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Patient and Public Involvement Statement
The development of the research question and outcome meas-
ures are related to patients’ priorities, experience and preferences 
by giving an accurate risk assessment of the future epidemic out-
break at any local state province at any time. This study involved 
only public patient health data.1,2 Patients were not involved in 
the recruitment to and conduct of this study. Results will be dis-
seminated by journal publication. No randomized controlled tri-
als were done, and no patients and public have been involved.

Introduction
Statistics of COVID-19 is well receiving attention in the mod-
ern biomedical research community.3-10 It is challenging to 
estimate biological system reliability factors and epidemic out-
break probability under realistic epidemic conditions by using 
classic statistical methods.9,11 The latter is due to a multi-
degree-of-freedom (MDOF) nature of the governing dynamic 
biological system, spread over extensive non-homogeneous ter-
rain. For COVID-19, the only available clinical observation 
numbers were limited by the beginning of the year 2020. 
Recent studies were focused on COVID-19 epidemic in 
Brazil,12-18 but without focus on cross-correlations between 
different national regions/states. Brazil was chosen of course 
because of its COVID-19 origin and extensive health observa-
tions and related research available online.19-36

Thomas and Rootzen37 used extreme value theory (EVT) to 
predict and detect anomalies of influenza epidemics. As there 
is not much statistical research done to predict the probability 
of influenza or contagious diseases outbreak or its spread, the 
newly proposed novel method will be able better insight and an 
indication of the possible spread of diseases.

In this article, epidemic outbreak is viewed as an unexpected 
incident that may occur at any region of a given country at any 

time; therefore, spatial spread is accounted for. Moreover, spe-
cific non-dimensional factor λ  is introduced to predict the lat-
ter epidemic risk at any time and any place.

Biological systems are subjected to ergodic environmental 
influences. The other alternative is to view the process as 
being dependent on specific environmental parameters whose 
variation in time may be modelled as an ergodic process on 
its own.

The incidence data of COVID-19 in 12 Brazil states from 
February 2020 until today were retrieved from the public web-
sites.1,2 As this valuable data set is per Brazil state, the biologi-
cal system under consideration can be regarded as an MDOF 
dynamic system with highly inter-correlated regional compo-
nents/dimensions. Some recent studies have already used sta-
tistical tools to predict COVID-19 development; for linear log 
model, see Chu.38

Note that while this study aims at reducing risk of future 
epidemic outbreaks by predicting them, it is solely focused on 
daily registered patient numbers and not on symptoms them-
selves. For long-lasting COVID-19 symptoms, the so-called 
‘long COVID’, and its risk factors and whether it is possible to 
predict a protracted course early in the disease.11 Figure 1 pre-
sents map of Brazil states.1

Main motivation of this study has been a need to improve 
existing forecasting tools that should be able to take into 
account spatio-temporal epidemic nature. In this study, authors 
advocate a novel reliability method that has been well validated 
by authors on numerous epidemiologic data sets.19-21

Methods
Let one consider MDOF structural dynamic response or load 
or combined response/load vector R( ) ( ) ( ) ( )t X t Y t Z t= …( , , , )  
that has been either measured or simulated over a sufficiently 
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long time period ( , )0 T . Unidimensional biosystem compo-
nent global maxima is denoted as X X tT t T

max = ≤ ≤max ( )0 , 
Y Y tT t T
max = ≤ ≤max ( )0 , and Z Z tT t T

max = …≤ ≤max ( ),0  By suffi-
ciently long time period T , authors mean large enough value 
of T  with respect to the dynamic system auto-correlation and 
relaxation times. Let X XNX1, ,  be temporally consequent 
local maxima of the component process X X t= ( )  at discrete 
temporally increasing times t tX

N
X
X1 <…<  within ( , )0 T . 

Identical definitions follow for other MDOF components 
Y t Z t( ), ( ), , namely, Y YNY1, , ;  Z ZNZ1, ,  and so on. For 
simplicity, all system components and hence their maxima have 
been assumed to be non-negative. Then
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being probability of dynamic system survival with critical val-
ues of system components being denoted as ηX , ηY , ηZ ,...; ∪  
being logical unity operator «or»; and pX Y ZT T T

max max max, , ,
 being 

joint probability density function (PDF) of the individual 
component maxima. If system number of degrees of freedom 
(NDOF) is large, it is not practically feasible to estimate 
directly the joint PDF pX Y ZT T T

max max max, , ,
 and therefore survival 

probability P . The latter probability P , however, needs to be 
estimated, as system expected lifetime, according to equation 
(1). Bio-system unidimensional components X Y Z, , ,  being 
now re-scaled and non-dimensionalized as follows

	 X
X
Y

Y
Z

X

X Y X

→ → → …
η η η
, , , 	 (2)

making all 2 responses non-dimensional and having the same 
failure limit equal to 1. Next, unidimensional system compo-
nents’ local maxima are merged into one temporally non-
decreasing synthetic vector 


R = …( , , , )R R RN1 2  in accordance 

Figure 1.  Map of Brazil with COVID cases.

Figure 2.  Example of how two components, X and Y, being merged to 

create a new synthetic vector 

R .

with corresponding merged time vector t tN1 ≤…≤ , 
N N N NX Y Z= + + + . Each local maxima Rj  is actual 
encountered bio-system component’s local maxima, corre-
sponding to either X t( )  or Y t( ) , or Z t( )  or other system 
components. Constructed synthetic 


R-vector has no data loss, 

see Figure 2.
Having introduced non-decreasing synthetic vector 


R, and 

its corresponding temporally non-decreasing occurrence times 
t tN1 ≤…≤ .

Figure 3 presents schematic flowchart, illustrating suggested 
methodology, as a tool for epidemic spread surveillance.

Results
Prediction of influenza-like epidemics has long been the focus 
of attention in epidemiology and mathematical biology. It is 
well known that public health dynamics is a highly non-linear 
multidimensional and spatially cross-correlated dynamic 
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system that is always challenging to analyse. Previous studies 
have used a variety of approaches to model influenza-like cases. 
This section illustrates the efficiency of the above-described 
methodology using the new method applied to the real-life 
COVID-19 data sets, presented as a new daily recorded 
infected patient time series, spread over large terrains.39-49

COVID-19 and influenza are contagious diseases with high 
transmissibility to spread worldwide with considerable mor-
bidity and mortality. They occur most frequently seasonally in 
late autumn, winter and early spring, reaching their peak preva-
lence mostly in winter. Seasonal influenza epidemics caused by 
influenza A and B viruses typically occur annually during win-
ter in temperate regions and present an enormous burden on 
worldwide public health, resulting in around 3–5 million cases 
of severe illness and 250,000–500,000 deaths worldwide each 
year, according to the World Health Organization (WHO).30

This section analyzes a real-life biomedical application of 
the above-described reliability method. The statistical data in 
the present section are taken from the official Brazil Web 
sites.1,2 The Web site provides the number of newly diagnosed 
cases every day in Brazil from 22 January 2020 to 6 April 2022. 
Patient numbers from 12 different Brazil regions were chosen 

as components X Y Z, , , , thus constituting an example of a 
12-dimensional (12D) dynamic biological system.

In order to unify all 12 measured regional time series 
X Y Z, , , , the following scaling was performed according 

to equation (2), making all 12 regional responses non-
dimensional while having the same failure limit equal to 1. 
Failure limits (epidemic thresholds) were chosen differ-
ently for different regions in this article. η η ηX Y Z, , ,…  were 
set equal to observed 2 years maxima, twice increased. 
Next, all local maxima from 12 measured time series cor-
responding to Brazil states were merged into one single 
time series by keeping them in the non-decreasing tempo-
ral order: 


R = … … …( , , , , , , , , )max{ } max{ }X Y Z X Y ZN N N1 1 1 .

Figure 4 presents a new daily recorded patient number plot-
ted as a surface. Figure 5 presents the number of new daily 
recorded patients as a 12D vector 


R, consisting of assembled 

regional new daily patient numbers. Note that vector 

R  does 

not have physical meaning on its own, as it is assembled of dif-
ferent regional components with different epidemic back-
grounds. Index j  is just a running index of local maxima 
encountered in a non-decreasing time sequence.

Figure 6 presents 100 years return-level extrapolation 
towards epidemic outbreak with 100-year return period, indi-
cated by the horizontal dotted line, and somewhat beyond; 
λ = 0 1.  cut-on value was used. Dotted lines indicate an extrap-
olated 95% confidence interval. p( )λ  is directly related to the 
target failure probability 1− P  from equation (1). Therefore,  
system failure probability 1 1 1− ≈ −P Pk ( )  can be estimated. 
Note that N  corresponds to the total number of local maxima 
in the unified response vector 


R . Conditioning parameter 

k = 5 was found to be sufficient due to the occurrence of con-
vergence with respect to k. Figure 6 exhibits reasonably narrow 
95% confidence interval (CI). The latter is an advantage of the 
proposed method.50-60

Regarding suggested method validation, it is seen from 
Figure 6 that even 10 times reduced data set will yield similar 
predictions. More specifically, the underlying data set has been 
thinned by selecting only each 10th data point; then extrapola-
tion, similar to Figure 6, has been done.

As being novel, the above-described methodology has an 
advantage in efficiency of using available measured data set. 
This is due to the method’s ability to tackle biological system 
multi-dimensionality, as well as being able to perform accurate 
extrapolation based on a relatively limited data set. Note that 
the predicted non-dimensional λ  level, indicated by a star in 
Figure 6, represents the probability of epidemic outbreak at any 
Brazil region in the years to come.

The second-order difference plot (SODP) originated from 
the Poincare plot. The SODP provides observing the statistical 
situation of consecutive differences in time series data.

Figure 7 presents SODP plot; these kinds of plots can be used 
for data pattern recognition and comparison with other data sets, 
for example, for the entropy artificial intelligence (AI) recognition 

Spa�o-
temporal 
pa�ent 

data

MDOF 
analysis 
and AI

Epidemiological 
thresholds and 

their 
confidence 

bands

Figure 3.  Flowchart, illustrating the suggested methodology.
AI indicates artificial intelligence; MDOF, multi degree of freedom.

Figure 4.  New daily recorded patients number plotted as a surface.
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approach.61 COVID-19 epidemic data have been analysed 
recently by researchers, using AI diagnostic tools.62,63 Note that 
EVT is asymptotic and 1DOF, while this study introduces 
MDOF and sub-asymptotic approaches. To summarize, the pre-
dicted non-dimensional λ level, indicated by the star in Figure 6, 
represents the probability of world cancer deaths in the years to 
come. The methodology’s limitation lies in its assumption of the 
underlying bio-environmental process quasi-stationarity.

Conclusions
Despite the simplicity, this study successfully offers a novel 
multidimensional modelling strategy and a methodological 

avenue to implement the forecasting of an epidemic during its 
course.

This article studied recorded COVID-19 patient numbers 
from 12 different Brazil regions, constituting an example of a 
12D observed in 2020-2022. The novel reliability method was 
applied to new daily patient numbers as a multidimensional 
system in real time. The theoretical reasoning behind the pro-
posed method is given in detail. Note that the use of direct 
either measurement or Monte Carlo simulation for dynamic 
biological system reliability analysis is attractive; however, 
dynamic system complexity and its high dimensionality require 
the development of novel robust and accurate techniques that 

Figure 5.  Number of new daily recorded patients as 12D vector 

R . Left: as it is; right: scaled.

Figure 6.  100 years return-level (horizontal dotted line) extrapolation of pk ( )λ  towards critical level (indicated by star) and beyond. Extrapolated 95% CI 

indicated by dotted lines.
CI indicates confidence interval.
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can deal with a limited data set at hand, using available data as 
efficiently as possible.

The main conclusion is that if the public health system 
under local environmental and epidemiologic conditions in 
Brazil is well managed, the predicted 100-year return period 
risk level λ  of epidemic outbreak is significantly bigger than 1; 
thus, it is not low. Therefore, there is a certain risk of a future 
epidemic outbreak, at least in the 100-year horizon.

Various authors with different approaches have shown the 
usage of statistics through EVT and other models in medicine. 
One such method used the block maxima (BM) approach, 
while another used the peak over threshold (POT) approach to 
estimate the distribution of extremes. Even though both these 
studies showed their suitability for estimating the extreme val-
ues, each of them had its limitations, with one of them requir-
ing a large amount of data.

This study aimed to develop a general purpose, robust, and 
straightforward multidimensional reliability method further. The 
method introduced in this article has been previously validated by 
application to a wide range of simulation models, but for only 
1-dimensional system responses, and in general, very accurate 
predictions were obtained. Both measured and numerically simu-
lated time series responses can be analysed. It is shown that the 
proposed method produced a reasonable confidence interval. 
Thus, the suggested methodology may become an appropriate 
tool for various non-linear dynamic biological systems reliability 
studies. Finally, the suggested methodology can be used in many 
public health applications. The presented COVID-19 example 
does not limit areas of new method applicability by any means.
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