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Abstract
Strain ND3T was isolated from the genital tract of a 28-year-old woman with bacterial vaginosis. This strain exhibited a 16S rRNA gene

sequence similarity of 92.4% with Sutterella wadsworthensis, the phylogenetically closest species with standing in nomenclature. Strain

ND3T was a strictly anaerobic Gram-negative rod and member of the family Sutterellaceae. It exhibited a genome of 2 476 884 bp

containing 2175 protein-coding and 62 RNA genes. On the basis of these data, we propose the creation of ‘Dakarella massiliensis’ sp. nov.

with strain ND3T (= CSUR P1938 = DSM 100447) as the type strain.
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Introduction
Bacterial vaginosis is a serious worldwide public health problem
that can affect women of childbearing age and may involved in

premature birth [1,2]. Its prevalence has been estimated to be
between 10% and 30% in developed countries and >50% in
women in East Africa and Southern Africa [2]. It is also a risk

factor for sexually transmitted diseases like herpes simplex vi-
rus type 2 and human immunodeficiency virus type 1 [2]. First-

line recommended therapies are metronidazole or clindamycin
for 5 to 7 days, but even with these treatments, failure rates are

>50% within 6 to 12 months [2].
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Bacterial vaginosis is characterized by a switch of the vaginal
flora with the depletion of key Lactobacillus spp. for high bac-

terial species diversity with increased loads of anaerobes such
as Atopobium vaginae or Gardnerella vaginalis compared to
healthy controls [2]. The lack of extensive data on the vaginal

microbiota diversity in cultured species is an impediment to
understanding the aetiology and pathogenesis of bacterial vagi-

nosis and searching for therapeutic strategies [3]. However,
advances in molecular biology, particularly metagenomics,

sequencing and phylogenetic analysis of the 16S rRNA gene,
have enhanced the exploration of the human microbiome, and

the vaginal microbiota in particular [4–6]. Today, with the
advent of matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF MS) and the culturo-

mics approach [7,8], we have effective tools to explore the
human microbiome diversity.

With the aim of exploring the microbial diversity of vaginal
flora in patients with bacterial vaginosis, we cultivated a new

bacterial strain named ‘Dakarella massiliensis’ strain ND3T (=
CSUR P1938 = DSM 100447).
obiology and Infectious Diseases
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Here we present a summary classification and a set of fea-

tures for ‘Dakarella massiliensis’ gen. nov., sp. nov., together with
the description of the complete genome sequencing and

annotation. These characteristics support the circumscription
of the genus and species ‘Dakarella massiliensis.’
Organism Classification and Features
A vaginal specimen was collected from a 28-year-old French
patient living in Marseille with bacterial vaginosis and diagnosed

as previously reported [9]. After collection, the sample was
transported directly to the laboratory. Part of the sample was
grown directly in an anaerobic chamber. The remaining portion

was stored at −80°C. The ‘Dakarella massiliensis’ strain ND3T

was isolated in November 2013 by culture on Columbia agar

(bioMérieux, Marcy l’Etoile, France) after 3 days of sample
preincubation in a blood culture bottle (Becton Dickinson, Le

Pont-de-Claix, France) with the addition of 5 mL of sheep
rumen that was filter-sterilized through a 0.2 μm pore filter

(Thermo Fisher Scientific, Villebon-sur-Yvette, France) in an
anaerobic chamber.

MALDI-TOF MS (Microflex spectrometer; Bruker Daltonics,

Bremen, Germany) was first performed to try to identify the
bacterium [10]. In brief, 1.5 μL of matrix solution containing

diluted α-cyano-4-hydroxycinnamic acid in 500 μL acetonitrile,
FIG. 1. Phylogenetic tree highlighting position of ‘Dakarella massiliensis’ stra

quences were aligned using CLUSTALW, and phylogenetic inferences were

Numbers at nodes are percentages of bootstrap values obtained by repeat

accession numbers are indicated in tree. Lautropia mirabilis was used as outgr
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250 μL 10% trifluoroacetic acid and 250 μL HPLC water was

deposited on each spot for ionization and crystallization. All
protein spectra obtained were compared with those of the

MALDI-TOF database. If the score was greater than or equal to
1.9, the strain was considered identified. Otherwise, the iden-

tification failed. When MALDI-TOF MS failed, bacterial identi-
fication was performed using 16S rRNA gene PCR amplification
in combination with sequencing as previously described [11].

Strain ND3T exhibited 92.4% of 16S rRNA gene sequence
similarity with Sutterella wadsworthensis strain SW4, which is the

phylogenetically closest species with a validly published name
[12]. As Stackebrant [13] suggested, if the 16S rRNA gene

sequence similarity value was lower than 98.7% or 95%, the
strain was defined as a new species or genus respectively,

without performing DNA-DNA hybridization [14]. Phyloge-
netic analysis was performed by comparing the 16S rRNA gene
sequences obtained from other Sutterellaceae family members.

Sequences were aligned using CLUSTALW, and phylogenetic
references were obtained using the maximum-likelihood

method within the MEGA software (Fig. 1). The MALDI-TOF
MS analysis of proteins was also performed, as previously

described, to generate a reference spectrum. Spectra from 12
individual colonies of strain ND3T were compared and a

reference spectrum generated (Fig. 2).
Different growth temperatures (25, 30, 37 and 45°C) were

tested. Growth was observed after 24 hours of inoculation
in ND3T relative to other type strains within Sutterellaceae family. Se-

obtained using maximum-likelihood method within MEGA software.

ing analysis 500 times to generate majority consensus tree. GenBank

oup. Scale bar represents 2% nucleotide sequence divergence.
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FIG. 2. Reference mass spectrum from ‘Dakarella massiliensis’ strain ND3T. Spectra from 12 individual colonies were compared and reference

spectrum generated.
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between 28 to 37°C, with the optimal growth temperature
being 37°C. Colonies were dark grey and about 0.1 to 0.3 mm

in diameter on 5% sheep’s blood–enriched Columbia agar
(bioMérieux). Gram staining performed using the Aerospray

Gram series (ELITechGroup Biomedical Systems, Puteaux,
France) showed rod-shaped Gram-negative bacilli (Fig. 3).

These rods were not motile and were unable to form spores.
FIG. 3. Transmission electron microscopy of ‘Dakarella massiliensis’

strain ND3T using Tecnai G20(Fei) at operating voltage of 60 kV. Scale

bar = 500 nm.
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For electronic microscopy, detection coated grids were
deposited on a 40 μL bacterial suspension drop and incubated

for 30 minutes at 37°C. The grids were incubated for 1 second
on ammonium molybdate 1%, dried on blotting paper and then

observed with a Tecnai G20 transmission electron microscope
(FEI Company, Limeil-Brevannes, France) at an operating

voltage of 60 kV. Using electron microscopy, cells had a mean
length of 2.1 μm (range, 1.7–2.6 μm) and width of 0.9 μm
(range, 0.60–1.2 μm) (Fig. 4).

Growth of the strain was tested under anaerobic and
microaerophilic conditions using GENbag anaer and GENbag

microaer systems respectively (bioMérieux), and under aerobic
conditions, with and without 5% CO2. Growth was only

observed in anaerobic conditions. Salinity was tested on agar
plates at different concentrations of salt (0, 15, 50 and 100 g/L),

but no growth was observed with salt. Strain ND3T did not
exhibit oxidase or catalase activities.

Using API ZYM strips (bioMérieux), positive reactions were
observed for phosphatase alkaline, esterase (C4), esterase
lipase (C8), lipase (C14), leucine arylamidase, valine arylami-

dase, trypsin, α-chymotrypsin, phosphatase acid, naphtol
phosphohydrolase, α-galactosidase, α-galactosidase, β-glucosi-

dase and α-mannosidase. Using an API 50CH strip (bio-
Mérieux), positive reactions were observed for D-galactose, D-

glucose, esculin, salicin, D-cellobiose, D-maltose, D-lactose, D-
obiology and Infectious Diseases, NMNI, 18, 38–46
nses/by-nc-nd/4.0/).
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FIG. 4. Gram staining of ‘Dakarella massiliensis’ strain ND3T.
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saccharose, D-trehalose, D-raffinose, amidon, glycogen, D-tur-
anose, D-tagatose and glycerol. Using API Rapid ID 32A strip

(bioMérieux), a positive reaction was only observed for arginine
arylamidase. Overall, these biochemical results are consistent

with those of Sutterella parvirubra [15].
The in vitro susceptibility of strain ND3T to antimicrobial

agents was tested using the diffusion method with antibiotic

disks (i2a, Montpellier, France) [16]. Strain ND3T was suscep-
tible to penicillin, amoxicillin, amoxicillin–clavulanate, ceftriax-

one, imipenem, ciprofloxacin, clindamycin, doxycycline,
TABLE 1. Phenotypic features that distinguish Dakarella massilie

Alicycliphilus denitrificans strain K601, Caldimonas manganoxidan

Comamonas composti strain YY287, Lautropia mirabilis strain ATCC

Sphaerotilus natans strain DSM 6575

Characteristic D. massiliensis A. denitrificans C. manganoxidans

Cell diameter (μm) 0.70 0.5–1.0 0.5–0.7
Oxygen requirement Anaerobic Anaerobic Aerobic
Gram stain − − −

Motility − + +
Endospore formation − NA −

DNA G+C content (mol%) 57 68 66
Biochemical

Oxidase − + NA
Catalase − NA +
Indole + NA −

Nitrate reductase NA NA
L-Arabinose − − NA
Mannitol − NA +
D-Maltose − + −

D-Lactose − + NA
α-Glucosidase − NA +
β-Glucosidase + NA −

Urease − NA −

Lipase + NA −

Isolated from: Human gut and vagina Sewage Hot spring

+, positive result; −, negative result; w, weakly positive result; NA, data not available.

© 2017 The Author(s). Published by Elsevier Ltd on behal
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erythromycin, gentamicin, metronidazole and rifampicin but

resistant to trimethoprim–sulfamethoxazole and vancomycin.
Phenotypic comparison between strain ND3T and Sutterella

wadsworthensis as well as other representative species from
validly published members of the family Sutterellaceae are

summarized in Table 1.
Genome Sequencing Information
Growth conditions and genomic DNA preparation
Strain ND3T was grown anaerobically on 5% sheep’s blood–

enriched Columbia agar (bioMérieux) at 37°C. Colonies from five
petri dishes were collected and resuspended in 4 × 100 μL of Tris-
EDTA buffer (TE) buffer. Then 200 μL of this suspension was

diluted in 1mLofTEbuffer for lysis treatment including a 30-minute
incubationwith 2.5 μg/μL lysozyme at 37°C, followed by overnight

incubation with 20 μg/μL proteinase K at 37°C. Extracted DNA
was then purified using 3 successive phenol–chloroform extrac-

tions and ethanol precipitations at −20°C overnight. After centri-
fugation, the DNA was resuspended in 160 μL of TE buffer.

Genome sequencing and assembly
Using the mate-pair strategy, genomic DNA of ‘Dakarella mas-
siliensis’ strain ND3T was sequenced on the MiSeq sequencer

(Illumina, San Diego, CA, USA) [17–21]. The gDNA was bar-
coded in order to be mixed with 11 other projects with the

Nextera Mate-Pair sample prep kit (Illumina), the Mate-Pair li-
brary was prepared with 1 μg of genomic DNA using the
nsis strain ND3T from the closely related type strains for

s strain JCM 10698, Comamonas badia strain IAM 14839,

51599, Parasutterella excrementihominis strain YIT 11859 and

C. badia C. composti L. mirabilis P. excrementihominis S. natans

0.8–0.9 0.5 1.5–2 0.4–1.1 1.2–2.06
Anaerobic Anaerobic Facultative anaerobic Anaerobic Anaerobic
− − − − −

+ + + − +
− − − − NA
66 63.3 65.6 48.1 69.9

+ + + − +
+ + + − +
NA − NA − −

NA + + − +
NA − − − +
− − + NA −

NA + + NA +
NA − − NA +
NA − NA − NA
NA − NA − NA
− − + − NA
+ + NA w NA
Sludge Food waste Human oral cavity Human gut Freshwater
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TABLE 2. Number of genes associated with 25 general COGs

functional categories

Code Value % of totala Description

J 153 7.04 Translation
A 2 0.09 RNA processing and modification
K 141 6.49 Transcription
L 132 6.07 Replication, recombination and repair
B 0 0.0 Chromatin structure and dynamics
D 23 1.06 Cell cycle control, mitosis and meiosis
Y 0 0.0 Nuclear structure
V 26 1.20 Defense mechanisms
T 80 3.68 Signal transduction mechanisms
M 145 6.67 Cell wall/membrane biogenesis
N 1 0.05 Cell motility
Z 0 0.0 Cytoskeleton
W 6 0.28 Extracellular structures
U 53 2.44 Intracellular trafficking and secretion
O 87 4.0 Posttranslational modification, protein

turnover, chaperones
C 174 8.0 Energy production and conversion
G 74 3.40 Carbohydrate transport and metabolism
E 198 9.11 Amino acid transport and metabolism
F 57 2.62 Nucleotide transport and metabolism
H 77 3.54 Coenzyme transport and metabolism
I 58 2.67 Lipid transport and metabolism
P 113 5.20 Inorganic ion transport and metabolism
Q 27 1.24 Secondary metabolites biosynthesis,

transport and catabolism
R 260 11.96 General function prediction only
S 118 5.43 Function unknown
— 171 7.87 Not in COGs

COGs, Clusters of Orthologous Groups database.
aTotal is based on total number of protein-coding genes in annotated genome.
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Nextera Mate-Pair Illumina guide, and the gDNA sample was

simultaneously fragmented and tagged with a Mate-Pair junction
adapter. The pattern of the fragmentation was validated on an

Agilent 2100 BioAnalyzer (Agilent Technologies, Santa Clara,
CA, USA) with a DNA 7500 labchip. The DNA fragments

ranged in size from 1 to 10 kb, with an optimal size at 4.08 kb.
No size selection was performed, and only 464 ng of tagged
fragments were circularized [17–21]. The circularized DNA

was mechanically sheared to small fragments with an optimal
size of 569 bp in microtubes on the Covaris S2 device (Covaris,

Woburn, MA, USA). The library profile was visualized on a
High Sensitivity Bioanalyzer LabChip (Agilent Technologies),

and the final library concentration was measured at 24.4 nmol/
L. The libraries were normalized at 2 nM and pooled. After a

denaturation step and dilution at 15 pM, the pool of libraries
was loaded onto the reagent cartridge and then onto the in-
strument along with the flow cell. Automated cluster genera-

tion and sequencing run were performed in a single 39-hour
run in a 2 × 251 bp read length. Total information of 10.1 Gb

was obtained from a 1189K/mm2 cluster density, with a cluster
passing quality control filters of 99.1% (22 579 000 clusters).

The obtained reads were trimmed; assembly was then per-
formed using the CLC genomicsWB4 software [17–21].

Genome annotation
Open reading frames (ORFs) were predicted using Prodigal
[22] with default parameters. However, the predicted ORFs

were excluded if they spanned a sequencing gap region. The
predicted bacterial protein sequences were searched against

the GenBank [23] and Clusters of Orthologous Groups
(COGs) databases using BLASTP. The tRNAs and rRNAs were

predicted using tRNAScan-SE [24] and RNAmmer [25] tools
respectively. Signal peptides and numbers of transmembrane

helices were predicted using SignalP [26] and TMHMM [27]
respectively. Mobile genetic elements were predicted using
PHAST [27] and RAST [28]. ORFans were identified if their

BLASTP E value was lower than 1e-03 for alignment length
greater than 80 amino acids. If alignment length was smaller

than 80 amino acids, we used an E value of 1e-05. Such
parameter thresholds have already been used in previous works

to define ORFans. Artemis [29] and DNA Plotter [30] were
used for data management and visualization of genomic features

respectively. The Mauve alignment tool (version 2.3.1) was used
for multiple genomic sequence alignment [31].

The mean level of nucleotide sequence similarity at the genome

level between ‘Dakarella massiliensis’ strain ND3T and other bac-
teria was estimated using the average genomic identity of orthol-

ogous gene sequences (AGIOS) homemade software. This
software can combine with others: Proteinortho (to detect

orthologous proteins between genomes compared two by two,
© 2017 The Author(s). Published by Elsevier Ltd on behalf of European Society of Clinical Micr
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and then retrieve the corresponding genes) and the Needleman-
Wunsch global alignment algorithm (to determine the mean per-

centage of nucleotide sequence identity among orthologous
ORFs).

Genome properties
The genome of ‘Dakarella massiliensis’ strain ND3T is 2 476 884
bp long with a 56.98% G+C content (Table 2, Fig. 5). It is

composed of seven scaffolds (composed of seven contigs). Of
the 2236 predicted genes, 2175 were protein-coding genes and

62 were RNA genes (five 5S rRNA, two 16S rRNA, five 23S
rRNA and 50 tRNA genes). A total of 1780 genes (79.6%) were

assigned a putative function. A total of 59 genes (2.63%) were
identified as ORFans. The remaining genes were annotated as

hypothetical proteins. The properties and statistics of the
genome are summarized in Table 3, while the distribution of

genes into COGs functional categories is presented in Table 2.
Insights From the Genome Sequence
The genome size of ‘Dakarella massiliensis’ strain ND3T is

smaller than those of Alicycliphilus denitrificans strain K601,
Comamonas composti strain YY287, Sphaerotilus natans strain
DSM 6575, Comamonas badia strain IAM 14839, Caldimonas

manganoxidans strain JCM 10698, Lautropia mirabilis strain
ATCC 51599 and Parasutterella excrementihominis strain YIT
obiology and Infectious Diseases, NMNI, 18, 38–46
nses/by-nc-nd/4.0/).
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FIG. 5. Graphical circular map of chromosome. From outside to centre: genes on forward strand coloured by COGs categories (only genes assigned

to COGs), genes on reverse strand coloured by COGs categories (only genes assigned to COGs), RNA genes (tRNAs green, rRNAs red), GC content

and GC skew. COGS, Clusters of Orthologous Groups database.

TABLE 3. Nucleotide content and gene count levels of

genome

Attribute

Genome (total)

Value % of totala

Size (bp) 2 476 884 100
G+C content (%) 1 411 823 57.0
Coding region (bp) 2 126 880 85.86
Total genes 2236 100
RNA genes 62 2.77
Protein-coding genes 2174 97.22
Genes with function

prediction
1780 79.60

Genes assigned to COGs 1609 71.95
Genes with peptide signals 420 18.78
No. of pseudogenes 76 3.39
Genes with transmembrane

helices
428 19.14

CRISPR repeats 01 0.04
No. of genes with

Pfam-A domains
2001 89.49

ORFan genes 59 2.63

COG2, Clusters of Orthologous Groups database.
aTotal is based on either size of genome in base pairs or total number of protein-
coding genes in annotated genome.
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11859 (5.0, 4.63, 4.59, 3.68, 3.53, 3.15 and 2.83 Mb respec-
tively). The G+C content of ‘Dakarella massiliensis’ is lower than

those of Sphaerotilus natans, Alicycliphilus denitrificans, Caldimonas
manganoxidans, Comamonas badia and Comamonas composti

(69.9, 68, 66, 66, 65.6 and 63.3% respectively) but higher than
that of Parasutterella excrementihominis (48.1%). The protein-

coding genes of Dakarella massiliensis (2175) are smaller than
those of Alicycliphilus denitrificans, Sphaerotilus natans, Comamo-

nas composti, Comamonas badia, Caldimonas manganoxidans,
Parasutterella excrementihominis and Lautropia mirabilis (4573,
3898, 3893, 3388, 3187, 2470 and 2413 respectively). The gene

content of ‘Dakarella massiliensis’ (2236) is smaller than that of
Alicycliphilus denitrificans, Sphaerotilus natans, Comamonas com-

posti, Comamonas badia, Caldimonas manganoxidans, Para-
sutterella excrementihominis and Lautropia mirabilis (4705, 4143,

4705, 4078, 3499, 3385, 2570 and 2569) (Table 4). In addition,
the comparison according the numbers of orthologous protein

shared between genomes is summarized in Table 5.
Among species with standing in nomenclature, AGIOS values

ranged from 79.04 between Parasutterella excrementihominis and
f of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 18, 38–46
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TABLE 4. Genome comparison of closely related species to Dakarella massiliensis strain ND3T

Microorganism INSDC Size (Mb) G+C (%) Protein- coding genes Total genes

Dakarella massiliensis strain ND3 CVTY00000000.1 2.47 57 2174 2236
Alicycliphilus denitrificans strain K601 CP002657.1 5.0 68 4573 4705
Caldimonas manganoxidans strain JCM 10698 ARLH00000000.1 3.53 66 3187 3385
Comamonas badia strain IAM 14839 AXVM00000000.1 3.68 66 3388 3499
Comamonas composti strain YY287 AUCQ00000000.1 4.63 63.3 3893 4078
Lautropia mirabilis strain ATCC 51599 AEQP00000000.1 3.15 65.6 2413 2569
Parasutterella excrementihominis strain YIT 11859 AFBP00000000.1 2.83 48.1 2470 2570
Sphaerotilus natans strain DSM 6575 AZRA00000000.1 4.59 69.9 3898 4143

INSDC, International Nucleotide Sequence Database Collaboration.

TABLE 5. Numbers of orthologous protein shared between genomes (upper right)a

Alicycliphilus
denitrificans

Caldimonas
manganoxidans

Comamonas
badia

Comamonas
composti

Lautropia
mirabilis

Parasutterella
excrementihominis

Sphaerotilus
natans

Dakarella
massiliensis

A. denitrificans 4706 1597 1710 1871 1089 786 1564 771
C. manganoxidans 72.74 3369 1399 1530 1020 756 1453 729
C. badia 79.04 71.25 3479 1679 1011 739 1360 724
C. composti 77.53 70.89 74.56 4058 1063 776 1523 755
L. mirabilis 69.18 67.93 67.73 67.53 2541 701 999 680
P. excrementihominis 60.00 60.65 60.17 60.59 60.54 2552 744 757
S. natans 74.24 74.69 72.47 71.46 69.40 60.13 4085 726
D. massiliensis 63.15 62.83 62.95 62.66 63.25 63.91 63.84 2174

aAverage percentage similarity of nucleotides corresponding to orthologous protein shared between genomes (lower left) and numbers of proteins per genome (bold).

TABLE 6. Pairwise comparison of Dakarella massiliensis strain ND3 with other species using GGDC, formula 2 (DDH estimates

based on identities/HSP length)a (upper right)

Alicycliphilus
denitrificans

Caldimonas
manganoxidans

Comamonas
badia

Comamonas
composti

Dakarella
massiliensis

Lautropia
mirabilis

Parasutterella
excrementihominis

Sphaerotilus
natans

A. denitrificans 100% ± 00 18.8% ± 2.65 18.6% ± 2.60 19.6% ± 2.58 22.4% ± 2.53 19.2% ± 2.55 34.4% ± 2.52 20.1% ± 2.67
C. manganoxidans 100% ± 00 22.8% ± 2.93 22.3% ± 2.82 24.7% ± 2.53 18.6% ± 2.58 32.1% ± 2.52 20.1% ± 2.69
C. badia 100% ± 00 20.8% ± 2.71 26.7% ± 2.53 17.9% ± 2.56 33.7% ± 2.52 19.1% ± 2.65
C. composti 100% ± 00 26.9% ± 2.52 23.2% ± 2.53 26.8% ± 2.53 22.1% ± 2.53
D. massiliensis 100% ± 00 19.2% ± 2.55 32.7% ± 2.52 19.8% ± 2.60
L. mirabilis 100% ± 00 35.0% ± 2.52 18.7% ± 2.57
P. excrementihominis 100% ± 00 31.5% ± 2.52
S. natans 100% ± 00

DDH, DNA-DNA hybridization; GGDC, Genome-to-Genome Distance Calculator; HSP, high-scoring segment pairs.
aConfidence intervals indicate the inherent uncertainty in estimating DDH values from intergenomic distances based on models derived from empirical test data sets (which are
always limited in size) These results are in accordance with the 16S rRNA (Fig. 1) and phylogenomic analyses as well as the GGDC results.
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Alicycliphilus denitrificans to 60.00 between Comamonas badia and

Alicycliphilus denitrificans. The genomic similarity of strain ND3T
with species of Comamonadaceae family was also evaluated by
two parameters: DNA-DNA hybridization (DDH) and AGIOS

[32–34]. The values found in DDH and AGIOS of ‘Dakarella
massiliensis’ are in the range of those observed in the other

genera of this family (Table 6).
Conclusion
Having analysed the phenotypic, phylogenetic and genomic re-

sults, we formally propose a new genus ‘Dakarella’ with
‘Dakarella massiliensis’ as the type strain. Strain ND3T was iso-

lated among the vaginal flora of a 28-year-old woman with
bacterial vaginosis.
© 2017 The Author(s). Published by Elsevier Ltd on behalf of European Society of Clinical Micr
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Description of ‘Dakarella’ gen. nov.
‘Dakarella’ (Da.ka.rel’la, M.L. dim. suffix, usel’la; M.L. fem. n.)
was chosen to honor Dakar, the capital of Senegal. Gram-

negative rods. Strictly anaerobic. Mesophilic. Nonmotile.
Does not exhibit catalase, oxidase. Positive for phosphatase

alkaline, esterase (C4), esterase lipase (C8), lipase (C14),
leucine arylamidase, valine arylamidase, trypsine, α-chymo-

trypsin, phosphatase acid, naphtol phosphohydrolase, α-galac-
tosidase, α-galactosidase, β-glucosidase, α-mannosidase, D-

galactose, D-glucose, esculin, salicin, D-cellobiose, D-maltose, D-
lactose, D-saccharose, D-trehalose, D-raffinose, amidon,
glycogen, D-turanose, D-tagatose, glycerol and arginine aryla-

midase. Habitat: human vaginal flora. Type species: ‘Dakarella
massiliensis.’
obiology and Infectious Diseases, NMNI, 18, 38–46
nses/by-nc-nd/4.0/).
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Description of ‘Dakarella massiliensis’ gen.
nov., sp. nov.
‘Dakarella massiliensis’ (mas.il’ien’sis, L. gen. fem. n., massiliensis,

‘of Massilia,’ the Latin name of Marseille, where strain ND3T

was isolated).

Gram-negative rods. Strictly anaerobic. Mesophilic.
Nonmotile. Optimal growth at 37°C. Nonmotile and non-

sporulating. Strain ND3T exhibited neither catalase nor oxidase
activities. Colonies are dark grey with a diameter of 0.1 to 0.3
mm on 5% sheep’s blood–enriched Columbia agar (bio-

Mérieux). Cells are rods with a mean length of 2.1 μm and
width of 0.9 μm. Positive for phosphatase alkaline, esterase

(C4), esterase lipase (C8), lipase (C14), leucine arylamidase,
valine arylamidase, trypsine, α-chymotrypsin, phosphatase acid,

naphtol phosphohydrolase, α-galactosidase, α-galactosidase,
β-glucosidase, α-mannosidase, D-galactose, D-glucose, esculin,

salicin, D-cellobiose, D-maltose, D-lactose, D-saccharose, D-
trehalose, D-raffinose, amidon, glycogen, D-turanose, D-taga-

tose, glycerol and arginine arylamidase. Strain ND3T is sus-
ceptible to penicillin, amoxicillin, amoxicillin–clavulanate,
ceftriaxone, imipenem, ciprofloxacin, clindamycin, doxycycline,

erythromycin, gentamicin, metronidazole and rifampicin but
resistant to trimethoprim–sulfamethoxazole and vancomycin.

The 16S rRNA gene and genome sequences were deposited
in GenBank under accession numbers LK054638 and

CVTY00000000.1 respectively. The genome is 2 476 884 bp
long, with a G+C content of 56.98%. The type strain ND3T (=

CSUR P1938 = DSM 100447) was isolated from the vaginal
flora of a 28-year-old woman with bacterial vaginosis.
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