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Abstract 28 

Recent studies have demonstrated that polygenic risk scores (PRS) trained on multi-ancestry data can improve 29 

prediction accuracy in groups historically underrepresented in genomic studies, but the availability of linked 30 

health and genetic data from large-scale diverse cohorts representative of a wide spectrum of human diversity 31 

remains limited. To address this need, the All of Us research program (AoU) generated whole-genome 32 

sequences of 245,388 individuals who collectively reflect the diversity of the USA. Leveraging this resource and 33 

another widely-used population-scale biobank, the UK Biobank (UKB) with a half million participants, we 34 

developed PRS trained on multi-ancestry and multi-biobank data with up to ~750,000 participants for 32 35 

common, complex traits and diseases across a range of genetic architectures. We then compared effects of 36 

ancestry, PRS methodology, and genetic architecture on PRS accuracy across a held out subset of ancestrally 37 

diverse AoU participants. Due to the more heterogeneous study design of AoU, we found lower heritability on 38 

average compared to UKB (0.075 vs 0.165), which limited the maximal achievable PRS accuracy in AoU. Overall, 39 

we found that the increased diversity of AoU significantly improved PRS performance in some participants in 40 

AoU, especially underrepresented individuals, across multiple phenotypes. Notably, maximizing sample size by 41 

combining discovery data across AoU and UKB is not the optimal approach for predicting some phenotypes in 42 

African ancestry populations; rather, using data from only AoU for these traits resulted in the greatest accuracy. 43 

This was especially true for less polygenic traits with large ancestry-enriched effects, such as neutrophil count 44 

(R2: 0.055 vs. 0.035 using AoU vs. cross-biobank meta-analysis, respectively, because of e.g. DARC). Lastly, 45 

we calculated individual-level PRS accuracies rather than grouping by continental ancestry, a critical step 46 

towards interpretability in precision medicine. Individualized PRS accuracy decays linearly as a function of 47 

ancestry divergence, but the slope was smaller using multi-ancestry GWAS compared to using European GWAS. 48 

Our results highlight the potential of biobanks with more balanced representations of human diversity to facilitate 49 

more accurate PRS for the individuals least represented in genomic studies.   50 
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Introduction 51 

Population-scale biobanks with linked health records and genetic data have enabled an exponential increase in 52 

genome-wide association studies (GWAS), significantly expanding our understanding of the genetic basis of 53 

diseases1,2. Polygenic risk scores (PRS), which aggregate variant-disease associations discovered by GWAS, 54 

have been developed for many diseases and traits3. For some common, complex diseases, PRS have shown 55 

potential in aiding population risk stratification and screening, and their clinical implementation is on the horizon4–56 
7. However, the vast majority of data used for GWAS still come from European ancestry (EUR) populations, 57 

resulting in the limited transferability of most PRS models to populations of other genetic ancestries 8. This widely-58 

recognized problem represents one of the most pressing challenges facing the clinical translation of PRS.  59 

 60 

Several approaches can help mitigate this critical limitation. Statistical methods that leverage GWAS from 61 

multiple populations, including PRS-CSx and others, have been developed9–12. Benchmarking studies have 62 

evaluated these methods across traits of different genetic architectures using various study designs13–15. 63 

Complementing these empirical evaluations, theoretical studies have compared observed versus expected 64 

accuracies of PRS13,16–18. They find that while these methods can improve accuracy in some circumstances, the 65 

most direct path to increasing accuracy is through larger and more diverse study populations in GWAS.  66 

 67 

Efforts like the Pan-UK Biobank (UKB) Project have maximized usage of current existing data resources by 68 

conducting GWAS for thousands of phenotypes using data from multiple ancestry groups, but its ancestral 69 

diversity is limited19. Other GWAS initiatives like the Global Biobank Meta-analysis Initiative (GBMI)20 and 70 

disease- and trait-specific consortia, such as the Type 2 Diabetes Global Genomics Initiative21 and the Genetic 71 

Investigation of ANthropometric Traits (GIANT)22, focus on collecting ancestrally diverse data for meta-analysis. 72 

The Million Veterans Program is very large and diverse, and has recently conducted pan-trait and -ancestry 73 

GWAS, although access to summary statistics is more restricted23. 74 

 75 

Recent efforts have further expanded the availability of multi-ancestry genomic data. The All of Us Research 76 

Program (AoU), launched in 2018 by the National Institutes of Health of the United States, aims to gather health 77 

data from at least 1 million participants from diverse backgrounds. As of this study, it has released linked 78 

phenotypic and whole-genome sequencing data from 245,388 participants24. AoU is one of the largest and most 79 

accessible resources of populations traditionally underrepresented in biomedical research, with concerted efforts 80 

to capture ancestral diversity24. Given the ongoing efforts to increase the diversity of genomic studies, 81 

understanding how to best leverage multiple biobank resources to optimally predict complex traits with PRS will 82 

be a critical step towards their equitable applications.  83 

 84 

Multi-ancestry PRS have been developed for a range of diseases and traits13,25–27. Recent studies have started 85 

utilizing the multi-ancestry data available in AoU7,28–30. However, the optimal approach for developing PRS from 86 
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multi-ancestry studies with large numbers of ancestrally diverse participants across population-scale biobanks 87 

remains unclear, especially across traits spanning a range of genetic architectures. Previous studies on optimal 88 

strategies for constructing multi-ancestry PRS have mostly used the UKB, which is not fully representative of the 89 

broader UK population and has limited ancestral diversity15,31,32. Additionally, studies investigating factors 90 

contributing to low PRS generalizability have largely focused on phenomena in population genetics, like the 91 

outsized impact of differences in allele frequencies and patterns of linkage disequilibrium (LD) on PRS 92 

accuracy16,31. Yet, there is also clear context-specificity to PRS accuracy that reflects factors like sex-specific 93 

heritability differences33,34 and biobank-specific characteristics35,36. Our understanding of how differences 94 

between biobanks – for example, in ascertainment, data collection approaches, and sample recruiting strategy 95 

– impact polygenic prediction is still relatively limited. Some work on PRS development using multi-biobank data 96 

suggests that increases in sample size from combining heterogeneous biobanks can improve prediction 97 

performance for some diseases25. Furthermore, recent guidance on individualizing PRS performance 98 

evaluations have been based on single ancestry discovery cohorts37, and understanding how this applies in 99 

multi-ancestry GWAS is an important outstanding question.  100 

 101 

In this study, we developed PRS using multi-ancestry and multi-biobank data from AoU and UKB for dozens of  102 

commonly-studied diseases and quantitative traits with different genetic architectures. Specifically, we 103 

constructed PRS using single-ancestry GWAS from AoU, as well as multi-ancestry meta-analyses within and 104 

across AoU and UKB, to investigate the impacts of ancestry composition, sample size, trait genetic architecture, 105 

and biobank heterogeneity on PRS accuracy. Given the widespread adoption of UKB data, we also benchmark 106 

PRS performance with UKB. We illustrate nuance in optimal PRS strategies across phenotypes, particularly in 107 

underrepresented ancestry groups, providing guidelines and reference points for future PRS models developed 108 

in diverse genetic studies.  109 
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Results 110 

Overview of study design 111 

 112 

Figure 1. Study design for evaluating optimal PRS strategies that integrate ancestries and 113 

biobanks across multiple traits. Overview of workflow showing GWAS used for discovery data, 114 

methods for PRS construction, and cohorts used for PRS evaluation. AFR, African; AMR, admixed 115 

American; EAS, East Asian; MID, Middle Eastern; EUR, European; CSA, Central and South Asian. 116 

 117 
Few frameworks have been developed for analyzing the wealth of phenotypic data available in AoU. We 118 

therefore adapted insights from previous UKB analyses. The Pan-UKB Project’s quality control framework, which 119 

prioritizes phenotypes based on heritability estimates and other quality metrics, guided our phenotype 120 

selection19. From these prioritized phenotypes, we selected 14 quantitative and 18 binary phenotypes for our 121 

study based on data availability in AoU and other factors (Methods, Supplementary Table 1).  122 

 123 

We assigned participants in AoU to genetically inferred ancestry groups based on principal component analysis 124 

(PCA) comparisons with population genetic reference panels (Methods). We trained a random forest model 125 

using labels from the Human Genome Diversity Panel (HGDP) and 1000 Genomes Project, which we use 126 
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throughout this study to refer to individuals with genetic ancestry most similar to those in the reference panels: 127 

EUR (European), AFR (African), AMR (Admixed American), CSA (Central/South Asian), and EAS (East Asian).  128 

 129 

We conducted single-ancestry GWAS in AoU for all phenotypes using data from three groups with the largest 130 

sample sizes (N >10,000 including AFR, AMR, and EUR) (Supplementary Table 1). We combined GWAS 131 

across ancestries through inverse variance-weighted meta-analyses. For comparison, we included discovery 132 

GWAS from EUR and AFR populations in the UKB, excluding AMR due small sample size and unreliable genetic 133 

association results (Figure 1). Finally, we conducted cross-biobank, multi-ancestry meta-analyses.  134 

 135 

To ensure consistency in phenotype definitions between AoU and UKB, we computed heritability estimates and 136 

genetic correlations across biobanks and population groups using LD score regression (LDSC) and Popcorn 137 

(Methods, Supplementary Table 2). We also compared effect sizes of genome-wide significant associations 138 

from biobank-specific GWAS (Supplementary Fig. 1) and raw phenotype distributions (Supplementary Fig. 2). 139 

Overall, our analyses indicated reasonable consistency between AoU and UKB phenotypes, although heritability 140 

estimates, which bound PRS accuracy, were significantly lower in AoU than UKB (sign test p < 0.006 for 141 

quantitative traits) (Supplementary Fig. 6)17,38. 142 

 143 

Using these GWAS and meta-analyses as training data, we constructed PRS using two Bayesian, genome-wide 144 

methods, PRS-continuous shrinkage (PRS-CS) and its multi-ancestry extension, PRS-CSx, as well as the classic 145 

pruning and thresholding method (P + T). We denoted PRS using the following nomenclature: PRS[biobank]-[ancestry], 146 

which indicates the GWAS data used to develop the PRS (e.g. PRSAoU-AFR refers to PRS from the GWAS of AFR 147 

individuals in AoU); PRS[biobank]-Multi was trained on the multi-ancestry meta-analyses from one or both biobanks 148 

(e.g. PRSAoU+UKB-Multi refers to PRS from the meta-analysis of GWAS from multiple ancestries in AoU and UKB). 149 

We assessed the performance of each PRS using incremental R2 for quantitative traits and AUC for binary 150 

phenotypes in five ancestry groups with independent AoU target data (Methods). These included unrelated 151 

individuals from withheld EUR, AMR, and AFR groups (N=5,000 from each group), as well as CSA (N=2,138) 152 

and EAS (N=5,009).  153 
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Target ancestry-matched GWAS improve PRS performance for underrepresented 154 
ancestry groups 155 

 156 

Figure 2. Single-ancestry discovery GWAS from AoU improve PRS performance for ancestry-157 

matched target groups. Each point represents a phenotype, with PRS constructed from PRS-CS 158 

reported here. Target populations with ancestry-matched PRS are outlined. 159 

 160 
Although the EUR group is still the largest single ancestry group in AoU, the sample sizes of the AFR and AMR 161 

groups in AoU are significantly larger compared to UKB (more than 7 and nearly 40 times larger, respectively). 162 

To determine if this increase in sample sizes improves PRS prediction accuracy in underrepresented ancestry 163 

groups, we first evaluated PRS constructed from single-ancestry GWAS in AoU. We focused on the results from 164 

PRS-CS in the following sections as PRS derived from PRS-CS outperformed or performed comparably to P+T 165 

(Supplementary Tables 9 and 10), consistent with previous findings25. As expected, in the EUR target group, 166 

PRSAoU-EUR significantly outperformed PRSAoU-AFR and PRSAoU-AMR across all quantitative traits (median R2: 0.01 167 

vs. 0.001 and 0.002, Wilcoxon rank sum exact test, p = 6.7e-06 and 5.3e-03, respectively) (Fig. 2; 168 

Supplementary Table 3). For the AFR and AMR groups, ancestry-matched discovery GWAS often performed 169 

best despite having much smaller sample sizes than EUR. PRSAoU-AFR achieved the highest median R2 In the 170 

AFR target group across quantitative traits, a 1.4-fold increase compared to PRSAoU-EUR (median R2: 0.007 vs. 171 

0.003). Similarly, PRSAoU-AMR had highest accuracy in the AMR target group, with a 1.25-fold improvement over 172 

PRSAoU-EUR (median R2: 0.01 vs. 0.008).  173 

 174 

Despite larger sample sizes in the EUR GWAS, PRSAoU-AFR had greater accuracy than PRSAoU-EUR in the AFR 175 

target group for 8 out of the 14 quantitative traits; for 6 traits, PRSAoU-AMR had greater accuracy than PRSAoU-EUR 176 

in the AMR target group. This indicates that target ancestry-matched discovery GWAS can outperform larger-177 

scale EUR-derived PRS in underrepresented ancestries with the sample sizes currently available in AoU. In the 178 

CSA and EAS target groups, PRSAoU-EUR generally performed best, but the median R2 of PRSAoU-EUR in these 179 
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groups was lower than the the median R2 of the corresponding ancestry-matched PRS in the AFR and AMR 180 

target groups, further highlighting the importance of ancestry matching between discovery and target groups. 181 

 182 

Since the UKB has much larger sample sizes of EUR participants compared to AoU, we next investigated 183 

whether single-ancestry UKB training data improves prediction for underrepresented ancestry groups in AoU. 184 

Specifically, we evaluated PRSUKB-EUR in the AoU target populations. In the AMR target group, PRSUKB-EUR 185 

outperformed PRSAoU-AMR for all quantitative traits except neutrophil count, where PRSAoU-AMR showed a 2-fold 186 

improvement over PRSUKB-EUR (R2: 0.02 vs. 0.01) (Supplementary Fig. 3; Supplementary Table 3). These 187 

results are expected given the low FST (0.02) between the AMR group in AoU and the EUR group in UKB, 188 

indicating relatively low genetic differentiation between these two groups (Supplementary Fig. 4). However, in 189 

the AFR target group, PRSAoU-AFR outperformed PRSUKB-EUR for 4 blood panel traits, and achieved comparable 190 

accuracy as PRSUKB-EUR for BMI and RBC count (BMI R2: 0.16 vs. 0.17 and RBC count R2: 0.11 vs. 0.13) 191 

(Supplementary Fig. 3). The >20-fold greater sample size of the EUR UKB vs. AFR AoU discovery groups 192 

(N=407,810 vs. N=18,044) did not result in significant PRS performance improvement for these traits. These 193 

results highlight the importance of training PRS on discovery cohorts that match the ancestry of target 194 

populations, particularly those with significant genetic differentiation from majority populations. Vast increases in 195 

EUR discovery sample sizes cannot compensate for the lack of training data from underrepresented groups.  196 

 197 

We next investigated PRS performance for the binary phenotypes to compare with the well-powered quantitative 198 

traits. Due to overall smaller sample sizes (Supplementary Table 1), we limited evaluation of their PRS to 199 

diseases with at least 10,000 cases and larger heritability estimates (>0.03 in EUR), which included chronic 200 

ischaemic heart disease, chronic obstructive pulmonary disease (COPD), asthma, type 2 diabetes, lipid 201 

metabolism disorders, coronary atherosclerosis, esophagitis, and kidney stones. We observed similar patterns 202 

in PRS performance across these 8 disorders as we observed for the quantitative traits: the ancestry-matched 203 

PRS achieved the highest median AUC in each of the EUR, AFR, and AMR target groups (Fig. 2). Notably, in 204 

the AFR target group, the greatest improvements over PRSAoU-EUR were observed for asthma (AUC: 0.54 vs. 205 

0.51) and lipid metabolism disorders (AUC: 0.53 vs. 0.51) (Supplementary Table 4; Supplementary Fig. 5). 206 

PRSAoU-AFR had comparable AUC to PRSUKB-EUR for asthma (AUC: 0.54 vs. 0.53), despite the ~5-fold fewer cases 207 

of asthma among the AFR discovery group in AoU than in the EUR group in UKB (N=5,797 vs. N=31,030). For 208 

lipid metabolism disorders, PRSAoU-AFR had a 1.5% improvement over PRSUKB-EUR (AUC: 0.53 vs. 0.52). 209 
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Integrating multiple ancestries for discovery GWAS can improve PRS performance 210 
compared to single-ancestry GWAS 211 

 212 

Figure 3. PRS derived from multi-ancestry meta-analyses show variable performance across 213 

target groups. Performance of PRS constructed from PRS-CS applied to UKB, AoU, and cross-214 

biobank (AoU and UKB) multi-ancestry meta-analyses are reported here. Each point represents a 215 

phenotype. 216 

 217 
Building on recommendations from previous studies13,25, we next investigated how multi-ancestry meta-analyses 218 

affect PRS accuracy across quantitative and binary phenotypes. We first evaluated multi-ancestry meta-analyses 219 

from the UKB, and found that PRSUKB-Multi showed little to no improvement in PRS performance compared to 220 

PRSUKB-EUR across the target groups in AoU due to the vastly different sample sizes between EUR and AFR 221 

groups in the UKB (Supplementary Table 3).  222 
 223 

We then evaluated the performance of PRS derived from the multi-ancestry AoU meta-analyses. Across the 224 

quantitative traits, PRSAoU-Multi had comparable accuracy to PRSAoU-EUR and PRSAoU-AMR in the EUR and AMR 225 

target groups, respectively (Supplementary Table 3). In the AFR target group, we observed an improvement of 226 

0.6% in median R2 compared to PRSAoU-AFR, and PRSAoU-Multi outperformed PRSAoU-AFR for all quantitative traits. 227 

Accuracy gains from PRSAoU-Multi were especially large for some traits, including body mass index (BMI), mean 228 

corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), neutrophil count, and white blood cell (WBC) 229 

count. Comparing the AoU and UKB meta-analyses, we found that in the EUR and AMR target groups, PRSAoU-230 
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Multi had lower performance across the traits compared to PRSUKB-Multi (Fig. 3A). The EUR group dominates the 231 

multi-ancestry UKB meta-analyses, and given that PRSUKB-EUR outperformed the target-ancestry matched PRS 232 

in these groups while PRSAoU-Multi did not, the difference in performance between PRSAoU-Multi and PRSUKB-Multi was 233 

expected. The low genetic differentiation, measured by FST, between the AMR in AoU and EUR in UKB, as well 234 

as between the EUR groups in both biobanks, further supports these results (Supplementary Fig. 4): not only 235 

is the EUR group in the UKB meta-analyses much larger than in the AoU meta-analyses, it is also genetically 236 

proximal to the AMR and EUR groups in AoU, thus contributing to the superior performance of PRSUKB-Multi. 237 

Additionally, SNP-based heritability estimates (h2), calculated using EUR GWAS from AoU and UKB, indicated 238 

systematically lower heritability in AoU than UKB (Supplementary Fig. 6; Supplementary Table 5). As PRS 239 

accuracy is bounded by h2, this likely also contributed to the decreased performance of PRSAoU-Multi in the EUR 240 

and AMR groups. 241 

 242 

To gauge the value of combining AoU and UKB for discovery, we next evaluated PRS derived from the cross-243 

biobank multi-ancestry meta-analyses. In the AFR target group, PRSAoU+UKB-Multi offered some improvement in 244 

median R2 compared to PRSAoU-Multi and PRSUKB-Multi (0.021 vs. 0.013 and 0.016, respectively) (Fig. 3A). However, 245 

that improvement depended on genetic architecture: prediction in more polygenic traits (Supplementary Table 246 

6) such as BMI and DBP benefited from the increase in sample size in the cross-biobank meta-analyses; 247 

conversely, PRSAoU-Multi outperformed PRSAoU+UKB-Multi for less polygenic traits or those with large-effect ancestry-248 

enriched variants, such as MCH and MCV.  249 

 250 

PRSAoU-Multi had varying performance in the disease phenotypes as well (Supplementary Table 4). In the AFR 251 

target group, PRSAoU-Multi did not improve prediction performance in the diseases where PRSAoU-AFR outperformed 252 

PRSAoU-EUR (COPD, asthma, and lipid metabolism disorders). However, for ischaemic heart disease and coronary 253 

atherosclerosis, PRSAoU-Multi showed increased performance compared to PRSAoU-AFR (AUC: 0.55 vs. 0.51 for 254 

both diseases). In the AMR target group, PRSAoU-Multi marginally improved AUC compared to PRSAoU-AMR for T2D 255 

(AUC: 0.61 vs. 0.58) and COPD (AUC: 0.60 vs. 0.59). In both the AFR and AMR target groups, PRSAoU+UKB-Multi 256 

did not offer improved prediction compared to PRSAoU-Multi or any single-ancestry PRSAoU across the diseases 257 

(Fig. 3B).   258 

 259 

Finally, we compared the performances of multi-ancestry PRS developed using PRS-CS vs. PRS-CSx 260 

(Supplementary Table 7; Supplementary Table 8). In the AFR target group across the quantitative traits, PRS-261 

CSx improved median R2 by 0.008 over PRS-CS for PRSAoU-Multi, with substantial improvements in alanine 262 

aminotransferase, BMI, MCH, MCV, and red blood cell (RBC) count. PRS-CSx did not significantly improve 263 

performance of PRSAoU-Multi in the EUR or AMR target groups. Across the binary phenotypes, applying PRS-CSx 264 

did not improve performance of PRSAoU-Multi in the EUR, AFR, and AMR target groups. 265 
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Optimal PRS differs across phenotypes and target ancestries 266 

 267 

Figure 4. AoU discovery data improve PRS performance in AFR target group. Performance of all 268 

PRS models, denoted on y-axis, across quantitative traits, denoted on x-axis. PRS model with 269 

greatest R2 per trait is outlined. Asterisk indicates significantly greater prediction accuracy than that of 270 

the PRS derived from the EUR UKB discovery group (Wald test, p < 0.05).   271 
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272 
Figure 5. PRS derived from multi-ancestry meta-analyses for blood panel traits show improved 273 

accuracy on individual-level, driven by ancestry-enriched variants. A) Individual-level accuracy 274 

of PRS derived from AoU multi-ancestry meta-analyses and EUR GWAS across target individuals in 275 

AoU, represented by each point. The x-axis represents the genetic distance (GD) of each target 276 

individual from the combined discovery populations included in the AoU multi-ancestry meta-277 

analyses. The y-axis shows the PRS accuracy, which was scaled to enable cross-trait comparisons of 278 

decay in accuracy as a function of GD; as a result, proportions of genetic liability explained by PRS 279 

for each individual are not represented here.  R was calculated as the correlation between GD and 280 
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PRS accuracy from a two-sided Pearson correlation test. The colors represent genetic ancestry 281 

groups as inferred by PCA.  B) Comparison of GWAS significance in AoU multi-ancestry meta-282 

analyses and AoU EUR GWAS across blood panel traits. SNPs tested in both the AoU multi-ancestry 283 

meta-analyses and EUR GWAS are represented by each point. SNPs reaching genome-wide 284 

significance (p < 5e-8) in the AoU meta-analysis and AoU AFR GWAS for each phenotype are 285 

annotated. Dashed lines indicate y=x; x- and y-axis scales are specific to each phenotype and differ 286 

according to scale of significance in meta-analyses vs. EUR GWAS. 287 

 288 
To identify the best-performing PRS, we compared all PRS models constructed from PRS-CS for each 289 

phenotype, focusing on the target groups with ancestry-matched PRS (Fig. 4; Supplementary Fig. 7). We tested 290 

for significant differences of prediction accuracy between each PRS and PRSUKB-EUR, the best-powered single-291 

ancestry PRS in this study (Wald test, p-value < 0.05 indicates significance). We found that in the EUR and AMR 292 

target groups, no PRS significantly improved prediction accuracy over PRSUKB-EUR, except for the BMI 293 

PRSAoU+UKB-Multi in the AMR group (R2: 0.09 vs. 0.07). However, in the AFR target group, we observed that for 6 294 

out of the 14 quantitative traits, the accuracy of PRSAoU+UKB-Multi or PRSAoU-Multi was significantly higher than that 295 

of PRSUKB-EUR, underlining the importance of using target ancestry-matched discovery data for populations with 296 

large genetic distances from EUR populations.  297 

 298 

Improvements in PRS accuracy using data from AoU were largest for 4 quantitative traits in the AFR group: 299 

MCH, MCV, WBC count and neutrophil count. PRSAoU-AFR increased in accuracy over PRSUKB-EUR by almost 4-300 

fold for MCH (R2: 0.048 vs. 0.013) and neutrophil count (R2: 0.041 vs. 0.010), and 3-fold for MCV (R2: 0.040 vs. 301 

0.013) and WBC count (R2: 0.058 vs. 0.021). PRSAoU-Multi offered additional improvements in R2 over PRSAoU-AFR, 302 

although to a more modest degree of ~1.3-1.5 fold across these 4 traits.  303 

 304 

Based on recent work proposing a shift from population- to individual-level metrics of PRS accuracy37,39, we next 305 

examined individual-level PRS accuracy as a function of genetic distance (GD) using multi-ancestry AoU 306 

discovery data (Methods). We focused on the four blood panel traits for which PRSAoU-Multi performed best. For 307 

baseline comparison, we first computed individual PRS accuracy using the EUR GWAS from AoU. Across the 308 

blood panel traits, height, and BMI, PRS accuracy decreased with increasing GD from both the EUR and multi-309 

ancestry discovery groups, consistent with previous findings37 (Supplementary Fig. 8, Fig. 5A). Among the 310 

blood panel traits, we observed the largest decay in individual-level PRS accuracy in neutrophil count, WBC 311 

count, and MCV, described by more negative slopes and lower intercepts (slopes = -2.91, -2.18, and -0.98; 312 

intercepts = 0.69, 0.75, and 0.88) (Fig. 5A). In contrast, individual-level accuracy computed from the multi-313 

ancestry AoU meta-analyses showed nearly no decay across the genetic ancestry spectrum for neutrophil and 314 

WBC count, and less decay for MCV (slopes = -0.02, -0.01, and -0.39; intercepts = 1.00, 1.00, and 0.93). 315 

However, for BMI, individual-level accuracy from the multi-ancestry meta-analysis showed greater decay than 316 
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the EUR GWAS (slopes = -0.84 vs. -0.65). For MCH and height, the linear decay in individual-level accuracy 317 

was still present using the multi-ancestry meta-analyses as discovery, but that decay was attenuated, as for 318 

WBC and neutrophil count (Supplementary Fig. 9).  319 

 320 

Studies31,40 have previously highlighted that greater diversity in the discovery data showed outsized 321 

improvements in PRS accuracy for certain blood panel traits, including MCV and WBC count, likely due to 322 

specific genetic loci that disproportionately explain population-specific risk and are more common in 323 

underrepresented ancestry groups. Indeed, we found that a few genome-wide significant loci from the AFR 324 

GWAS in AoU were highly significant in the AoU meta-analyses but not the EUR GWAS, including those closest 325 

to DARC associated with neutrophil count and ITFG3 associated with MCH and MCV (Fig. 5B), likely driving the 326 

increased accuracy of PRSAoU-Multi in the AFR group and for individuals furthest in GD from the discovery data. 327 

These traits also had relatively lower polygenicity estimates, ranging from 0.011-0.014, compared to the other 328 

quantitative traits (Supplementary Table 6). Thus, population genetic factors and genetic architecture contribute 329 

to improved accuracy from AoU multi-ancestry training data on both the population- and individual-level. 330 

Discussion 331 

PRS are already being tested in clinical settings for a variety of diseases. For example, the eMERGE Network 332 

identified, validated, deployed, and returned PRS to patients for 10 clinical conditions, including heart disease, 333 

asthma, and type 1 and 2 diabetes7. This study ultimately spanned four years, highlighting the challenge of 334 

translating rapidly evolving GWAS findings into clinical practice. Given the remarkable polygenicity of common 335 

complex diseases, the rapid growth of GWAS, and where we are on the genomic discovery curve for most 336 

diseases, this lag time is particularly challenging1. Nimbleness is needed for PRS to be maximally effective in 337 

the clinic. However, studies have shown poor agreement between individuals at the extremes of the PRS 338 

distribution when using different GWAS with a best-case overlap of 60% of individuals above the 80th 339 

percentile41. Additionally, while it is widely recognized that PRS have different accuracies across ancestry groups 340 

mostly due to LD and allele frequency differences8, PRS generalizability remains a critical challenge; large-scale 341 

datasets most commonly used for PRS development and evaluation are often skewed in representation. 342 

 343 

The AoU Research Program offers a substantially more diverse resource of phenotypic and genomic data 344 

compared to other large-scale contemporary biobanks. This important step towards diversifying human genetic 345 

datasets raises new questions for PRS development, particularly for historically underrepresented groups. Our 346 

study investigated whether the sample sizes of diverse ancestry groups currently available in AoU are sufficient 347 

to increase PRS performance. We found that individuals in the AFR target group benefited most from AoU data, 348 

particularly from multi-ancestry meta-analyses. However, AoU discovery data did not significantly improve PRS 349 

accuracy in other ancestry groups compared to the largest EUR GWAS from UKB. Encouragingly, for some traits 350 
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with ancestry-enriched variants, AoU multi-ancestry meta-analyses substantially improved PRS accuracy for 351 

individuals furthest in GD from the training data.  352 

 353 

Combining AoU and UKB GWAS in cross-biobank meta-analyses did not uniformly yield improved accuracy 354 

across the phenotypes and target groups, despite the increase in sample size. This highlights the complexity of 355 

developing optimal PRS, which is affected by complex interactions between sample size, ancestry matching of 356 

discovery and target cohorts, genetic architecture, and phenotype precision. Cross-biobank and cross-357 

population genetic correlation estimates, for example, indicated greater alignment in phenotypes between the 358 

EUR groups in UKB and AoU, compared to the EUR and AFR groups in AoU.  However, the overall lower h2 359 

estimated from AoU GWAS compared to UKB points to the greater heterogeneity of AoU, likely due to study 360 

design, recruitment strategies, and the diversity of hospital systems in the US. This heterogeneity between 361 

biobanks likely contributed to the comparatively decreased accuracy of PRS from the cross-biobank meta-362 

analyses for some traits and ancestries. Understanding the impacts of inter- and intra-biobank heterogeneity on 363 

PRS accuracy will be important as AoU and other biobanks, like the Million Veteran Program23, continue to grow 364 

in scale and diversity.   365 

 366 

As the trajectory of PRS development advances towards clinical implementation, understanding the absolute 367 

risk conferred by PRS is crucial for translation. Although individualizing PRS metrics of accuracy is an important 368 

step towards translation, additional investigations into the calibration and interpretation of PRS will be needed. 369 

For example, integrating PRS into clinical models with other known risk factors that vary in frequency across 370 

healthcare systems is an important area for future investigation. Future work should also assess the effects of 371 

non-genetic risk factors, which differ across individuals and populations, on PRS accuracy as more clinical and 372 

environmental data becomes available in AoU and other diverse biobanks. 373 

Methods 374 

Datasets and quality control: 375 

Pan-UK Biobank (Pan-UKB): The UK Biobank (UKB) is an extensively utilized cohort comprising approximately 376 

500,000 participants from the United Kingdom, ranging in age from 40 to 69 years. Detailed documentation 377 

concerning this cohort has been previously reported42. In pursuit of harnessing the rich diversity present within 378 

the UKB beyond the customary European ancestry individuals, the Pan-UKB project 379 

(https://pan.ukbb.broadinstitute.org/) has undertaken a comprehensive multi-ancestry investigation. This project 380 

encompasses 7,228 distinct phenotypes across 6 continental ancestry groups, with a cumulative total of 16,131 381 

GWAS. Rigorous quality control procedures were applied to scrutinize the phenotypic-level, individual-level, and 382 

variant-level data, with comprehensive details available in Karczewski et al.19 383 

 384 
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The All of Us Research Program (AoU): The All of Us Research Program, launched by National Institute Health 385 

in May 2018, represents a longitudinal cohort study with the goal of engaging at least 1 million participants 386 

encompassing diverse ancestral backgrounds. By leveraging comprehensive data collection including 387 

biospecimens, health questionnaires, electronic health records and physical measurements, AoU aims to 388 

advance precision medicine and enhance overall human health43. Participants, aged 18 years and older, are 389 

recruited from over 340 centers with informed consent. As of April 2023, a subset of around 250,000 participants 390 

has undergone whole genome sequencing (WGS). We assigned those individuals with WGS data into the 391 

nearest genetic ancestry based on principal components (PCs), resulting in 49,778 of African descent (AFR), 392 

39,058 of American descent (AMR), 2,138 of Central and South Asian descent (CSA), 5,183 of East-Asian 393 

descent (EAS), 117,415 of European descent (EUR) and 432 of Middle Eastern descent (MID). The strategy 394 

was the same as described in the pan-UKB project19. Briefly, we projected all AoU individuals into the PC space 395 

using pre-estimated weights of 168,899 variants20 from the Human Genome Diversity Panel (HGDP)44 and 1000 396 

Genomes Project45. For individuals with a probability > 50% from the random forest, we further refined initial 397 

ancestry assignments by pruning outliers within each continental assignment. We reran PCA within each 398 

assigned continental ancestry group and calculated total distances from population centroids across 10 PCs. 399 

Using these PC scores, we computed centroid distances across 3-5 centroids based on the heterogeneity within 400 

each group. We identified and removed ancestry outliers by plotting histograms of centroid distances and 401 

excluding individuals at the extreme high end. 402 

 403 

Given the limited sample size within CSA, EAS and MID ancestral populations, we exclusively used them as 404 

independent test cohorts. For EUR, AMR and AFR populations, we split the data into separate training and test 405 

sets. Specifically, in each population, we randomly selected 5,000 individuals from unrelated samples as the 406 

withheld test dataset. We used the remaining individuals as the training dataset, which included related 407 

individuals to improve statistical power. To avoid relatedness between test and training dataset, we subsequently 408 

removed individuals in the training dataset that showed a kinship coefficient larger than 0.1 with any individual 409 

in the test dataset. The estimates of kinship coefficient were provided by AoU. We removed those individuals 410 

who did not pass AoU quality controls. Consequently, we used 43,926, 33,330 and 111,850 individuals as the 411 

training dataset for AFR, AMR and EUR, respectively. For the variant-level quality controls, we focused on only 412 

HapMap 3 variants and further removed those with minor allele frequency (MAF) lower than 0.01, genotype 413 

missing rates larger than 0.05 and hardy-weinberg equilibrium (HWE) p-value smaller than 1e-6. 414 

Phenotypes: 415 

UKB: For those 492 high quality phenotypes that passed different filters as described in Karczewski et al.19, we 416 

calculated the variance explained by the top genome-wide significant loci as ∑ ⬚⬚
⬚ 2𝑝(1 − 𝑝)𝛽" where 𝑝 is the 417 

MAF and 𝛽 denotes the estimated per-allele effect sizes on the standardized phenotype. The top loci were 418 

defined using clumping in PLINK46 based on ancestry-matched reference panels from UKB; more details can be 419 
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found in Karczewski et al.19. We identified a subset of 129 phenotypes, characterized by a greater variance 420 

explained in the multi-ancestry meta-analyzed GWAS in comparison to EUR-based GWAS. We focused on this 421 

subset of phenotypes, considering the potential to improve predictive accuracy in underrepresented populations 422 

by leveraging  multi-ancestry discovery GWAS. Subsequently, those selected phenotypes were subject to further 423 

in-depth investigation in the AoU.  424 

 425 

AoU: To enhance the quality and reliability of the phenotypic data available within the AoU, we curated and 426 

processed the phenotypes through a few steps. First, we checked whether there are matched phenotype 427 

descriptions in AoU based on data-field notes in the UKB showcase (https://biobank.ndph.ox.ac.uk/showcase/). 428 

Phenotypes derived from survey data were subsequently excluded from consideration. Following this filtering 429 

process, phenotypes with either matched or closely related descriptions in AoU were selected for further 430 

evaluation. We also added a few commonly studied quantitative traits (BMI, height, and eosinophil count), as 431 

well as three additional common diseases with high impact on public health (COPD, asthma, and coronary 432 

atherosclerosis). This resulted in 14 quantitative phenotypes, 7 ICD-10 codes and 11 PheCodes for all 433 

downstream analyses (Supplementary Table 1). The curation of raw phenotypic data encompassed a 434 

comprehensive analysis based on concept IDs, and the most recent measurements were sourced from diverse 435 

domains, such as conditions, lab and physical measurements, and surveys. For the PheCode curation, we 436 

employed the PheCode map v1.2 (https://phewascatalog.org/phecodes) to map ICD codes into corresponding 437 

phecodes. Notably, lab and physical measurements often exhibited variations in measurement units across 438 

individuals. To address this issue, the most frequent unit of measurement was adopted as a reference, and 439 

appropriate conversions were applied to standardize other units accordingly. In order to optimize the sample size 440 

available for analysis, individuals for whom the unit concept name was indicated as “empty”, "no matching 441 

concept," or "no value" were retained in the dataset. For quantitative phenotypes, individuals with values 442 

exceeding 5 standard deviations from the mean were systematically excluded from the dataset to ensure the 443 

robustness of subsequent analyses.  444 

Genome-wide association studies (GWAS): 445 

The Pan-UK Biobank Project, described in Karczewski et al.19, has publicly released individual GWAS in each 446 

ancestry as well as meta-analyzed GWAS across ancestries. We utilized AFR and EUR GWAS, as well as the 447 

meta-analyzed GWAS across the AFR and EUR groups, from this resource. 448 

 449 

The phenotypes within the AoU were processed using the same strategy described in Karczewski et al.19, where 450 

the quantitative phenotypes were inverse-ranked normalized. We performed GWAS on the training datasets 451 

within AFR, AMR and EUR populations as described previously using the Regenie software47. Only the 452 

quantitative phenotypes with sample size larger than 5,000 and binary traits with case counts exceeding 100 453 
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were included for GWAS analysis. We included the follow covariates: age, sex, age2, age*sex, age2 * sex, and 454 

the first 10 PCs. 455 

 456 

We then conducted meta-analyses of the AoU GWAS data with the UKB GWAS data, separately for EUR and 457 

AFR, as well as all ancestry groups combined. Meta-analyses across three ancestry groups within AoU were 458 

also performed. The meta-analyses were performed using the inverse-variance weighted approach in the 459 

METAL software48. Our analyses focused on common HapMap 3 variants only. 460 

Genetic architecture estimates: 461 

In this study, we investigated the impact of key parameters of genetic architecture on the performance of PRS. 462 

We assessed several trait-specific genetic architecture parameters, namely polygenicity (i.e. the proportion of 463 

SNPs with nonzero effects) and SNP-based heritability. To estimate polygenicity, we employed SBayesS, a 464 

summary statistics based method employing a Bayesian mixed linear model, with its default settings49. The input 465 

datasets for this analysis were the EUR GWAS from UKB. To estimate heritability, we conducted LD score 466 

regression analyses using LDSC50 based on the AoU EUR GWAS, and obtained the LDSC estimates based on 467 

the UKB EUR GWAS from Karczewski et al.19. We used ancestry-matched reference panels from UKB for these 468 

analyses19. 469 

Genetic correlation estimates: 470 

To estimate rg between the EUR GWAS from AoU and UKB, we used the heritability Z-scores obtained from 471 

LDSC computations of heritability from AoU GWAS and as reported in Karczewski et al.19 from UKB GWAS. To 472 

estimate cross-ancestry rg between the EUR and AFR GWAS from AoU, and EUR and AMR GWAS from AoU, 473 

we used Popcorn51 based on 1000 Genomes reference panels. 474 

PRS construction and evaluation: 475 

We constructed PRS using three different methods: the classic pruning and thresholding (P+T) method, and two 476 

Bayesian genome-wide methods, namely PRS-CS52 and PRS-CSx9. P+T was performed using a LD r2 threshold 477 

of 0.1 and a series of p-value thresholds (5e-8, 5e-07, 5e-06, 5e-05, 5e-04, 5e-03, 0.05, 0.1, 1). We used the 478 

auto model, which automatically estimates the global shrinkage parameter, implemented in PRS-CS and PRS-479 

CSx. We used ancestry-specific AoU GWAS as inputs for the three methods. For P+T and PRS-CS, multi-480 

ancestry meta-analyzed GWAS were additionally included. In order to comprehensively explore the advantages 481 

of incorporating AoU data, we constructed PRS using UKB GWAS data independently, as well as the meta-482 

analyzed AoU and UKB GWAS data.  483 

 484 
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The LD reference panel used was dependent on the ancestry composition of the discovery GWAS. We used LD 485 

panels that matched the respective ancestral population for ancestry-specific GWAS. Since the multi-ancestry 486 

meta-analyzed GWAS primarily comprised European individuals, we used a European-based panel, as our 487 

previous studies demonstrated that it can adequately approximate the LD structure13,25. We used the pre-488 

computed LD matrices obtained from Karczewski et al.19 for P+T. Additionally, for PRS-CS and PRS-CSx, we 489 

employed the LD matrices provided by the software, which were computed from UKB data. We evaluated PRS 490 

performance in independent target datasets of AFR, AMR, EUR, EAS, and CSA ancestries within the AoU 491 

dataset. To evaluate the PRS performance for quantitative phenotypes, we estimated incremental R2 by 492 

accounting for the covariates. Specifically, we  compared two models: 1) the baseline model (phenotype ~ 493 

covariates) and 2) the full model including PRS (phenotype ~ PRS + covariates). Incremental R2 represents the 494 

improvement in model accuracy with the inclusion of PRS. For binary phenotypes, we reported the Area Under 495 

the Receiver Operating Characteristic Curve (AUC) of PRS solely, Nagelkerker’s R2, and R2 on the liability scale. 496 

In the latter case, we approximated the disease prevalence using the population prevalence. We calculated the 497 

corresponding 95% confidence intervals (CIs) of each estimate using 1,000 bootstrap iterations. For the P+T 498 

method, we adopted a two-step evaluation approach. First, we partitioned the target datasets evenly into a 499 

validation cohort and a test cohort. Next, we fine-tuned the p-value threshold using the validation cohort to 500 

optimize performance. Subsequently, we evaluated the PRS performance on the test cohort using the fine-tuned 501 

p-value threshold. This procedure ensured a robust evaluation of the PRS performance based on the optimal 502 

thresholds. 503 

Estimates of population genetic differentiation: 504 

To characterize the genetic distance between populations across the biobanks, we measured population genetic 505 

differentiation with Wright’s fixation index, Fst, computed using the “wc” method in PLINK 2.046. The analyses 506 

were performed using 168,899 pruned variants. 507 

Individual PRS accuracy: 508 

Posterior effect size calculation: We used the EUR GWAS and multi-ancestry meta-analysis from AoU as 509 

inputs for PRS-CS. Using the default setting of PRS-CS, which involves 1000 MCMC (Markov Chain Monte 510 

Carlo) iterations, 500 burn-in iterations, and a thinning factor of 5, we obtained an output of 100 sets of posterior 511 

effect estimates for each variant in an Mx100 matrix, where M is the number of SNPs. This matches the output 512 

based on LDPred2 in Ding et al.37 513 

 514 

PRS accuracy: We used the “--score” flag in PLINK 2.0 to compute 100 sets of PRS for the individuals in the 515 

AMR, AFR, EUR, CSA, and EAS target groups in AoU. The output matrix has shape 100 × 22,703  and each 516 

cell is denoted as 𝑃𝑅𝑆#$, where 𝑚	∈ [1,22703] denotes the 𝑚 individual and 𝑏 ∈ [1,100] denotes the 𝑏 set of PRS. 517 
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Based on Ding et al.37, the individual PRS uncertainty for individual 𝑚 for empirical analyses is calculated as 518 

𝑣𝑎𝑟(𝑃𝑅𝑆$), that is the variance of 100 sets of PRS. The PRS accuracy for individual 𝑚 is defined as 1 −519 
%&'()*+!)

-"%&'(.#$%&'($)
	, where ℎ" denotes the estimated heritability from LDSC and 𝑣𝑎𝑟(𝑦'/0123/) denotes the variance of 520 

residue phenotype in training data after regressing out age, sex, age2, age*sex, age2 * sex, and the first 10 PCs. 521 

The PRS accuracies for four blood panel traits (neutrophil count, white blood cell count, mean corpuscular 522 

volume, and mean corpuscular hemoglobin), for which PRSAoU-Multi performed best, and two additional polygenic 523 

traits (height and BMI) for comparison were scaled using min-max normalization ranging from 0 to 1, where the 524 

minimum and maximum values correspond to the smallest and largest PRS accuracy observed among 525 

individuals across all six traits, respectively. The correlation coefficient R was measured by Pearson correlation. 526 

 527 

Genetic distance: We used the same strategy as described in Ding et al.37 to calculate genetic distance between 528 

each individual and the discovery population. Briefly, we calculated the Euclidean distance of the PCs of the 529 

individuals in the target groups from the center of the discovery data, i.e. either the EUR or all groups in AoU. 530 
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