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Abstract We report the evolution of a phenotypically plastic behavior that circumvents the

hardwired trade-off that exists when resources are partitioned between growth and motility in

Escherichia coli. We propagated cultures in a cyclical environment, alternating between growth up

to carrying capacity and selection for chemotaxis. Initial adaptations boosted overall swimming

speed at the expense of growth. The effect of the trade-off was subsequently eased through a

change in behavior; while individual cells reduced motility during exponential growth, the faction of

the population that was motile increased as the carrying capacity was approached. This plastic

behavior was produced by a single amino acid replacement in FliA, a regulatory protein central to

the chemotaxis network. Our results illustrate how phenotypic plasticity potentiates evolvability by

opening up new regions of the adaptive landscape.

DOI: 10.7554/eLife.19307.001

Introduction
Trade-offs arise when finite resources are allocated to different traits such that an increase in one

causes a decrease in another. In variable environments trade-offs can be imposed consecutively,

with different traits favored at different times. There are now two possible adaptive responses: (i)

simultaneously optimize the traits or (ii) change the traits dynamically to match the prevailing condi-

tions, a phenomenon called phenotypic plasticity. Theoretical models predict that, provided the

genetic variation exists to generate a suitably plastic response, the second should be favored

because it reduces the costs imposed by the trade-offs (De Jong, 1993; King and Roff, 2010;

Malausa et al., 2005; Murren et al., 2015; Roff, 2001; Scheiner, 1993; van Noordwijk and de

Jong, 1986; Worley et al., 2003). For example, changes in insect wing morphology with varying

environmental conditions, such as temperature and food quality, have been attributed to the trade-

off between flight capability and reproduction (Harrison, 1980; Zera et al., 1997). Wings develop

fully only in stressful environments, allowing insects to escape adversity while minimizing costs to

reproduction in benign environments (Harrison, 1980).

Empirical examples of both phenotypic plasticity and trade-offs abound, but rarely has pheno-

typic plasticity been proved to be an adaptive response to trade-offs (King and Roff, 2010). Nor

have the genetic architectures underlying phenotypic plasticity been identified (Murren et al.,

2015). These difficulties are due to the lack of a simple tractable experimental system.

Here, we use Escherichia coli to explore a trade-off between two traits, growth rate and chemo-

taxis – the ability to move up a concentration gradient of nutrients. By monitoring phenotypic evolu-

tion in a well-defined selective environment, we can show how these traits are first simultaneously

optimized before an adaptively plastic response evolves that gains access to a new region of the

adaptive landscape.

Extensive studies from molecular biology and physiology have established that both growth and

chemotaxis are energetically expensive and critically important to fitness (Freter and O’Brien, 1981;
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Macnab, 1996). Given bacterial metabolic rates are limited (Makarieva et al., 2008), there must be

a trade-off between growth and chemotaxis. To test this, five populations of wildtype E. coli were

propagated in a serial transfer regime that alternated between competitive growth in batch culture

and capillary selection for chemotaxis (Figure 1a).

Our experimental system defines an adaptive landscape in which selection for limited resources

during growth is modeled using Lotka-Volterra equations (Gotelli, 1998),

dm
dt
¼ rmm 1�m�wð Þ

dw
dt
¼ rww 1�m�wð Þ

where m and w are the population sizes for the mutant and wildtype normalized to their common

carrying capacity, and rm and rw are their respective intrinsic rates of growth. The selection after

11.5 hr of growth, defined as sg ¼ Logeðm11:5=w11:5Þ�Logeðm0=w0Þ, is determined by numerical inte-

gration of the Lotka-Volterra equations. The selection after chemotaxis is sc ¼ Logeðm12=w12Þ�

Logeðm11:5=w11:5Þ ¼ 0:5 ðcm� cwÞ in which cm� cw is the difference in chemotactic ability (this difference

is equivalent to the difference in growth rates ðrm� rwÞ as populations increase exponentially in both

situations [Adler, 1973]). There are approximately 11 population doublings (generations) per growth

cycle (effectively a 2048-fold dilution into fresh growth medium at the beginning of each growth

cycle). Relative fitness of the mutant to wildtype is

w¼ sgþ sc
� �

=12

Plotting w as a function of the differences in the rates of growth ðrm� rwÞ and chemotaxis ðcm�

cwÞ produces an adaptive surface (Figure 1b) whose curvature is attributable to the deceleration in

Figure 1. Testing the existence of a trade-off between growth rate and chemotaxis using experimental evolution. (a) Experimental design. Bacteria are

grown in a batch culture of rich medium for 11.5 hr to late exponential phase (Figure 2b, dashed curve). A capillary carrying fresh medium is lowered

into the culture (after wash and dilution, see Materials and methods) for 30 min to attract chemotactically active cells. Cells thus collected are used to

inoculate another batch culture. The cycle is repeated 150 times (approximately1650 generations). (b) Predicted adaptive landscape. The experimental

system defines an adaptive landscape that can be described mathematically from first principles. Relative fitness ðwÞ plotted as a function of the

differences in growth rates ðrm � rwÞ and chemotactic abilities ðcm � cwÞ, is determined a priori by the experimental conditions and is robust to

violations of assumptions (Appendix).The trade-off, who’s position must be determined empirically, is absent when a population evolves along a

positive diagonal (blue arrow) and present when a population evolves along a negative diagonal (red arrow) (Agrawal et al., 2010). The red dot marks

maximum fitness on the Pareto front of the trade-off. (c) Curvature in the landscape is produced by the population density at the point of capillary

selection (dashed line) becoming less dependent on growth rate as the latter is increased from low (blue) to high (red and orange). In other words, as

growth rate increases, its contribution to fitness diminishes due to the sigmoid nature of logistic growth.

DOI: 10.7554/eLife.19307.002
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growth rates as the cultures approach the carrying capacity (Figure 1c). Projecting a hypothetical

Pareto front (representing the limit where trade-offs force phenotypes to become tightly negatively

correlated) onto the surface produces a maximum. The existence of the trade-off and the location of

the Pareto front must be determined empirically. Cultures evolving towards the adaptive peak (red

dot, Figure 1b) show that natural selection maximizes fitness in the face of a trade-off.

Evolutionary trajectories across this landscape are characterized by three phases. Figure 2a

depicts a typical trajectory (see Figure 2—figure supplement 1 for additional data). During the first

phase (weeks 1 and 2) substantial increases in chemotactic ability and fitness occur

(ANOVA, p<0.0001; p<0.0001); few isolates have changed growth rates. Therefore no trade-off is

present. Control experiments without chemotaxis select for improved growth rates (p=0.0022, Fig-

ure 2—figure supplement 2). The selective gradient (Lynch, 1998) (a measure of selective strength)

Figure 2. Phenotypic plasticity in the face of a trade-off between growth rate and chemotaxis. (a) An evolutionary trajectory through the known

adaptive landscape. Numbers indicate the stage of evolution in weeks. The dashed line denotes the empirically determined Pareto front and the red

dot denotes its fitness maximum. Contours mark fitness isoclines. Each point represents the average of six clones randomly picked from the evolving

population. The large standard errors noticeable at week 8 are a consequence of transient polymorphisms as new fitter mutants sweep into the

population. (b) Swimming speeds of representative clones from different stages. Each point represents the mean of five replicate populations, each of

which is the mean of ~400 cells. Error bars represent standard deviations. The dashed curve indicates a typical growth curve with its vertical axis on the

right. After six hours, growth rate diminish and the populations start transitioning from exponential to stationary phase. Each point is the average taken

from three replicate populations. Error bar are standard deviations.

DOI: 10.7554/eLife.19307.003

The following figure supplements are available for figure 2:

Figure supplement 1. The overall evolutionary trajectory of all five populations.

DOI: 10.7554/eLife.19307.004

Figure supplement 2. Growth rate evolves 11.6% faster within 3 weeks (c.a. 460 generations) in this control experiment without capillary selection.

DOI: 10.7554/eLife.19307.005

Figure supplement 3. Empirical Pareto front and theoretical fitness optimum.

DOI: 10.7554/eLife.19307.006

Figure supplement 4. Correlation between swimming speed and chemotactic ability.

DOI: 10.7554/eLife.19307.007

Figure supplement 5. Test of E. coli chemotaxis at the late stage.

DOI: 10.7554/eLife.19307.008

Figure supplement 6. Logistic growth curves fitted to data from isolated clones.

DOI: 10.7554/eLife.19307.009

Figure supplement 7. The impact of r and k on competition at the end of batch growth, f, a, and its derivatives, b.

DOI: 10.7554/eLife.19307.010
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along the growth axis is much steeper than along the chemotaxis axis (0.603 vs. 0.087,

Materials and methods). Therefore, adaptation in the early phase is dominated by chemotaxis muta-

tions of large phenotypic effect.

The second phase (weeks 2 to 7) is characterized by adaptation to a trade-off. Growth rates

decline(p=0.029) as chemotaxis continues to improve (p=0.0018). Regressing growth rate against

chemotaxis (data from weeks 5–7, Figure 2—figure supplement 3) reveals a Pareto front (dashed

line, Figure 2a) that almost parallels the fitness isoclines. This explains why fitness improves at a

slower rate (p=0.0009). By week 6 this evolving population (like the other four) had approached the

predicted fitness optimum (red dot, Figure 2a).

Most previous studies of trade-offs have faced difficulties in relating phenotypes to fitness

(Agrawal et al., 2010; Allouche et al., 2012; Fonseca-Azevedo and Herculano-Houzel, 2012;

Keen, 2014; Keller et al., 2014; King et al., 2004; Mole and Zera, 1993; Phan and Ferenci, 2013;

Shoval et al., 2012). In our adaptive landscape the relationships between phenotypes and fitness

were defined a priori. Independent regressions from different experimental populations produce

similar Pareto fronts (Figure 2—figure supplement 1), with all populations evolving close to the pre-

dicted optimum (Figure 2—figure supplement 1). This establishes a hard-wired trade-off between

chemotaxis and growth rate attributable to resource/energy limitation (DeLong et al., 2010). The

match between the prediction and experimental realizations shows that the interplay of the selective

forces is understood and that adaptation is predictable at the phenotypic level.

Week 8 in the third phase saw populations break through the Pareto front with large increases in

growth rate (p=0.0068, comparing weeks 7 and 9) while maintaining strong chemotaxis (p=0.77). To

understand how the hard trade-off forced by partitioning energy between chemotaxis and growth

was overcome we isolated individual clones from the three phases and determined their swimming

speed over the course of growth in batch culture. Three patterns were evident (Figure 2b): (1) the

ancestor’s swimming speed increases during rapid growth and then declines as the carrying capacity

is approached, (2) clones from the early and the middle periods swim faster than the ancestor nearly

the whole time, the difference becoming more marked during late growth, and (3) clones that broke

through the Pareto front reduce swimming speed during rapid growth and increase swimming speed

as the carrying capacity is approached.

Chemotactic ability is strongly correlated with swimming speed (Figure 2—figure supplement

4). One adaptation evident in isolates from the first and second phases simply increases swimming

speed throughout the growth cycle. This requires diverting resources away from growth, which

slows. Genomic sequencing of a phase 2 clone identified two relevant mutations (Table 1):a non-syn-

onymous substitution in yahA and another substitution in the promoter region of yegE. Both genes

encode enzymes that metabolize(30-50)-cyclic dimeric guanosine monophosphate (c-di-GMP)

(Claret et al., 2007; Pesavento et al., 2008), a second messenger that negatively modulates flagel-

lar activity in E. coli (Boehm et al., 2010; Pesavento et al., 2008). We replaced the E. coli lac

operon with a synthetic construct in which expression of GFP is post-transcriptionally modulated by

the riboswitch, Vc2, which senses c-di-GMP (Sudarsan et al., 2008). As expected, GFP expression

shows that the phase 2 isolate has lower intracellular c-di-GMP concentrations at the beginning and

end of the growth cycle when its swimming speed is higher than the ancestor (Figure 3a).

Isolates from the third phase reduced motility during growth only to boost it when approaching

carrying capacity in preparation for chemotaxis selection. Genomic sequencing of a phase 3 clone

identified a non-synonymous substitution that replaced a conserved arginine with a tryptophan at

site 220 in the DNA binding domain of FliA, a transcription factor essential for chemotaxis and

motility (Claret et al., 2007). Structural modeling (Figure 3—figure supplement 1) predicts that

R220W reduces the electrostatic interaction with, and eliminates a hydrogen bond to, the backbone

phosphate of DNA.

To determine if the R220W mutation reduces flagellar operon transcriptional activity we replaced

the E. coli lac operon with a synthetic construct in which GFP expression is driven from the fliA-

dependent fliC promoter. We constructed four strains: two genetic backgrounds (ancestor and

phase 3) each with either of two fliA alleles (wildtype and mutant). As expected, FliAR220W reduced

overall GFP expression in both backgrounds, with the loss of peak expression causing a reduction in

the swimming speed of individual cells early in the cycle (Figure 3b).

Despite the overall reduction in transcription from fliC, FliAR220W increases average swimming

speed late in the growth cycle (Figure 3c,d). This is achieved by boosting the fraction of cells in the
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population that are motile (Figure 3e). Note that the boost is bigger in the ancestral than the phase

3 background where three additional mutations (Table 1) also raise the fraction of motile cells.

Hence, reduced motility early in the growth cycle and increased motility late in the growth cycle are

caused by a single pleiotropic mutation, R220W. This mutation is expected to increase fitness in the

face of the trade-off.

Directly measuring the two fitness components of strains carrying wildtype or mutant versions of

FliA (Figure 3f) shows thatFliAR220W elevated fitness in two ways: (1) increasing growth rates by

reducing flagellar transcription and the associated energetic costs to individual cells, and (2) increas-

ing the fraction of the population that is motile during chemotaxis selection. Hence, a single muta-

tion, with pleiotropic effects at the levels of individuals and of populations, produces the plastic

behavior needed to adapt to a dynamic environment.

The first gains in fitness were achieved by a significant boost in chemotactic ability, with motility

becoming less plastic (compared to the ancestor) across the growth cycle. Further improvements in

fitness were limited by the growth-chemotaxis trade-off. Eventually, however, a new pattern of motil-

ity evolved across the growth cycle that mitigated the trade-off. These observations illustrate the

adaptive value of phenotypic plasticity in variable environments whenever fitness components are

bounded by trade-offs. FliA regulates the concerted expression of more than 40 chemotaxis

genes (Claret et al., 2007). Characterizing the adaptive fliA mutant has revealed how a novel adap-

tive plastic behavior readily evolves by tinkering with a node at the center of an existing gene net-

work. Delineating the mechanistic basis of a behavioral adaptation, our approach serves to

complement those many studies of phenotypic plasticity that have focused on genome wide

associations (Ghalambor et al., 2015; Gompert et al., 2014).

There are three different ways adaptation can resolve constraints caused by functional trade-offs.

First, gain-of-function mutations can change the constraint itself. For example, E. coli can evolve the

ability to use citrate as a carbon source under aerobic conditions (Hall, 1982), thereby eliminating a

metabolic constraint. Second, adaptation can optimize traits to bring populations to an adaptive

peak. Echoing previous work on adaptive landscapes where trade-offs serve as boundary conditions

to provide strong predictive power (Dekel and Alon, 2005; Ibarra et al., 2002; Poelwijk et al.,

2011), we observed that growth rate and chemotaxis were initially optimized to bring populations

close to the optimum on the Pareto front. Third, in a variable environment the costs associated with

a trade-off can be mitigated by a phenotypically plastic response. The unanticipated escape from

the optimum illustrates how the emergence of a new behavior can reduce the costs of a trade-off to

gain access to virgin regions of an adaptive landscape. Recently, another group found that a trade-

off between different environments facilitated adaptation (De Vos et al., 2015).This adds to our

Table 1. Complete mutations of representative isolates from week 7 and week 9. Note that there is no overlap in mutations between

the two isolates.

Nucleotide
change

Animo acid substitutionor
genomic context Genes Phenotypes

Week 7
isolate

GfiT G167C (GGTfiTGT) yahA fi c-di-GMP-specific phosphodiesterase

GfiT L356L (CTCfiCTA) dcp  dipeptidylcarboxypeptidase II

repeat_region (–)
+4 bp

intergenic (�209/�52) udk  / fi
yegE

uridine/cytidine kinase/diguanylatecyclase

repeat_region (+)
+4 bp

intergenic (+113/�115) yqaD fi / fi
CsiD

orf, hypothetical protein/orf, hypothetical protein

repeat_region (–)
+9 bp

coding (1504– 1512/2247 nt) ptsP  PTS system, enzyme I, transcriptional regulator (with NPR and
NTR proteins)

Week 9
isolate

D5579 bp [gapC]–[ydcJ] [gapC], cybB, ydcA, hokB, mokB, trg, ydcI, [ydcJ]

GfiA R220W (CGGfiTGG) fliA  flagellar biosynthesis; alternative sigma factor 28; regulation of
flagellar operons

CfiT E82K (GAAfiAAA) rpsC  30S ribosomal subunit protein S3

repeat_region (+)
+5 bp

intergenic (+86/�36) rbsB fi / fi
rbsK

D-ribose periplasmic binding protein/ribokinase

DOI: 10.7554/eLife.19307.015
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Figure 3. Molecular, physiological and fitness impacts of the adaptive mutations. (a) Intracellular concentrations of c-di-GMP inthe ancestor (Anc) and

phase 2 isolate (P2) as measured by Vc2 riboswitch (Sudarsan et al., 2008) expressed GFP. (b) GFP expression driven from an ectopic fliC promoter in

the ancestor and in the phase 3 isolate (P3). Each point represents the mean of three replicates. (c) and (d). Swimming speed of wildtype fliA (solid

curve) and mutant fliA (dashed curve) in the ancestral (black) or phase 3 (red) genetic backgrounds. Each point represents the mean of five replicate

populations, each of which is the mean of ~400 cells. Error bars represent standard deviations. (e) Fraction of motile cells within isogenic populations.

Legend and data symbols follow that of c and d. (f) Effect of the fliA mutation on growth rate and chemotaxis. Ancestral background (black), phase 3

background (red), wildtype fliA (filled circles) and mutant fliA (open circles). Values are normalized to mean values of wildtype fliA. Bar indicates mean.

Figure 3 continued on next page
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speculation that, besides phenotypic plasticity, many other adaptive novel traits have their origins in

tradeoffs.

Materials and methods

Strains and media
E. coli strain MG1655 (Coli Genetic Stock Center, Yale) was propagated in tryptone broth (TB; 10 g

NaCl2, 5 g tryptone per liter; Fisher BioReagents). Chemotactic competition and swimming speed

were determined in washing buffer (7 g K2HPO4, 2 g KH2PO4per liter, 0.1 mM EDTA, Sigma).

Evolved clones were isolated by streaking on LB plates (10 g NaCl2, 5 g yeast extract 5 g, 10 g tryp-

tone, 15 g agar per liter; Fisher BioReagents). Genetic engineering followed standard protocols as

detailed in supplemental file 1.

Experimental evolution
E. coli cells were selected for growth rate and chemotaxis in a fast-paced cyclical environment. From

a single colony, the ancestral strain was grown overnight at 30˚C to full density and diluted 1000

times into each of five 18 mm sterile glass tubes (Pyrex) containing one ml TB. The five cultures were

treated the same way. They were incubated at 30˚C and shaken at 250 rpm. 11.5 hr after inocula-

tion, 50 ml of each culture was diluted into 250 ml of washing buffer and centrifuged at 3000 g for

3 min. The supernatant was discarded and the pellet gently re-suspended in 300 ml of washing buffer

to minimize flagellar damage. 180 ml of the suspension was transferred to a well in a sterile 96-well

microplate (BD Falcon). Having loaded all five samples, the plate was raised on one side so that it

became perpendicular to the bench surface. The liquid remained inside the wells due to surface ten-

sion. A glass micro-capillary (0.8 mm inner diameter � 75 mm, Drummond) was heat-melted at one

end to seal the opening. After cooling to room temperature, the capillary was flamed over Bunsen

burner briefly and the open end immediately submerged into TB. On cooling to room temperature

the capillary absorbed ~5 ml of TB. Washing buffer was pipetted to rinse off carryover medium on

the outer surface of the capillary. The open end was submerged into the liquid in the well and the

whole system was incubated at 30˚C for chemotactic competition to occur. After 30 min, the capil-

lary was removed and rinsed with washing buffer to remove cells on the outer wall. To initiate the

next cycle of growth and chemotaxis, the liquid and cells in the capillary were pushed into a glass

tube of 1 ml of fresh TB medium by flaming the capillary briefly. This cycle of growth and chemotaxis

was repeated 150 times (11 weeks). Each week 1 ml of culture was taken from each tube and diluted

with 80% sterile glycerol to the final glycerol concentration of 16%. The diluted cultures were stored

at �80˚C as archives. For each archived culture, 6 single strains were randomly picked from single

colonies streaked on agar plate. Each strain was characterized for growth rate and chemotactic

ability.

Measuring growth rates and chemotactic abilities
Overnight cultures were diluted 1000-fold into 10 mls of fresh tryptone broth and incubated at 30˚C
with vigorous shaking. Cell counts were determined by flow cytometry at 3, 4 and 5 hr after inocula-

tion. Growth rates were determined as the slope of linear regression line of logarithmic transformed

Figure 3 continued

For all panels, * indicates statistical significance at least of 0.05 with three to five replicate populations;$, with nine replicate populations; + , with 200

cells randomly pooled from the replicate populations for comparison.

DOI: 10.7554/eLife.19307.011

The following figure supplements are available for figure 3:

Figure supplement 1. Comparison between wildtype and mutant sigma factor F at the DNA binding domain.

DOI: 10.7554/eLife.19307.012

Figure supplement 2. Statistical structure of swimming speed within isogenic populations and its impact on chemotaxis.

DOI: 10.7554/eLife.19307.013

Figure supplement 3. Comparison of measurements taken in spent medium and in chemotactic buffer.

DOI: 10.7554/eLife.19307.014
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counts against time. At 11.5 hr, samples from both cultures were centrifuged at low speed and re-

suspended in six times the volume of washing buffer. The mutant and the ancestor (carrying a selec-

tively neutral fhuA marker that confers resistance to the bacteriophage T5) were mixed in a 1:1 ratio

in 180 ml. A micro-capillary carrying ~5 ml tryptone broth was lowered to the mixture, and the system

incubated at 30˚C for 30 min. Cell counts from pre- and post-incubation (inside the capillary) were

determined by flow cytometry (details in supplemental file 1). The difference between the logarithm-

transformed ratios, before and after incubation, is a measure of chemotaxis of a mutant relative to

the ancestor.

Measuring swimming speed
Culture samples, diluted in washing buffer or concentrated by low-speed centrifugation according

to cell density, were placed on microscope slides. Five second video clips were taken from different

fields using a microscope (Olympus IX70 Inverted Fluorescence Microscope, SPOT Flex camera). The

swimming speeds of individual cells were determined for the trajectories extracted using Image-Pro

Plus 6.0 software.

Calculation of selective gradients
We studied the selective gradients along the two functional dimensions. A grid of values for c and r

was generated that covered the parameter space traveled by the evolving populations: for c from

�1 to 8 with increment size 0.2 and for r from �0.2 to 0.3 with increment size 0.025. The fitness, wij,

at each point, (cij, rij), was calculated, where i and j were the indexes for the simulated values of c

and r respectively. The surface made of these points is smooth and approximates a plane. Therefore,

the overall selective gradients can be approximated by averaging the gradients as follows:

qw
qc
¼ 1

0:2

Pn
j

Pm

i
wiþ1;j�wi;jð Þ
m�1ð Þ =n

qw
qr
¼ 1

0:025

Pm
i

Pn

j
wi;jþ1�wi;jð Þ
n�1ð Þ =m

Genomic sequencing and mutation identification
Genomic DNA of isolated clones or mixed populations were extracted using Genomic DNA Extrac-

tion Kit (ThermoFisher), libraries were prepared using Nextera Kits (illumina) and sequenced by illu-

mina HiSeq 2000 (Single-read. 50 cycles) with 160�coverage. Genomes were assembled and

mutations identified using the Breseq pipeline with the wildtype strain MG1655 serving as the

control.

Structural modeling of the fliA mutation
Although crystal structures of FliA bound to DNA are not available, clues to the functional role of

arginine 220 can be deduced from its location in the conserved helix-turn-helix motif for DNA bind-

ing (Meinhart et al., 2003). Indeed, this conserved arginine is critical to DNA binding through elec-

trostatic interactions and hydrogen bond formation with the backbone phosphate of DNA in the

homologous Thermus aquaticus sigma factor A (Campbell et al., 2002). Modeling the R220W muta-

tion into sigma factor A eliminates the electrostatic interaction and the hydrogen bond to the back-

bone phosphate of DNA.

Genetic engineering
Of the four mutations identified in the phase 3 isolate (P3), fliA was chosen for further study. Four

strains were constructed: the ancestral background with the ancestral fliA, the ancestral background

with the P3fliA, the P3 background with ancestral fliA, and the P3 background with the P3fliA. 1 Kb

sequences upstream and downstream of the promoter of the dcyD operon (adjacent to thefliA

operon)were PCR amplified separately. The kanamycin resistance cassette from pKD13S was PCR

amplified and inserted between the two chromosomally derived sequences by fusion PCRS. The

kanamycin resistance cassette was integrated between the terminator of fliA operon and the pro-

moter of dcyD operon by lambda red-mediated homologous recombination. Single colonies with

the kanamycin resistance cassette were isolated and stored at �80˚C. P1 phage transductionS was

then used to introduce both ancestral and P3 versions of fliA into the P3 and ancestral backgrounds

respectively. The four reconstructed strains were verified by Sanger sequencing the fliA locus
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(Biomedical Genomic Center of University of Minnesota). The constructs for ectopic promoter analy-

sis monitoring c-di-GMP and fliC expression were made as follows. To monitor c-di-GMPa 1 Kb

region upstream of lacI, kanamycin resistance cassette, tac promoter, Vc2 riboswitch, gfp, and a

1 Kb region downstream of lacA were fused by PCRS. To monitor fliC expression a 1 Kb region

upstream of lacI, kanamycin resistance cassette, fliC promoter, gfp, and 1 Kb downstream of lacA

were fused by PCRS. The synthetic circuits were integrated into appropriate host genome using

lambda red recombinationS with concomitant loss of lac. Source templates: Vc2 from Vibriocholerae

O395N1 toxT::lacZ; pfliC, 1 Kb regions upstream of lacI and downstream of lacA from E. coli

MG1655; tac promoter by chemical synthesis; kanamycin cassette from plasmid pKD13S.
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Appendix

Model validation
Two assumptions inour model of the adaptive landscape are

1. Strains compete for common resources in the absence of other interactions.

2. Growth in TB is logistic and strains have the same carrying capacity.

Previous work has demonstrated that laboratory strains of E. coli grow in exactly the same way

in mixed culture as they do in monoculture (Yi and Dean, 2013). Known exceptions are: (i)

growth in minimal media with excess glucose can result in cross-feeding with acetate and

glycerol metabolites in the presence of an acetate specialistS (Treves et al., 1998); (ii) a small

fraction of a population sacrifices itself to promote resistance to antibiotics (Lee et al., 2010).

Our experimental system does support the conditions for these interactions.

The logistic equation provides a reasonable fit to the growth data (Figure 2—figure

supplement 6). Importantly, the decelerating growth after hour 6, which is responsible for the

curvature of the landscape surface, is accurately captured by the logistic equation. We will

later show that decelerating growth introduces curvature to the landscape resulting in an

optimum at the Pareto front of the trade-off.

Carrying capacities vary three-fold among the isolates. We introduce a scalar k to change the

mutant carrying capacity. This gives:

dm
dt
¼ rmm 1� km�wð Þ

dw
dt
¼ rww k�m�wð Þ

Figure 2—figure supplement 7a shows that both r and k contribute to selection during

growth, sg. Within the range of values for r and k seen among isolated clones sg is dominated

by changes in r while changes in k make little difference (Figure 2—figure supplement 7b).

The modulation of r ’s effect by k is limited for most isolates and is significant only for phase 3

isolates with large growth rates. We conclude our model is robust to assumptions 1 and 2.
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