
nential strain energy function, though one that is parameterized
isotropically, namely

b1 ¼ b2 ¼ b3 and b4 ¼ b5 ¼ b6 (A9)

To obtain parameter values that model tension similar to the mean
anisotropic response shown in Fig. 1, we simulated equibiaxial
testing of an isotropic Fung elastic material (described by unique
parameters c, b1, and b4), and fitted these three parameters to the
mean of the anisotropic case. Specifically, we calculated the
homogeneous (mean) equibiaxial Cauchy stresses riso

hh ¼ riso
zz , and

minimized

e
�

c; b1; b4

�
¼
XN

k¼1

�
raniso

hh � riso
hh ðc; b1; b4Þ

	 
2

k

þ raniso
zz � riso

zz ðc; b1; b4Þ
	 
2

k

�
(A10)

with raniso
hh 6¼ raniso

zz being the anisotropic Cauchy stresses shown
in Fig. 1 (positive abscissa), with k a data point index and N the
total number of data points (i.e., equilibrium configurations
assessed during testing). This procedure yielded c ¼ 26:97 kPa,
b1 ¼ b2 ¼ b3 ¼ 0:6685, and b4 ¼ b5 ¼ b6 ¼ 0:2823, here for a
“virtual” rabbit thoracic artery.

To use the formulation in Ref. [21], we reformulated the iso-
tropic form of W in terms of invariants of the Green strain tensor
E, namely IE and IIE, and then wrote W in terms of invariants of
the right Cauchy–Green tensor C ¼ 2Eþ I. Toward this end, we
used the full formulation for Q [12] where

Q ¼ b1E2
HH þ b2E2

ZZ þ b3E2
RR þ 2b4EHHEZZ þ 2b5EZZERR

þ 2b6ERREHH þ b7 E2
HZ þ E2

ZH

	 

þ b8 E2

ZR þ E2
RZ

	 

þ b9 E2

RH þ E2
HR

	 

(A11)

which for isotropy (Eq. (A9) and b7 ¼ b8 ¼ b9), with
b7 ¼ b1 � b4, can be written as

Q ¼ a EHH þ EZZ þ ERRð Þ2 þ bðEHHEZZ þ EZZERR

þ ERREHH � ERHEHR � EHZEZH � EZRERZÞ (A12)

or more compactly

Q ¼ aI2
E þ bIIE (A13)

with

IE ¼ EHH þ EZZ þ ERR

IIE ¼ EHHEZZ þ EZZERR þ ERREHH � ERHEHR

� EHZEZH � EZRERZ (A14)

because E is a symmetric tensor. Note, too, that the two (exponen-
tial) material parameters for isotropy are a ¼ b1 and b ¼
2 b4 � b1ð Þ ¼ �2b7 (with b1 > b4). Next, recognize that the right
Cauchy–Green tensor C, with invariants IC and IIC

IC ¼ 2 EHH þ EZZ þ ERRð Þ þ 3 ¼ 2IE þ 3 (A15)

and

IIC ¼ 4 EHHEZZ þ EZZERR þ ERREHHð Þ � 4 E2
HZ þ E2

ZR þ E2
HR

	 

þ4 EHH þ EZZ þ ERRð Þ þ 3 ¼ 4IE þ 4IIE þ 3

(A16)

Re-arranging Eqs. (A15) and (A16) and inserting into Eq. (A13)
yields

Q ¼ 1

4
aI2

C �
3

2
aþ 1

2
b

� �
IC þ

1

4
bIIC þ

9

4
aþ 3

4
b (A17)

Given WðQÞ written in this form, the equations in Ref. [21], writ-
ten as functions of @W=@IC and @W=@IIC, can be used directly to
simulate AFM indentations for an isotropic Fung elastic material,
similar to the calculation discussed in the text for the simpler neo-
Hookean material.
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