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AxonDeepSeg: automatic 
axon and myelin segmentation 
from microscopy data using 
convolutional neural networks
Aldo Zaimi1, Maxime Wabartha1,2, Victor Herman1,2, Pierre-Louis Antonsanti1,3,  
Christian S. Perone   1 & Julien Cohen-Adad   1,4

Segmentation of axon and myelin from microscopy images of the nervous system provides useful 
quantitative information about the tissue microstructure, such as axon density and myelin thickness. 
This could be used for instance to document cell morphometry across species, or to validate novel non-
invasive quantitative magnetic resonance imaging techniques. Most currently-available segmentation 
algorithms are based on standard image processing and usually require multiple processing steps and/
or parameter tuning by the user to adapt to different modalities. Moreover, only a few methods are 
publicly available. We introduce AxonDeepSeg, an open-source software that performs axon and myelin 
segmentation of microscopic images using deep learning. AxonDeepSeg features: (i) a convolutional 
neural network architecture; (ii) an easy training procedure to generate new models based on manually-
labelled data and (iii) two ready-to-use models trained from scanning electron microscopy (SEM) and 
transmission electron microscopy (TEM). Results show high pixel-wise accuracy across various species: 
85% on rat SEM, 81% on human SEM, 95% on mice TEM and 84% on macaque TEM. Segmentation of a 
full rat spinal cord slice is computed and morphological metrics are extracted and compared against the 
literature. AxonDeepSeg is freely available at https://github.com/neuropoly/axondeepseg.

Neuronal communication is ensured by the transmission of action potentials along white matter axons. For 
long distance communication, these axons, which are typically 1–10 µm in diameter, are surrounded by a mye-
lin sheath whose main role is to facilitate the propagation of the electrical impulses along neuronal fibers and 
increase the transmission speed1,2. Pathologies such as neurodegenerative diseases (e.g., multiple sclerosis) or 
trauma are associated with myelin degeneration, which can ultimately lead to sensory and motor deficits (e.g., 
paraplegia)3,4. Being able to image axons and myelin sheaths at high resolution would help researchers under-
stand the origins of demyelination and test therapeutic drugs5,6 and could also be used to validate novel magnetic 
resonance imaging biomarkers of myelin7. High resolution histology is typically done using electron microscopy 
following osmium staining to obtain myelin contrast. Then, axons and myelin can be analysed on the images to 
derive metrics such as axon density or myelin thickness. However, given that 1 mm2 of white matter can contain 
over 100,000 axons8, it is important to obtain a robust and reliable segmentation of individual axons and myelin 
as automatically as possible.

Several segmentation methods for axon and myelin have been proposed which are based on traditional image 
processing algorithms including thresholding and morphological operations9,10, axon shape-based morphological 
discrimination11, watershed12,13, region growing14, active contours without15,16 and with discriminant analysis16. 
However, a few limitations can be reported from the previous work: (i) traditional image-based methods are 
designed to work on specific imaging modalities and often fail if another contrast is used (e.g., optical image 
instead of electron microscopy); (ii) previous methods are not fully-automatic as they typically require either pre-
processing, hand-selected features for axon discrimination and/or postprocessing; (iii) traditional image-based 
methods do not make full use of the contextual information of the image (i.e., multi-scale representation of axons, 
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average shape of axons, etc.) and (iv) most of the previous methods are not publicly available (to our knowledge, 
only that from15,16 are).

In the last five years, deep learning methods have become the state of the art when it comes to computer vision 
tasks. Convolutional neural networks (CNNs) are particularly suited to image classification17–20 and semantic seg-
mentation21. Cell segmentation is one of the popular application of CNNs22,23. The U-Net architecture introduced 
by Ronneberger and collaborators24 has inspired many medical segmentation applications, efficiently combining 
both context and localization of structures of interest. Segmentation of axons and myelin based on deep learning 
approaches offers significant advantages when compared with traditional image segmentation algorithms: (i) 
there is no need to hand-select relevant features because the network is able to learn the hidden structural and 
textural features by itself, (ii) this approach allows to segment both axons and myelin sheaths in two different 
labels with the same network, without the need of any explicit pre- or post-processing, (iii) the network can be 
trained for various imaging modalities without significantly changing its architecture and (iv) once trained, the 
model is relatively fast at the prediction step (only a few seconds) compared to more traditional image processing 
methods.

Few research groups have applied deep learning for axon and myelin segmentation. Naito and collaborators25 
have implemented a two-step process that first performs clustering segmentation of myelinated nerve fibers in 
optical microscopic images, and then discriminates between true and false candidates by using a CNN classifi-
cation network. This group did not exploit the CNN for the segmentation, but only for discrimination. The work 
from Mesbah and collaborators26 presented a deep encoder-decoder CNN that can segment both axon and mye-
lin and claimed to achieve up to 82% pixel-wise accuracy. However, the network has been designed specifically for 
light microscopy images, the implementation is not publicly available and minimal regularization strategies have 
been employed in order to improve generalization.

We present AxonDeepSeg, a deep learning framework for robust and automatic segmentation of both axons 
and myelin sheaths in myelinated fibers. AxonDeepSeg features: (i) a CNN architecture for semantic segmentation 
of histological images; (ii) two ready-to-use models for the segmentation of scanning electron microscopy (SEM) 
and transmission electron microscopy (TEM) samples adapted to a variety of species and acquisition parameters; 
(iii) a well-documented training pipeline to generate models for new imaging modalities and (iv) free and open 
source code (https://github.com/neuropoly/axondeepseg).

Methods
Dataset.  Microscopy images used in this study were acquired with two different imaging techniques: SEM 
and TEM. Different acquisition resolutions were used, in order to increase variability and obtain better gen-
eralization of the model, with isotropic pixel size resolution ranging from 0.05 to 0.18 µm (SEM) and 0.002 to 
0.009 µm (TEM). SEM samples were stained with 2% osmium, embedded in epoxy, polished and imaged with the 
same SEM system (Jeol 7600F). TEM images were obtained from mice brain samples (splenium), as described 
in27. Additionally, a macaque sample of the corpus callosum was added to the test set. Preparation and imaging 
procedures are described in7. Table 1 lists the samples used for the experiments.

All methods were carried out in accordance with relevant guidelines and regulations. Experimental protocols 
involving rats were approved by the Montreal Heart Institute committee. Experimental protocols involving the 
human spinal cord were done at the anatomy laboratory of the University of Quebec at Trois-Rivieres. The spinal 
cord donor gave informed consent and procedures were approved by the local ethics committee (SCELERA-15-
03-pr01). Similarly, TEM images shared by collaborators were obtained in accordance with the corresponding 
ethics committees (mice: Institutional Animal Care and Use Committee at the New York University School of 
Medicine, macaque: Montreal Neurological Institute Animal Care Committee).

Ground truth labelling.  The ground truth labelling of SEM samples was created as follows: (i) Myelin 
sheaths were manually segmented (inner and outer contours) with GIMP (https://www.gimp.org/); (ii) Axon 
labels were obtained by filling the region enclosed by the inner border of the myelin sheaths; (iii) Small manual 
corrections were done on the axon and myelin masks (contour refinement, elimination of false positives) when 
necessary.

The ground truth labelling of TEM samples was created as follows: (i) Myelin was first segmented using inten-
sity thresholding followed by manual correction, then the inner region was filled to generate axon labels. More 
details can be found about the generation of labels for the macaque7 and the mice27.

All ground truth labels were cross-checked by at least two researchers. The final ground truth consists of a 
single png image with values: background = 0, myelin = 127, axon = 255. Example SEM and TEM samples and 
corresponding ground truth labels are shown in Fig. 1. This figure also illustrates the large variability in terms of 
image features, especially for the SEM data (contrast, noise, sample preservation, etc.).

Pipeline overview.  The pipeline of AxonDeepSeg is composed of four steps: data preparation, learning, eval-
uation and prediction. Figure 2 illustrates each step.

In the data preparation step, raw microscopy images and corresponding axon/myelin labels are resampled to a 
common resolution space: 0.1 µm per pixel for SEM and 0.01 µm for TEM. These values are based on preliminary 
results and on the typical resolutions provided by each of these imaging systems. Resampled samples are divided 
into patches of 512 × 512 pixels due to memory constraints. This size was chosen to have around 15–75 axons per 
patch. Traditional pre-processing was applied patch-wise, including standardization and histogram equalization 
(not shown in Fig. 2 for clarity). For learning, the patches and corresponding labels were randomly split and then 
considered either for the training or for the validation sets (training/validation split of approximately 70/30%). 
For evaluation, full test images were randomly selected.

https://github.com/neuropoly/axondeepseg
https://www.gimp.org/
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In the learning step, the training/validation dataset is fed into the network. Once the trained model is obtained, 
performance is evaluated on the test dataset (evaluation step). Finally, the trained model can be used for inference 
on new microscopy images (prediction step). The images are resampled to the pixel size of the model, divided into 
patches of 512 × 512 pixels, segmented, stitched to the native size, and resampled to the native resolution. Note 
that bilinear interpolation was used during the resampling steps.

Architecture of the network.  The architecture is inspired by the original U-Net model24, combining a con-
tracting path with traditional convolutions and then an expanding path with up-convolutions. Figure 3 illustrates 
the network architecture. The convolutional layers in the first block use 5 × 5 kernels, while the convolutional 
layers on remaining blocks use 3 × 3 kernels. The SEM network has 3 convolutional layers per block, while the 
TEM network has 2 convolutional layers per block. These decisions were based on preliminary optimizations (see 
section “Hyperparameter optimization”). In the contracting path, convolutions of stride 2 are computed after 
the last convolutional layer of each block to reduce the dimensionality of the features. Each strided convolution 
layer has a corresponding up-convolution layer in the expansion path in order to recover the localization infor-
mation lost during the contraction path. Up-convolutions were computed by bilinear interpolation followed by a 
convolution. The merging of the context and localization information is done by concatenating the features from 
the contracting path with the corresponding ones in the expansion path. The number of features (channels) is 
doubled after each block, starting from 16, and then decreased at the same rate during the expansion path. All 
activation functions in the convolutional layers are rectified linear units (ReLU28). The last layer before the pre-
diction is a softmax activation with 3 classes (axon, myelin and background). The SEM and TEM networks have 
a total of 1,953,219 and 1,552,387 trainable parameters, respectively.

Figure 1.  Overview of the data and ground truth labels for SEM (a) and TEM (b). Label masks contain 3 
classes: axon (in blue in the figure), myelin (red) and background (black). All SEM and TEM samples shown 
here are cropped to 512 × 512 pixels. SEM patches have a pixel size of 0.1 µm, while TEM patches have a pixel 
size of 0.01 µm (see section “Pipeline overview”).
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Data augmentation strategy.  A data augmentation strategy was used on the input patches in order to 
reduce overfitting and improve generalization17,20,24. The strategy includes random shifting, rotation, rescaling, 
flipping, blurring and elastic deformation29. Table 2 summarizes the data augmentation strategy and the corre-
sponding parameters.

Training procedure.  For the training phase, we used a starting learning rate of 0.001 on which we applied a 
polynomial decay30 with a power of 0.9. The decay length was 200 epochs, after which the training stopped. We 
shuffled the samples list at the beginning of each epoch and used a batch size of 8 patches of 512 × 512 pixels. We 
have also implemented batch normalization31 before each activation. The momentum was exponentially decayed 
from 0.7 to 0.9. This was done to enable a quicker convergence at the beginning of the training by keeping a few 
samples for the batch normalization, while ensuring a stable training at the later epochs. A dropout32 rate of 0.25 
is used in the convolutional layers to reduce the risk of overfitting and improve generalization. The network was 
trained with the Adam optimizer33. We minimized a spatially-weighted multi-class cross-entropy loss. The spatial 
weights ratios used to correct the class imbalance were respectively 1.1, 1.0 and 1.3 for background, myelin and 
axon. Those weights were chosen after hyperparameter optimization. The training phase took 86 minutes on an 
NVIDIA P100 GPU.

Figure 2.  Overview of the AxonDeepSeg pipeline. During the data preparation step (a), microscopy samples 
and corresponding ground truth labels are resampled to have a common pixel size (0.1 µm for the SEM model, 
0.01 µm for the TEM model), divided into 512 × 512 patches, and split into training/validation sets. The neural 
network is trained during the learning step (b) on the training/validation dataset. When the model is trained, 
performance is assessed on a test dataset (evaluation step (c)). For prediction (d), the new microscopy image 
to be segmented is first resampled to the working pixel size of the network, divided into 512 × 512 patches and 
analysed with the trained model. Segmented output patches are then stitched together and resampled back to 
the native pixel size.

Number of 
images Species Tissue

Pixel size 
(µm) FOV (µm2)

Tissue preparation (% 
paraformaldehyde – % 
glutaraldehyde)

SEM

Training/validation

1 Rat Spinal cord (cervical) 0.18 230 × 166 4–2%

3 Rat Spinal cord (cervical) Between 0.05 
and 0.17 Between 132 × 90 and 218 × 162 4–0%

3 Rat Spinal cord (cervical) 0.1 Between 74 × 76 and 77 × 84 3–3%

1 Rat Spinal cord (cervical) 0.13 247 × 234 3–3%

1 Rat Spinal cord (cervical) 0.1 82 × 77 3–3%

Testing

1 Rat Spinal cord (cervical) 0.13 150 × 97 3–3%

1 Rat Spinal cord (cervical) 0.07 108 × 77 3–3%

1 Human Spinal cord (cervical) 0.13 715 × 735 4–2%

TEM

Training/validation 8 × 17 mice Mouse Brain (splenium) 0.002 6 × 9 2–2.5%

Testing
8 × 3 mice Mouse Brain (splenium) 0.002 6 × 9 2–2.5%

1 Macaque Brain (corpus 
callosum) 0.009 27 × 21 2–2%

Table 1.  List of datasets used for the experiments. For each sample, the following information is indicated: 
number of images used, species, tissue type, pixel size, field of view (FOV) and tissue preparation details. For 
the scanning electron microscopy (SEM) model, training was done on rat spinal cord samples and testing was 
performed on rat and human spinal cord samples. For the transmission electron microscopy (TEM) model, 
training was done on mice brain samples and testing was performed on mice and macaque brain samples.
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Inference procedure.  During the inference step, we split the original images into patches of size 512 × 512 
pixels. To overcome border issues (i.e. partial axons at edges not being properly identified as axons), the output 
segmentation mask is cropped around a smaller patch. Thus, patches overlap by d pixels to cover the entire image, 
as illustrated in Fig. 4. Based on preliminary optimizations, the default value d was set to 25.

Hyperparameter optimization.  We used different grid searches in order to set the value of the hyper-
parameters with respect to the accuracy and error on the validation set. The following architecture parameters 
were optimized at the same time: number of layers, number of filters and convolutional kernel size. The starting 
learning rate and the batch normalization momentum were also optimized jointly using a grid search, as they 
both have an effect on the time the model takes to converge and the stability of the validation metrics (based on 
our experiments). We then jointly optimized the batch normalization momentum and the decay period of the 
momentum.

Evaluation method.  For testing, the following metrics were computed: the Dice values (axon and myelin) 
and the pixel-wise accuracy to assess the quality of the segmentation, and the sensitivity and precision to assess 
the capability to detect true axonal fibers and avoid false axonal fibers.

Figure 3.  Architecture of the convolutional neural networks designed for the segmentation of SEM and 
TEM images. For the SEM model, 3 convolutional layers are used at each block, while only 2 convolutional 
layers are used for the TEM model. Convolutional layers in dashed lines are removed for the TEM model. All 
activation functions used are rectified linear units (ReLU). Strided convolutions are used to downsample the 
features during the contraction path (left), while up-convolutions are used to recover the localization during 
the expansion path (right). Features of the contraction path are merged with features of the expansion path to 
combine localization and context (illustrated by the concatenation step). The pixel-wise classification is done by 
a 3-class softmax.
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Segmentation metrics.  To assess the quality of the segmentation we used the Dice coefficient. For two binary 
images A and B, the Dice coefficient is defined as:

∩=
+

Dice A B
A B

2( )
(1)

where A ∩ B is the intersection between the two images (i.e. number of pixels that are true in both images), A  is the 
number of pixels that are true in image A, and B  is the number of pixels that are true in image B. The Dice coefficient 
is computed separately for axon and myelin segmentations, between the prediction and the ground truth masks.

Furthermore, the pixel-wise accuracy is evaluated in order to get a combined assessment of axon-myelin 
segmentation. The pixel-wise accuracy is computed as the ratio between correctly classified pixels (i.e. axon pixel 
classified as axon, myelin pixel classified as myelin, background pixel classified as background) and the total 
number of pixels in the test sample.

Detection metrics.  To assess the performance of myelinated fiber detection, we computed the sensitivity and 
precision based on axon objects, using the positions of the centroids. Knowing the number of true positives (TP, 
axons present in both the prediction and the ground truth mask), false positives (FP, axons present in the predic-
tion, but absent in the ground truth mask) and false negatives (FN, axons present in the ground truth mask, but 
absent in the prediction), we can compute the sensitivity (true positive rate) and the precision (positive predictive 
value) with the following equations:

= +TPR TP/(TP FN) (2)

Figure 4.  Overlapping procedure during inference. To avoid border effects during prediction, inference is 
run on the orange square, but only the white square is output. The algorithm iterates by shifting the inference 
window by the size of the white square. The overlap default value d was set to 25.

Data augmentation 
strategy Description

Shifting Random horizontal and vertical shifting between 0 and 10% 
of the patch size, sampled from a uniform distribution.

Rotation Random rotation, angle between 5 and 89 degrees, sampled 
from a uniform distribution.

Rescaling Random rescaling of a randomly sampled factor between 
1/1.2 and 1.2

Flipping Random flipping: vertical flipping or horizontal flipping.

Blurring
Random blurring: gaussian blur with the standard deviation 
of the gaussian kernel being uniformly sampled between 0 
and 4.

Elastic deformation
Random elastic deformation with uniformly sampled 
deformation coefficient α = [1–8] and fixed standard 
deviation σ = 4.

Table 2.  Data augmentation strategy used in AxonDeepSeg. Shifting, rotation, rescaling, flipping, blurring and 
elastic deformation were applied to training patches in order to reduce overfitting and increase variability.
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= +PPV TP/(TP FP) (3)

Data availability.  A part of the datasets generated during and/or analysed during the current study are 
available in the White Matter Microscopy Database repository (https://osf.io/yp4qg/). The remaining datasets are 
available from the corresponding author on reasonable request.

Figure 5.  Example of segmentation results on SEM and TEM images on a variety of species. The corresponding 
ground truth segmentation is shown on the right. Overall, the agreement is good. A few discrepancies are 
noticeable, notably caused by ambiguous/untypical myelin structure (white arrows and white asterisks), 
inhomogeneous myelin thickness (yellow arrows) and untypical axon intensity (white squares). Some of these 
discrepancies could potentially be solved using post-processing methods.

Modality Model
Test 
sample(s)

Axon Dice 
similarity

Myelin Dice 
similarity

Pixel-wise 
accuracy Sensitivity Precision

SEM Trained on rat samples

Rat 1 0.9089 0.8193 0.8510 0.9699 0.8468

Rat 2 0.9244 0.8389 0.8822 0.9876 0.7987

Human 0.8089 0.7629 0.8114 0.9300 0.7306

TEM Trained on mice samples
Mice 0.9493 0.8552 0.9451 0.9597 0.9647

Macaque 0.9069 0.7519 0.8438 0.9429 0.8129

Table 3.  Summary of performance metrics on test samples, for both SEM and TEM models. The SEM model 
was trained on rat spinal cord samples, and evaluated on rat and human spinal cord samples, while the TEM 
model was trained on mice brain samples, and evaluated on mice and macaque brain samples. For each sample, 
axon Dice, myelin Dice, pixel-wise accuracy, sensitivity and precision were computed. Axon and myelin Dice 
measure the similarity between the axon/myelin segmentation masks and the ground truth. Pixel-wise accuracy 
is a measure of the ratio of correctly classified pixels. Sensitivity and precision values are an indication of the 
capability to detect true axonal fibers and to avoid segmentation of false axonal fibers. Note that for the mice, 24 
samples of the same size were used: performance metrics shown are means between all samples.

https://osf.io/yp4qg/


www.nature.com/scientificreports/

8SCIENtIFIC REPOrTS |  (2018) 8:3816  | DOI:10.1038/s41598-018-22181-4

Results
Segmentation.  Segmentation was evaluated on SEM (rat and human spinal cords) and TEM (mouse sple-
nium and macaque corpus callosum) samples. Segmentation and ground truth masks for both axons and myelin 
sheaths are displayed on Fig. 5. Table 3 lists validation metrics computed on the segmentation outputs: axon Dice, 
myelin Dice, pixel-wise accuracy, sensitivity and precision. The SEM model trained on rat microscopy was able 
to achieve a pixel-wise accuracy between 85% and 88% on the rat test samples, while the pixel-wise accuracy on 
human test sample was 81%. The TEM model trained on mice microscopy achieved a pixel-wise accuracy of 95% 
on mice samples and a pixel-wise accuracy of 84% on macaque samples.

To demonstrate the utility of AxonDeepSeg for large scale microscopy, segmentation of axon/myelin was per-
formed on a full rat spinal cord SEM (cervical level). Processing time was 5 hours in a Mac laptop (2.9 GHz). 
Segmentation masks (axons in red, myelin sheaths in blue) are displayed on Fig. 6, along with a zoomed window 
of a small region for better visualization.

Morphometrics extraction.  As a proof-of-concept, morphometric statistics were extracted from a full 
spinal cord of rat using AxonSeg16. The segmented rat spinal cord shown in Fig. 6 was downsampled to 50 × 50 
µm2 in order to generate maps of density (e.g., axon and myelin density). The following aggregate metrics were 
computed:

•	 Axon diameter mean and standard deviation: arithmetic mean and standard deviation of the distribution of 
equivalent axon diameters (computed for each axon object as √(4*Area/π));

•	 Axon density: number of axons per mm2;
•	 Axon volume fraction (AVF): ratio between area of axons and total area of the region;
•	 Myelin volume fraction (MVF): ratio between area of myelin and total area of the region;
•	 G-ratio: ratio between axon diameter and myelinated fiber (axon + myelin) diameter, which can be estimated 

with the following formula7: √(1/(1 + MVF/AVF)).

A binary mask was used to only keep white matter pixels. Results are displayed in Fig. 7. Obtained met-
rics were compared with references of the white matter tracts of the rat spinal cord34–36. The distribution maps 
are in good agreement with known anatomy. In the corticospinal tract (tract #12 of the reference), we observe 
smaller axon diameters (around 1 µm), very high axon density (around 200,000 axons per mm2) and g-ratio val-
ues around 0.6. Larger axons are found close to the spinal cord periphery. See Discussion for more comparison 
with the literature.

Discussion
This paper introduced AxonDeepSeg, a software framework to segment axon and myelin from microscopy data 
using deep learning. We showed that AxonDeepSeg can segment axon and myelin of SEM and TEM samples of 
various species with high accuracy. Moreover, AxonDeepSeg can serve as a tool to document nerve fiber morpho-
metry, as demonstrated by the extraction of metrics from a full rat spinal cord slice.

Trained models.  We propose a SEM model trained with a resolution of 0.1 µm per pixel, and a TEM model 
trained with a resolution of 0.01 µm per pixel. At inference, test image is resampled to meet the target resolution 
of the model. Other training set compositions were explored, with model trained on both SEM and TEM data 
in order to achieve better generalization. However, a few limitations arose: (i) SEM and TEM images exhibit 
very different resolution ranges, requiring large resampling factors to find a common resolution space; (ii) SEM 
and TEM modalities capture different microstructure/textures of the tissue (for instance, TEM microscopy can 

Figure 6.  Full slice of rat spinal cord showing segmented axons (blue) and myelin sheaths (red). The zoomed 
panel illustrates the segmentation performance and sensitivity to fiber size: the left half of the panel contains 
smaller axons (mean diameter around 1.75 µm) while the right half contains larger axons (mean diameter 
around 2.5 µm).
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capture subcellular microstructure details of the axon); (iii) preliminary results of model simultaneously trained 
on SEM and TEM led to lower performance when compared to modality-specific models.

Performance metrics.  In all test sets, sensitivity was high (>93%, see Table 3), indicating good capability to 
detect true positive axons. Lower performance metrics obtained in the human SEM sample are expected, as the 
human sample used exhibits different contrast/quality/noise properties when compared to the rat training set. 
Note that myelin sheaths of the macaque TEM sample are slightly underestimated when compared to the ground 
truth segmentation. In both models and all test samples, computed myelin Dice was lower than axon Dice. This 
could be explained by the fact that myelin objects have two interfaces: boundary ambiguity between myelin and 
axon, and boundary ambiguity between myelin and background. Therefore, the myelin Dice is affected by two 
types of myelin misclassifications: myelin pixel classified as axon or myelin pixel classified as background.

Overall, these results suggest that the trained SEM and TEM models are robust to a variety of species and con-
trast changes and can generalize well, given that the lowest pixel-wise accuracy observed was 81% (see Table 3). 
Similar work done on optical microscopy data26 have achieved a maximal pixel-wise accuracy of 82%. As pointed 
out in Fig. 5, most pixel misclassifications are due to ambiguous/untypical axon and/or myelin structure or 

Figure 7.  Distribution maps of axon diameter mean and standard deviation, axon density, axon volume 
fraction, myelin volume fraction and g-ratio in a full rat spinal cord slice (cervical level). The SEM slice was 
segmented with AxonDeepSeg. The aggregate metrics of the white matter were generated by downsampling the 
axon/myelin segmentation masks to a 50 × 50 µm2 resolution. A schematic diagram of the main ascending and 
descending tracts of the white matter in the rat spinal cord based on the literature34–36 is provided as reference.
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intensity distribution. Note that these discrepancies could possibly be solved by implementing post-processing 
methods based on mathematical morphology or conditional random fields.

Morphometrics extraction.  Morphological metrics were extracted from a full rat spinal cord slice at the 
cervical level (see Fig. 7). The metrics resulting from the segmentation are overall consistent with the known 
anatomy. The ventral spinothalamic tract (#3 in tract reference of Fig. 7) contains the largest axons34,36, while 
higher density and smaller axons are observed in the corticospinal tract (#12 in tract reference)35,36. Furthermore, 
the spinocerebellar tracts (#4 and #5 in tract reference) are mostly composed of large diameter fibers34. We also 
observe that axons in the cuneate fasciculus (#7 in tract reference) are larger than those found in the gracile fas-
ciculus (#6 in tract reference), which is also in agreement with the literature37. G-ratio ranges between 0.5 and 
0.75, which is in agreement with other rat microstructure studies38. Overall, concordance of metrics obtained 
with literature shows that AxonDeepSeg can serve as a tool to document distribution and size of myelinated fibers 
in microscopy samples.

Software.  AxonDeepSeg is coded in Python and based on the TensorFlow deep learning framework. It can 
currently run on Linux and Mac OS X systems. Segmentation inference can be done on standard CPU computers 
at reasonable computational time. The code is available as open source in GitHub (https://github.com/neuropoly/
axondeepseg) and an intuitive documentation is provided (https://neuropoly.github.io/axondeepseg/). A Binder 
link and a simple Jupyter notebook are available for getting started with AxonDeepSeg.

Future perspectives.  The use of ensemble techniques, which consist of combining multiple neural network 
models, can potentially increase performance metrics. However, its drawback is that it increases computational 
time at inference. Another possible approach is to use transfer learning39 in order to obtain better generalization 
in new imaging modalities even when having a small training set. A partially trained model can be used as start-
ing point for the training of another model of different modality. Note that AxonDeepSeg has been trained and 
tested on healthy tissues. It would be interesting to assess its performance on demyelinated microscopy samples, 
in which myelin sheaths might present smaller thickness and different morphology.

Even though current models are already performant, our long-term goal is to continuously improve these 
models by adding more training data from collaborators in order to improve generalization. Another objective is 
to build segmentation models for other modalities, such as optical microscopy and Coherent Anti-Stokes Raman 
spectroscopy (CARS). This vision is supported by the recent initiative of creating a White Matter Microscopy 
Database40, which provides to the community an open access microscopy data and associated labeled ground 
truth. We encourage people to share their data for fostering the development of performant segmentation 
methods.

References
	 1.	 Zoupi, L., Savvaki, M. & Karagogeos, D. Axons and myelinating glia: An intimate contact. IUBMB Life 63, 730–735 (2011).
	 2.	 Seidl, A. H. Regulation of conduction time along axons. Neuroscience 276, 126–134 (2014).
	 3.	 Lassmann, H. Mechanisms of white matter damage in multiple sclerosis. Glia 62, 1816–1830 (2014).
	 4.	 Papastefanaki, F. & Matsas, R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 63, 

1101–1125 (2015).
	 5.	 Sachs, H. H., Bercury, K. K., Popescu, D. C., Narayanan, S. P. & Macklin, W. B. A new model of cuprizone-mediated demyelination/

remyelination. ASN Neuro 6 (2014).
	 6.	 Pfeifenbring, S., Nessler, S., Wegner, C., Stadelmann, C. & Brück, W. Remyelination After Cuprizone-Induced Demyelination Is 

Accelerated in Juvenile Mice. J. Neuropathol. Exp. Neurol. 74, 756–766 (2015).
	 7.	 Stikov, N. et al. In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage 118, 397–405 (2015).
	 8.	 Saliani, A. et al. Axon and Myelin Morphology in Animal and Human Spinal Cord. Front. Neuroanat. 11, 129 (2017).
	 9.	 Romero, E. et al. Automatic morphometry of nerve histological sections. J. Neurosci. Methods 97, 111–122 (2000).
	10.	 Cuisenaire, O., Romero, E., Veraart, C. & Macq, B. M. M. Automatic segmentation and measurement of axons in microscopic 

images. In Medical Imaging1999: Image Processing 3661, 920–930 (International Society for Optics and Photonics, 1999).
	11.	 More, H. L., Chen, J., Gibson, E., Donelan, J. M. & Beg, M. F. A semi-automated method for identifying and measuring myelinated 

nerve fibers in scanning electron microscope images. J. Neurosci. Methods 201, 149–158 (2011).
	12.	 Liu, T., Jurrus, E., Seyedhosseini, M., Ellisman, M. & Tasdizen, T. Watershed Merge Tree Classification for Electron Microscopy 

Image Segmentation. Proc. IAPR Int. Conf. Pattern Recogn. 2012, 133–137 (2012).
	13.	 Wang, Y.-Y., Sun, Y.-N., Lin, C.-C. K. & Ju, M.-S. Segmentation of nerve fibers using multi-level gradient watershed and fuzzy 

systems. Artif. Intell. Med. 54, 189–200 (2012).
	14.	 Zhao, X., Pan, Z., Wu, J., Zhou, G. & Zeng, Y. Automatic identification and morphometry of optic nerve fibers in electron microscopy 

images. Comput. Med. Imaging Graph. 34, 179–184 (2010).
	15.	 Bégin, S. et al. Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord 

tissue. Biomed. Opt. Express 5, 4145–4161 (2014).
	16.	 Zaimi, A. et al. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis. Front. 

Neuroinform. 10, 37 (2016).
	17.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. in Advances in 

Neural Information Processing Systems 25 (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097–1105 (Curran 
Associates, Inc., 2012).

	18.	 Ciresan, D. C., Meier, U., Gambardella, L. M. & Schmidhuber, J. Convolutional Neural Network Committees for Handwritten 
Character Classification. In 2011 International Conference on Document Analysis and Recognition 1135–1139 (2011).

	19.	 Karpathy, A., Toderici, G., Shetty, S. & Leung, T. Large-scale video classification with convolutional neural networks. Proceedings of 
the (2014).

	20.	 Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv [cs.CV] (2014).
	21.	 Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. Proc. IEEE (2015).
	22.	 Malon, C. D. & Cosatto, E. Classification of mitotic figures with convolutional neural networks and seeded blob features. J. Pathol. 

Inform. 4, 9 (2013).

https://github.com/neuropoly/axondeepseg
https://github.com/neuropoly/axondeepseg
https://neuropoly.github.io/axondeepseg/


www.nature.com/scientificreports/

1 1SCIENtIFIC REPOrTS |  (2018) 8:3816  | DOI:10.1038/s41598-018-22181-4

	23.	 Ciresan, D., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Deep Neural Networks Segment Neuronal Membranes in Electron 
Microscopy Images. In Advances in Neural Information Processing Systems 25 (eds Pereira, F., Burges, C. J. C., Bottou, L. & 
Weinberger, K. Q.) 2843–2851 (Curran Associates, Inc., 2012).

	24.	 Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image 
Computing and Computer-Assisted Intervention – MICCAI 2015 234–241 (Springer, Cham, 2015).

	25.	 Naito, T. et al. Identification and segmentation of myelinated nerve fibers in a cross-sectional optical microscopic image using a deep 
learning model. J. Neurosci. Methods 291, 141–149 (2017).

	26.	 Mesbah, R., McCane, B. & Mills, S. Deep convolutional encoder-decoder for myelin and axon segmentation. In 2016 International 
Conference on Image and Vision Computing New Zealand (IVCNZ) 1–6 (2016).

	27.	 Jelescu, I. O. et al. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated 
by electron microscopy. Neuroimage 132, 104–114 (2016).

	28.	 He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. 
Proc. IEEE (2015).

	29.	 Simard, P. Y., Steinkraus, D. & Platt, J. C. Best practices for convolutional neural networks applied to visual document analysis. 
ICDAR (2003).

	30.	 Chen, L.-C., Papandreou, G., Schroff, F. & Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv [cs.
CV] (2017).

	31.	 Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. in 
International Conference on Machine Learning 448–456 (2015).

	32.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks 
from Overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

	33.	 Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] (2014).
	34.	 Kayalioglu, G. Chapter 10 - Projections from the Spinal Cord to the Brain. In The Spinal Cord 148–167 (Academic Press, 2009).
	35.	 Watson, C. & Harvey, A. R. Chapter 11 - Projections from the Brain to the Spinal Cord. in The Spinal Cord 168–179 (Academic Press, 

2009).
	36.	 Schwartz, E. D. et al. Ex vivo evaluation of ADC values within spinal cord white matter tracts. AJNR Am. J. Neuroradiol. 26, 390–397 

(2005).
	37.	 Nunes, D., Cruz, T. L., Jespersen, S. N. & Shemesh, N. Mapping axonal density and average diameter using non-monotonic time-

dependent gradient-echo MRI. arXiv [physics.med-ph] (2016).
	38.	 Chomiak, T. & Hu, B. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. journals.

plos.org (2009).
	39.	 Oquab, M., Bottou, L., Laptev, I. Sivic -Proceedings of the IEEE, J. & Learning and transferring mid-level image representations 

using convolutional neural networks. cv-foundation.org (2014).
	40.	 Cohen-Adad, J. et al. White Matter Microscopy Database., https://doi.org/10.17605/OSF.IO/YP4QG October 25 (2017).

Acknowledgements
The authors would like to thank Ariane Saliani and Tanguy Duval for helping with the acquisition of SEM data, 
Dr. Hugues Leblond for providing the human spinal cord sample, Nafisa Husein and Harris Nami for helping 
with the ground truth labelling of samples, Drs Adriana Romero Soriano and Yoshua Bengio (MILA - Montreal 
Institute for Learning Algorithms), and Dr. Robert Brown (McGill - Montreal Neurological Institute) for fruitful 
discussions on the network design, Drs. Nikola Stikov and Jennifer Campbell for sharing TEM data of macaque, 
and Dr. Els Fieremans for sharing TEM data of mice. The authors would also like to thank Compute Canada 
and Calcul Québec for access to computation units and the “NVIDIA Corporation” for offering a Tesla GPU. 
This study was funded by the Canada Research Chair in Quantitative Magnetic Resonance Imaging (JCA), the 
Canadian Institute of Health Research [CIHR FDN-143263], the Canada Foundation for Innovation [32454, 
34824], the Fonds de Recherche du Québec - Santé [28826], the Fonds de Recherche du Québec - Nature et 
Technologies [2015-PR-182754], the Natural Sciences and Engineering Research Council of Canada [435897-
2013], IVADO, TransMedTech and the Quebec BioImaging Network.

Author Contributions
A.Z., M.W. and J.C.A. wrote the paper. A.Z., M.W., V.H., P.L.A. and C.S.P. designed and developed the software. 
J.C.A. supervised the project and provided expert guidance. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.17605/OSF.IO/YP4QG
http://creativecommons.org/licenses/by/4.0/

	AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks

	Methods

	Dataset. 
	Ground truth labelling. 
	Pipeline overview. 
	Architecture of the network. 
	Data augmentation strategy. 
	Training procedure. 
	Inference procedure. 
	Hyperparameter optimization. 
	Evaluation method. 
	Segmentation metrics. 
	Detection metrics. 

	Data availability. 

	Results

	Segmentation. 
	Morphometrics extraction. 

	Discussion

	Trained models. 
	Performance metrics. 
	Morphometrics extraction. 
	Software. 
	Future perspectives. 

	Acknowledgements

	Figure 1 Overview of the data and ground truth labels for SEM (a) and TEM (b).
	Figure 2 Overview of the AxonDeepSeg pipeline.
	Figure 3 Architecture of the convolutional neural networks designed for the segmentation of SEM and TEM images.
	Figure 4 Overlapping procedure during inference.
	Figure 5 Example of segmentation results on SEM and TEM images on a variety of species.
	Figure 6 Full slice of rat spinal cord showing segmented axons (blue) and myelin sheaths (red).
	Figure 7 Distribution maps of axon diameter mean and standard deviation, axon density, axon volume fraction, myelin volume fraction and g-ratio in a full rat spinal cord slice (cervical level).
	Table 1 List of datasets used for the experiments.
	Table 2 Data augmentation strategy used in AxonDeepSeg.
	Table 3 Summary of performance metrics on test samples, for both SEM and TEM models.




