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Abstract

Introduction: Nonmuscle-invasive bladder cancer has a relatively high postoperative recurrence rate despite the
implementation of conventional treatment methods. Cystoscopy is essential for diagnosing and monitoring
bladder cancer, but lesions are overlooked while using white-light imaging. Using cystoscopy, tumors with a
small diameter; flat tumors, such as carcinoma in situ; and the extent of flat lesions associated with the elevated
lesions are difficult to identify. In addition, the accuracy of diagnosis and treatment using cystoscopy varies
according to the skill and experience of physicians. Therefore, to improve the quality of bladder cancer
diagnosis, we aimed to support the cystoscopic diagnosis of bladder cancer using artificial intelligence (AI).
Materials and Methods: A total of 2102 cystoscopic images, consisting of 1671 images of normal tissue and
431 images of tumor lesions, were used to create a dataset with an 8:2 ratio of training and test images. We
constructed a tumor classifier based on a convolutional neural network (CNN). The performance of the trained
classifier was evaluated using test data. True-positive rate and false-positive rate were plotted when the
threshold was changed as the receiver operating characteristic (ROC) curve.
Results: In the test data (tumor image: 87, normal image: 335), 78 images were true positive, 315 true negative,
20 false positive, and 9 false negative. The area under the ROC curve was 0.98, with a maximum Youden index
of 0.837, sensitivity of 89.7%, and specificity of 94.0%.
Conclusion: By objectively evaluating the cystoscopic image with CNN, it was possible to classify the image,
including tumor lesions and normality. The objective evaluation of cystoscopic images using AI is expected to
contribute to improvement in the accuracy of the diagnosis and treatment of bladder cancer.
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Introduction

Spatial and temporal development at multiple sites is
a clinical characteristic of bladder cancer, and the fre-

quencies of its presence at multiple intravesical sites at the
time of diagnosis and intravesical recurrence after complete
endoscopic resection of visible lesions are high.1 The standard
treatment for nonmuscle-invasive bladder cancer (NMIBC) is
endoscopic transurethral resection of the bladder tumor, but it

has been reported that intravesical recurrence occurs within 2
years after operation in *50% of cases.2 Moreover, the re-
currence rates at the first cystoscopy after TUR-BT vary
widely among institutions, and the diagnostic accuracy also
varies according to differences in the urologist’s skill and
experience.3,4

Cystoscopy is essential for diagnosing bladder cancer and
observing the course, but lesions are overlooked during ob-
servation under white-light imaging (WLI) in 10%–20% of
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cases.5,6 The reported sensitivity and specificity of diagnosis
under WLI are *60% and 70%,7 respectively, and it is dif-
ficult to identify the expansion of flat lesions accompanying
flat-type tumors and elevated lesions of tumors with a small
diameter and carcinoma in situ. Endoscopic techniques, such
as narrow band imaging (NBI) and photodynamic diagnosis
(PDD), have been developed to improve visibility of bladder
cancers, and their usefulness has been demonstrated8–12;
however, WLI is still the primary method of observation.

Imaging diagnosis utilizing artificial intelligence (AI) has
recently been developed in the field of medicine. Endoscopic
imaging-based diagnosis using AI has been clinically applied
in the field of gastroenterology, but its application to the field
of urology was initiated only recently.13–16 In this study, to
improve the quality of bladder cancer diagnosis, we aimed to
objectively evaluate normal and tumor images obtained by
white-light cystoscopy using AI.

Materials and Methods

Preparation of training and test image sets

Endoscopic images of the bladder acquired at the Uni-
versity of Tsukuba Hospital between February 2017 and July
2018 were used. For endoscopic images, still images acquired
using a flexible endoscope (CYF-VHA; Olympus Medical
System, Co., Ltd., Tokyo, Japan) at the outpatient clinic were
used. For the endoscopic image of the bladder, 2102 images
were obtained with the TIFF file of 1350 · 1080 pixels by
white light. Images with urine turbidity and images that were
out of focus were excluded. One dataset included 431 images
of tumors, and one urologist marked the sites judged to be a
tumor using two patterns, namely, elevated and flat lesions,
regardless of whether the tumor was malignant or benign.
The actual judgment was also confirmed with the pathologic
results as ground truth. The other dataset contained 1671

normal images, judged by the same doctor as not showing
tumor lesions based on cystoscopy performed 1637 times
around the same period. Figure 1 presents the normal image,
tumor image, and a sample of the annotation data.

Constructing a convolutional neural network
and outcome measures

The cystoscopic images were evaluated using the con-
volutional neural network (CNN) model based on GoogLe-
Net17 with transfer learning. GoogLeNet is a CNN model
that has been awarded the first prize at ImageNet large scale
visual recognition challenge 2014, and developed by train-
ing through the task of 1000-class classification using
ImageNet18 dataset consisting of 1.2 million natural images.
In the proposed method, network parameters of this pre-
trained CNN model were transferred to the initial network
parameters to learn cystoscopic images additionally in su-
pervised learning (Fig. 2). Then, all network parameters of
this CNN were fine-tuned using the Adam algorithm19 to
identify lesions and normal images. The training dataset was
augmented by adding new data that were generated by ro-
tating and blurring the images, which were randomly chosen
from the original image. Using this augmentation, the num-
bers of tumor and normal images in the training dataset were
obtained in the ratio of 1:1. All endoscopic images of the
bladder were randomly divided into two (the training and
test) datasets with a ratio of 8:2. The learning rate was 1e-5,
and the epoch count was 150. Whether the image is an en-
doscopic image of the bladder containing lesions overall or a
normal image could be distinguished by performing learning
by GoogLeNet as a classifier using multilayer perceptron in
the discriminator with set learning data (tumor images: 344,
normal images: 1336) and test data (tumor images: 87, nor-
mal images: 335).

FIG. 1. Sample of cysto-
scopic and annotation im-
ages.
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Statistical analysis

The programming language Python was used throughout
the experiment. We used ‘‘Chainer,’’ which is a deep learning
framework to model and learn CNN. When evaluating, we
used the machine learning library ‘‘scikit-learn’’ to calculate
the confusion matrix and receiver operating characteristic
(ROC) curve. The classifier was trained to output 1 if the
image showed a tumor and 0 if the image was normal using
training data. The performance of the classifier was evaluated
using test data. True-positive rate and false-positive rate were
plotted when the threshold was changed from 0 to 1 as the
ROC curve. The area under the curve (AUC) was calculated
from the ROC curve. In addition, we calculated the maximum
Youden index (YI), sensitivity, and specificity.

Ethics

This study was approved by the Ethics Committee of the
University of Tsukuba Hospital (no. H28-235) and National
Institute of Advanced Industrial Science and Technology (no.
Hi2016-224). An opt-out approach was used when obtaining
consent from the patients before the study participation.

Results

Table 1 presents the summary of the patients recruited and
the tumor images. A total of 124 bladder endoscopies were
performed on 109 patients (97 men and 12 women) during the
study period. Among the 431 images obtained, 1 (0.2%)
showed a papilloma and a benign tumor. However, the re-
maining images showed urothelial carcinoma. By T classi-
fication, 15 (3.5%) images were T2 muscle-invasive bladder
cancer, and the rest (96.3%) were Ta, Tis, and T1 NMIBC.
The level of malignancy was of low and high grades at 45.3%
and 54.5%, respectively. The annotation data of the lesion
image showed an elevated lesion for 265 (61.5%) images, flat

FIG. 2. A method based on transfer learning with pretrained convolutional neural networks.

Table 1. Patient (n = 109) and Tumor

Characteristics in the Image Set (Four Hundred

Thirty-One Images)

n %

Male 97 90.0
Female 12 10.0
Age, years

Median (interquartile range) 74 (64.5–77)

Tumor form
Elevated lesion 265 61.5
Flat lesion 76 17.6
Mixed lesion 90 20.9

Pathology analysis of tumor
Benign, papilloma 1 0.2
Urothelial carcinoma 430 99.8

TNM stage
Ta 329 76.5
T1 38 8.8
Ta +1 16 3.7
Tis 21 4.9
Ta + is 11 2.6
T2 15 3.5

Gradea

Low grade 195 45.3
High grade 235 54.7

Tumor size
Proportion of the overall image occupied by the lesion

>10% 44 10.2
10%–50% 245 56.9
>50% 142 32.9

a1973 World Health Organization classification.
CIS = carcinoma in situ; TNM = tumor–node–metastasis.
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lesion for 76 (17.6%), and a mixture of raised and flat lesions
for 90 (20.9%). The proportion of images with a tumor size
occupying <10%, 10%–50%, and >50% of the overall image
was 10.2%, 56.9%, and 32.9%, respectively.

In the ROC curve (Fig. 3), AUC was 0.98, maximum YI
was 0.837, sensitivity was 89.7%, and specificity was 94.0%.
In the test data (tumor image: 87, normal image: 335), 78
images were true positive, 315 true negative, 20 false posi-
tive, and 9 were false negative. Of the nine images that were
false negative, six were early discovered raised lesions that
included Ta tumors. In addition, two images showed flat le-
sions of Ta tumors, and one image was a T1 tumor for which
annotation of a mixed raised and flat lesion was performed.
Of the nine images, eight images showed a small lesion that
occupied <10% of the overall image. Figure 4a shows the
ROC curve according to the proportion of lesions in the
image. In <10%, 10%–50%, and >50% of the images, AUC
and YI were 0.88 and 0.62, 0.88 and 0.90, and 0.88 and 0.92,
respectively. Figure 4b shows the ROC curve according to
the T stage of tumor. Ta, T1, Ta +1, Tis, Ta + is, and T2, AUC
and YI were 0.98 and 0.84, 0.98 and 0.86, 1.00 and 1.00, 0.98
and 0.96, 0.99 and 0.98, and 1.00 and 1.00, respectively.
Figure 4c shows the ROC curve according to the form of
tumor. Elevated, flat, and mixed AUC and YI were 0.98 and
0.85, 0.96 and 0.87, and 0.99 and 0.92, respectively.

Discussion

Regarding the mechanism of intravesical recurrence of
NMIBC, dissemination of tumor cells, expansion of precan-
cerous lesions, and overlooking of micro-disseminated le-
sions (daughter tumors) are considered rather than the
de novo development. Therefore, it is of utmost importance to
ensure the resection of disseminated lesions (daughter tu-
mors), carcinoma in situ, and expansion of precancerous le-

sions that are difficult to observe without overlooking during
TUR-BT, in addition to the main tumor. To improve the
quality of bladder cancer diagnosis, we have proposed an
objective evaluation method of cystoscopic imaging using
AI, which allowed us to discriminate normal and tumor im-
ages with high accuracy.

AI has recently been applied in the medical field, such as in
the diagnosis of pulmonary nodules on computed tomogra-
phy,20 diagnosis of skin cancer,21 classification of retinal
lesions based on fundus photographs,22 endoscopic imaging
diagnosis, detection of gastric cancer,13 evaluation of Heli-
cobacter pylori infection of the stomach,14 classification of
colon polyps,15 and automatic classification of regions in the
upper gastrointestinal endoscopic images.23 Diagnosis of
prostate cancer lesions on prostate magnetic resonance
imaging has been attempted in the field of urology,24 but
only one study from the urologic endoscopy field has been
reported.25

In this study, using white-light endoscopic images, fa-
vorable results of diagnosis were achieved for tumors with
high sensitivity and specificity. It was clarified that through
learning of *1700 cystoscopic images, normal and tumor
lesions can be classified by distinguishing using transfer
learning based on CNN. In general, learning of AI requires
millions of large amount and high-quality data, but it was
possible to detect tumor lesions in cystoscopic images even
when learning as few as several thousand images through
transfer learning, whereby the features of cystoscopic images
are extracted from a deep learning model constructed using
1.2 million general images. It is suggested that transfer
learning adopting a deep learning model to extract features
facilitates an adjunctive diagnosis by machine learning and
increases the quality of diagnosis and treatment of bladder
cancer although a large volume of imaging data for learning
cannot be prepared, such as the collection of medical images

FIG. 3. MLP ROC curve. MLP = multilayer perceptron; ROC = receiver operating characteristic.
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at single institutions. Transfer learning used in this study is
similar to the fact that humans recognize normal and abnor-
mal states by learning, that is, we observe various general
images as we grow from birth, and after becoming a medical
student and then physician, we learn endoscopic images
through training, thereby acquiring the skills to make a
diagnosis.

We do not consider that this achievement replaces diag-
noses made by urologists. If an automatic visual detection
method for cystoscopic images can be established using this
method, it may support doctors to make a diagnosis based
on not only still images but also videos and real-time cys-
toscopy, which leads to accurate identification of the range of
the tumor and reduction of the diagnostic miss rate, in-
creasing the quality of medical care.

The accuracy of annotating images of lesions, based on
learned data, is a limitation of this study. At present, one
urologist prepared all annotation data, so that the diagnoses of
lesions are consistent, but the possibility of overlooking a
lesion cannot be ruled out. In addition, the method on how the
test data are classified as tumor images or normal images by
multiple doctors has not been verified. Moreover, annotation
data, such as inflammation-induced changes in the bladder
mucosa, were not learned because these were not prepared.
The difficulty of learning may be increased by the turbidity of
urine, being out of focus, and whether the image is acquired
from a near or distant site.

If a tumor is reflected in a cystoscopic image, abnormali-
ties can be identified. When doctors recognize a tumor, they
examine it closely. However, if they do not recognize the

FIG. 4. (a) MLP ROC curve based on the proportion of lesions in the image. (b) MLP ROC curve based on the T stage of
tumor. (c) MLP ROC curve based on the form of tumor.
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tumor, they would not examine it closely and may therefore
overlook it. These issues may be solved by diagnostic support
using AI. In addition, for tumor lesions that are likely to be
overlooked by WLI, learning of NBI, PDD, and high-quality
endoscopic images such as 4K may reduce these and lead to a
higher diagnostic accuracy.

At present, this study has resulted in a low diagnostic ac-
curacy for small lesions that occupied <10% of the overall
image. This may be because of insufficient learning by the AI
system as only *10% of the images used contained small
lesions. These small lesions are also likely to be missed by
urologists. In general, the performance of an AI system is
dependent on the amount and quality of data used for learn-
ing. Although the AI system was able to extract and objec-
tively assess features in cystoscopy images, new algorithms
and additional images representing a variety of lesions are
needed to improve its accuracy.

Conclusion

This study proposed a support system for the cystoscopic
diagnosis of bladder cancer based on AI. The proposed AI
system, as an initial support system of cystoscopic diagnosis,
was based on a pretrained CNN model with ImageNet and
was fine-tuned to learn images from cystoscopy performed
1637 times additionally in supervised learning. We demon-
strated that our AI system is capable of classifying tumor
lesions and normality with high accuracy for 431 test images
from 109 patients. For clinical application, the proposed AI
system would be further verified when in clinical use, so as to
further develop it as a solution for diagnosis support. The
objective evaluation of cystoscopic images using AI is ex-
pected to contribute to improvement in the accuracy of the
diagnosis and treatment of bladder cancer.
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NMIBC¼ nonmuscle-invasive bladder cancer
PDD¼ photodynamic diagnosis
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