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Abstract
The growth and remodelling of soft tissues plays a significant role in many physiological applications, particularly in under-
standing and managing many diseases. A commonly used approach for soft tissue growth and remodelling is volumetric 
growth theory, introduced in the framework of finite elasticity. In such an approach, the total deformation gradient tensor is 
decomposed so that the elastic and growth tensors can be studied separately. A critical element in this approach is to deter-
mine the growth tensor and its evolution with time. Most existing volumetric growth theories define the growth tensor in the 
reference (natural) configuration, which does not reflect the continuous adaptation processes of soft tissues under the current 
configuration. In a few studies where growth from a loaded configuration was considered, simplifying assumptions, such 
as compatible deformation or geometric symmetries, were introduced. In this work, we propose a new volumetric growth 
law that depends on fields evaluated in the current configuration, which is residually stressed and loaded, without any geo-
metrical restrictions. We illustrate our idea using a simplified left ventricle model, which admits inhomogeneous growth in 
the current configuration. We compare the residual stress distribution of our approach with the traditional volumetric growth 
theory, that assumes growth occurring from the natural reference configuration. We show that the proposed framework leads 
to qualitative agreements with experimental measurements. Furthermore, using a cylindrical model, we find an incompat-
ibility index that explains the differences between the two approaches in more depth. We also demonstrate that results from 
both approaches reach the same steady solution published previously at the limit of a saturated growth. Although we used 
a left ventricle model as an example, our theory is applicable in modelling the volumetric growth of general soft tissues.

Keywords  Soft tissues · Volumetric growth · Growth tensor · Growth law · Current configuration · Reference 
configuration · Myocardium · Residual stress

1  Introduction

The interactions between living organs and the bio-environ-
ment play essential roles in regulating pathological or physi-
ological growth. It has been experimentally demonstrated 
that environmental factors, such as the chemical, mechani-
cal or genetic stimulus, could induce growth and remodel-
ling (G&R) processes in living organs. Living organs can 
re-shape themselves, reset their constituents’ growth (or 
turnover) rates, and develop volumetric and mass changes 
to adapt to pathological or physiological changes in the bio-
environment. G&R has been observed in different forms. For 

instance, nutrition concentration will be increased around 
the tumours, which helps to accelerate cell division and lead 
to the local growth of tumours at the tissue level (chemical 
factors). Embryonic or young organs can continuously re-
structure themselves to develop required functions. Mature 
organs are expected to stay in a relatively stable living state 
and serve as fully functional; however, pathologically, the 
dynamic impact of bio-environmental changes will induce 
a quick remodelling process to renovate the functional tis-
sue. For instance, an embryo heart can continuously and 
instinctively develop its heart structure due to genetic fac-
tors, and tumours may grow independently of mechanical 
factors (Volokh 2006). However, a mature heart seems to 
grow along the direction of principal tensile stress due to 
mechanical factors (Taber and Eggers 1996). There are two 
typical examples of the maladaptive G&R in the heart. One 
is known as eccentric hypertrophy in response to chronic 
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volume overload, in which increased diastole wall stress 
leads to the addition of sarcomeres in series, associated with 
ventricular dilation. The other is eccentric hypertrophy due 
to pressure overload, whereby an increased systolic wall 
stress leads to the addition of sarcomeres in parallel, result-
ing in wall-thickening.

Despite the importance of G&R in disease progression, 
the principles governing those mechanisms are not fully 
understood. Improving this field’s knowledge will have con-
siderable potential for optimizing clinical treatments to save 
more lives efficiently. However, although growth has been 
of research interests for a few decades, and many different 
G&R theories exist but these mostly fall into two catego-
ries. The first one is based on variable material points, and 
the second one is based on fixed material points. The most 
well-known approach in the first category is known as the 
“constrained mixture” theory, initially developed by  Hum-
phrey and Rajagopal (2002), in which living tissues are 
considered to be composed of different constituents which 
continuously turnover with mass changes during the life 
cycle. They postulate that each constituent has a “preferred 
state” and that the reference (natural) configurations for each 
constituent exist and will be whatever allows this preferred 
state to be achieved. This framework considers the repro-
duction and removal of each constituent, so the reference 
configurations can be different even for the same constitu-
ents. In essence, one can add or remove material points to 
change the reference configurations. Many researchers, e.g. 
Baek et al. (2006); Alford et al. (2008); Valentin and Hum-
phrey (2009), and Watton et al. (2004, 2009); Watton and 
Hill (2009) developed their models in this category to study 
the G&R of arteries and aneurysms. The difficulty of using 
this theory is the lack of experimental data for historical 
changes of all the constituents during the tissue growth and 
it is almost impossible to track different natural configura-
tions from experiments. Stimuli from combined effects of 
various sources, including mechanical, thermal, electrical, 
and genetic information, may simultaneously contribute to 
the successive growth processes in living organs over dif-
ferent time scales, raising the complexity of identifying the 
contributions of individual environmental factors.

The volumetric growth theory is a typical example of 
the second category, following the idea of the kinematics 
of multiplicative plasticity (Bilby et al. 1955; Kerckhoffs 
et al. 2012). In this theory, it is assumed that there exists one 
reference (natural) configuration for all the constituents, and 
any incompatible growth due to growth of different constitu-
ents can be absorbed by the residual stresses. Taber (1998) 
and Rachev et al. (1998),among others, have employed this 
concept to model arteries and their response to hypertension 
in maturity. Following a growth law introduced by Taber 
(1998); Kerckhoffs (2012) used a strain-driven law to model 
post-natal cardiac growth, in which a cumulative growth is 

considered using multiplicative decomposition of a consec-
utive sequence of growth and elastic deformation tensors. 
Moreover, Kerckhoffs et al. (2012) modified the growth law 
to exclude the “unbounded” growth with a growth multiplier 
limiting function. Göktepe et al. (2010a) also developed a 
framework for using the bounded stress- and strain-driven 
growth laws to study pathological and physiological growth 
processes in the living heart. One of the debating points in 
this approach is whether a growth field is compatible. In 
addition, since soft tissues are essentially fibre-reinforced 
materials, growth theories that describe changes in the fibre 
structure have also been put forward, either by directly track-
ing the micro-fibre structure remodelling (Driessen et al. 
2003) or indirectly by including the density growth where 
the volume of the structure remains constant but its den-
sity varies (Eriksson et al. 2014). A few studies considered 
the evolution of the fibre distribution as well during G&R 
(Kroon et al. 2007; Rouillard and Holmes 2012; Zhuan et al. 
2019).

Of the two categories, the volumetric growth theory has 
been widely used due to its simplicity. However, a long-
standing issue of the volumetric growth theory is that most 
existing volumetric growth studies assumed that growth 
occurs in the natural (reference) configuration  (Budday 
et al. 2014; Göktepe et al. 2010a). Under this assumption, 
the volumetric growth is modelled by introducing a so-
called growth tensor defined from the reference configu-
ration (Rodriguez et al. 1994; Hsu 1968; Kerckhoffs et al. 
2012; Kerckhoffs 2012; Klepach et al. 2012), so that the 
overall deformation tensor � can be decomposed as

where �g is the pure growth tensor, and �e is the pure 
elastic deformation tensor. For fibre-reinforced soft tissue 
modelling, if the fibre structure in the reference configura-
tion is represented by the fibre, sheet, and normal direc-
tions �0, �0,�0 , then a commonly used growth tensor can be 
expressed as (Kerckhoffs et al. 2012)

where �j(�, t) , (j = f , s, n) , are called the growth multipliers. 
Note that growth is assumed to be along the principal cylin-
drical directions, and are functions of the position vector � 
of the reference configuration and time t. These are smaller 
or greater than one when the elastic body shrinks or grows 
with respect to the reference configuration.

If growth is compatible, then no residual stress is gener-
ated. This process is discussed in sect.  2.1.1. The evolu-
tion of the growth (multipliers) can be either considered as 
stress-driven (Taber 1998; Lubarda and Hoger 2002; Taber 
and Chabert 2002; Hariton et al. 2007), strain-driven (Ker-
ckhoffs et al. 2012; Driessen et al. 2004), or combined 

(1)� = �e�g,

(2)�g = 𝜗f �0 ⊗ �0 + 𝜗s�0 ⊗ �0 + 𝜗n�0 ⊗ �0,
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stress- and strain- driven (Taber and Eggers 1996). One 
important aspect of G&R theories is their thermodynamics 
consistence, which has been discussed in details by Epstein 
and Maugin (2000). For growth from the reference configu-
ration, it appears that the Mandel stress plays an important 
role in thermodynamically consistent formulations of inelas-
ticity. It is for this reason that Mandel stress is often used in 
stress-driven growth laws.

Amar and Goriely (2005) and Goriely and Amar (2007) 
moved a step further and studied growth from the current 
configuration without releasing the residual stress, albeit for 
simplified cases, such as symmetrical spheres (Goriely and 
Amar 2007). However, living organs cannot always be so 
simplified. More recently, Genet et al. (2015) introduced 
a growth involution law in the updated stress-free configu-
ration. However, they still used the growth tensor defined 
in the fixed reference configuration, and the strain energy 
function remained the same during growth. Therefore, it is 
unclear if their approach is thermodynamically consistent.

In reality, soft tissue G&R is a continuous process, so 
growth must occur in the current (loaded and residually 
stressed) configuration. In other words, given the geomet-
rical constraints, pure growth generally induces material 
incompatibility (Skalak et al. 1996). However, a theoretical 
framework for an incompatible growth in the current configu-
ration is missing, although some efforts have been made in 
this direction by studying growth evolution from an updated 
reference configuration after each incremental growth. For 
example, an inhomogeneous volumetric growth was studied 
using a three-dimensional simulation of the heart (Kroon 
et al. 2009). However, in these studies, it was assumed that 
residual stress is released after each incremental growth, 
and that further growth always starts from the updated, yet 
stress-free configurations. The reason for people to adopt this 
assumption is that the updated natural configurations can be 
determined directly from the cumulative incremental growth 
(or growth history) which leads to a similar computational 
method to the growth models from the reference configura-
tion (Budday et al. 2014; Göktepe et al. 2010a). However, the 
cost of this convenience is to force growth to be compatible 
at all times, which is a major model limitation. Amar and 
Goriely (2005) and Goriely and Amar (2007) moved a step 
further and studied growth from the current configuration, 
albeit for simplified cases, such as symmetrical spheres.

In particular, Goriely and Amar (2007) employed an 
incremental theory to propose a continuous description 
of the sequential growth from the current configuration. 
Although they started with general problems, progress was 
only made when the growth tensor and the deformation gra-
dient tensor are both assumed diagonal.

More recently, Genet et al. (2015) introduced a growth 
evolution law in an updated stress-free configuration. 

However, they still used the growth tensor defined in the 
fixed reference configuration, and the strain energy func-
tion remained the same during the growth. Therefore, it is 
unclear if their approach is thermodynamically consistent.

In this paper, we propose a new framework of volumet-
ric growth evaluated in the current configuration, which 
is thermodynamically consistent, and without releasing 
the residual stress or imposing geometrical and defor-
mational restrictions. In addition, we shall show that our 
theory can recover the results of Goriely and Amar (2007) 
under the same simplifications they used. We also estab-
lish the relationships between the strain energy functions 
defined in different configurations, i.e. in the natural, cur-
rent (stressed), and the evolving, grown, but stress-free 
configurations. This is different to previous work done by 
groups, e.g. (Ogden and Saccomandi 2007; Holzapfel and 
Ogden 2010; Gower et al. 2017; Agosti et al. 2018), who 
derived the constitutive laws from current stressed con-
figurations for soft tissue mechanics, but not applied to 
G&R processes.

We illustrate our idea using both a left ventricle (LV) 
and a cylinder model, which admit an inhomogeneous 
growth in a residually stressed current configuration. We 
also show that the total cumulative growth from the refer-
ence configuration, the expression of which is prescribed 
in previous volumetric growth theories, can be derived 
based on this new framework. This cumulative growth is 
not affected by elastic stretches but is dependent on elastic 
rotations. In other words, the cumulative growth tensor is 
a function of loading history, and hence, cannot be pos-
tulated a priori. The strain energy function with respect 
to the updated reference configurations also changes with 
growth. In this new approach, the stress-driven growth law 
is taken to be a function of the Cauchy stress tensor (also 
known as the true stress). Finally, we compare the residual 
stress of the LV model using growth laws defined in the 
reference and current configurations, respectively, with 
published experimental measurements (Costa et al. 1997; 
Omens et al. 1993), and show that our approach leads to 
qualitative agreements with the measurements.

2 � Volumetric growth theories

We take the accepted hypothesis that pure growth does not 
induce any elastic deformation [H1]. In other words, pure 
growth and elastic stretching of a body are two independ-
ent events. We also assume that the strain energy of a body 
at any time is a function of the total deformation gradient, 
which can be a combination of elastic and residual-stress 
induced deformations [H2] (Ogden 1997).
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2.1 � Growth from the reference (natural) 
configuration

We first introduce the concept and notations of existing 
volumetric growth theories based on the reference (natural) 
configuration.

2.1.1 � Compatible growth

Let � and � be the position vectors of a material point in the 
reference and current configurations, B0 and Bt , respec-
tively. The idea of growth from the reference configuration 
is illustrated in Fig. 1, where a pure (compatible) growth �g 
takes an elastic body from B0 to an (imaginary) grown and 
stress-free configuration Bg as �g =

��0

��0

 , assuming that the 
map �0(�0) exists and is differentiable. Then, after loading 
the body deforms into the current configuration Bt with elas-
tic deformation gradient �e =

��

��0
.

The overall deformation gradient is

Following (Ogden 2003), for incompressible materials that 
undergo volumetric growth, we must have the connection

where W0 is the free energy per unit volume in B0 , Wg is 
the elastic strain energy function per unit volume in Bg , 
JA = det� , and JFe

= det�e . Since W0(�g) ≡ 0 due to the 
hypothesis [H1], we simply have

where we have used JA = Jg = det�g , and JFe
= 1.

(3)� = �e�g.

(4)J−1
Fe
Wg(�e) = J−1

A
[W0(�) −W0(�g)],

(5)Wg(�e) = J−1
g
W0(�),

The Cauchy stress in Bt can be determined either through 
the total deformation � from B0 , or through the elastic 
deformation �e from Bg,

Equation (6) can be proved by making use of (5) and (3), i.e.

2.1.2 � Incompatible growth

We use the pure growth to describe the process so that 
if the growth tensor used to designate the growth which 
would be locally observed at a point of the tissue with 
the small region around it could be grown in isolation, 
then this leads to an incompatible strain field, and residual 
stress is required to keep the tissue intact (Skalak et al. 
1996). This process is shown in Fig. 2, where the grown 
and stress-free configuration Bg is made compatible via 
an elastic deformation �� into B� with residually stress, 
before the loading-induced �e maps B� into Bt . As shown 
in Fig. 2 and [H2], this process can also be viewed as a 
growth-induced residual deformation �� from Bg to B� 
followed by �e.

We now focus on incompressible materials and choose 
Bg as the new (evolving) reference configuration, with a 
strain energy function Wg . The total elastic deformation 
gradient from Bg to Bt is

(6)� = J−1
g
�
�W0(�)

��
= �e

�Wg(�e)

��e

.

(7)

� = J−1
g
�
�W0(�)

��
= �e�g(

�Wg(�e)

��e

��e

��
) = �e

�Wg(�e)

��e

.

Fig. 1   Compatible growth from the reference configuration, B
0
 . A 

pure and compatible growth �g takes the elastic body from B
0
 into 

Bg , and is then deformed via the loading-induced elastic deformation 
�e into the current configuration Bt . The total deformation gradient 
from B

0
 to Bt is denoted as �

Fig. 2   A pure growth �g from B
0
 takes the body to an incompatible 

and stress-free state in configuration Bg . The deformation �� assem-
bles the body into a compatible, but residually stressed stated in con-
figuration B� . Loading induced deformation �e then maps it onto 
the current configuration Bt . The process can be equally viewed as 
�−1
g

 from Bg to B
0
 followed by � from B

0
 to Bt , or from Bg to Bt 

directly via the elastic deformation �E
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As before, the Cauchy stress in Bt can be determined either 
from the reference configuration Bg,

 where Wg is the elastic strain energy function related to the 
configuration Bg.

or from B�,

where the strain energy function W� from B� is a function 
of both �e and residual stress � , and p, p� are the Lagrange 
multipliers to ensure incompressibility of the material. The 
identity ( p = p� ) has been proved by (Ogden 2003). Hence-
forth, we only use p.

The equivalence of (9) and (10) can be similarly proved 
using the connection,

Substituting (5) and (11) into (10), and making use of [H1], 
so that ���∕��e = � , we obtain (9).

When evaluated in B� with �e = � and �E = �� , the Cauchy 
stress � simply becomes the residual stress � , i.e.

The residual stress and the Cauchy stress must obey their 
corresponding equilibrium equations,

The boundary conditions are zero-loading for � and loading 
for � , respectively. This enables us to solve for �� and �e , 
and hence, � and �.

2.2 � Growth evaluated in the current (stressed) 
configuration

We now propose a new theory that enables growth law to be 
evaluated in the current (stressed) configuration. We denote 
such a configuration as B̄1 . As shown in Fig. 3, B̄1 is reached 
after the body is deformed from the reference configuration B0.

Let �1 = �̄e1
 indicate this elastic deformation. Since the line 

elements of material transform according to d� = �1d�� , we 
have the incremental connection,

(8)�E = ��−1
g

= �e�� .

(9)� = �E

�Wg(�E)

��E

− p�,

(10)� = �e

�W�(�e, �)

��e

− p��.

(11)W�(�e, �) = Wg(�E) −Wg(��).

(12)� = ��

�Wg(��)

���

− p� =
�W�(�, �)

��e

− p�.

(13)div� = � or div� = �.

(14)�(d�) = ��1(d�0).

If the stressed configuration B̄1 is now chosen as the refer-
ence configuration then the right-hand side of (14) becomes 
���(d�) , where ��� is the value of ��1 in this configuration. 
Here, �0 is the unit tensor before the initial configuration 
B0 : �0 = I . Since d� and hence �(d�) is independent of the 
reference configuration, we obtain the connection (Ogden 
1997)

Now consider an incremental deformation caused by the 
pure growth �̄g1

 and �̄𝜏1
 , which take the body into the incom-

patible configuration B̄g1
 first and then assemble it into a 

compatible configuration B̄𝜏1
 . If the growth displacement 

�� is “small” for each � in B0 so that terms of order ≥ |��|2 
are negligible in comparison with those of order |��| then we 
refer to 𝛿�1 = �̄𝜏1

�̄g1
 as an incremental (growth) deforma-

tion from B̄1 to Bt.
This approach is the classic growth incremental procedure 

(i.e. in Amar and Goriely (2005); Göktepe et al. (2010a)). 
Goriely and Amar (2007) also employed the similar approach 
but included the second-order deformation increments.

Since ��0 = � , 𝛿�1 = �̄𝜏1
�̄g1

 , �1 = �̄e1 , (15) can also be 
written as

As in Sect. 2.1.2, the total elastic deformation gradient �E1
 

can be equally achieved either along the top path Bg1

–B0–Bt , or the lower path Bg1
–B�1

–Bt . The physical inter-
pretation of the lower path Bg1

–B�1
–Bt is that a pure growth 

�g1
 , which can be derived from �̄g1

 , maps the reference con-
figuration B0 into the grown and incompatible (stress free) 
configuration Bg1

 . Bg1
 is made compatible by ��1

 and 
becomes B�1

 with the residual stress �1 . From B�1
 the body 

is deformed to Bt by the elastic deformation �e1
 . The process 

(15)��0 = ��1�1.

(16)� = �̄𝜏1
�̄g1

�̄e1
.

Fig. 3   Growth from a stressed configuration B̄
1
 following an elas-

tic deformation �̄e1
 . Then, the body undergoes a small incremental 

deformation 𝛿�
1
= �̄𝜏1

�̄g1
 from B̄

1
 to Bt . The process can be equally 

viewed as �−1
g1

 from Bg1
 to B

0
 followed by � from B

0
 to Bt , or from 

Bg1
 to Bt directly via the elastic deformation �E1
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of the top path can be viewed as �−1
g1

 from Bg1
 to B0 followed 

by � from B0 to Bt . So again, we have

from which we obtain

We remark that for growth from the current configuration, 
it is not easy to follow the top path in Fig. 3, since we do not 
introduce the strain energy function with respect to B̄g1

 or 
remove the external loading. On the other hand, if we follow 
the lower two paths, we have the situation already discussed 
in Sect. 2.1.2. In other words, we always compute � from 
(18), and not from (16). However, to use (18), we must first 
establish the connection between �̄g1

 and �g1
.

Since pure growth is independent of the elastic stretch (H1), 
the only difference between �̄g1

 and �g1
 is due to the rotation 

of �̄e1
 , i.e.

where �̄r1
= �̄−1

e1
�̄e1

 . Since �̄e1
 can be easily computed, given 

�̄g1
 , �g1

 is known.
The rest of the analysis simply follows the approach of 

Sect. 2.1.2. The Cauchy stress in Bt is

The strain energy function W�1
 with respect to B�1

 satisfies

The residual stress �1 is simply the Cauchy stress evaluated 
in B�1

 when the external loading is removed, i.e. �e1
= � , 

�E1
= ��1

 . Hence,

(17)�E1
= ��−1

g1
= �e1

��1
,

(18)� = �e1
��1

�g1
.

(19)�g1
= (�̄r1

)T�̄g1
�̄r1

.

(20)�1 = �E1

�Wg1
(�E1

)

��E1

− p� = �e1

�W�1
(�e1

, �)

��e1

− p�.

(21)W�1
(�e1

, �1) = Wg1
(�E1

) −Wg1
(��1

).

Again, �1 and �1 both obey the corresponding equilibrium 
equations, and the appropriate boundary conditions. From 
these, we solve for ��1

 and �e1
 , and �

1
 and �

1
.

2.3 � Subsequent growth from stressed and grown 
configuration

Subsequent growth can occur for k steps of growth and 
deformation in B̄k , as shown in Fig. 4. In general, external 
loading may also change after every step. Now with an new 
incremental growth ��k from B̄k , the total deformation gra-
dient from B0 to Bt becomes

where 𝛿�k = �̄𝜏k
�̄gk

,

is the deformation gradient from B0 to B̄k , and

Here, �Gk
 is the total cumulative pure growth from B0 to 

Bgk
 , computed from the previous cumulative pure growth 

�Gk−1
= �gk−1

...�g1
 , i.e.

Again, to follow the path Bgk
–B�k

–Bt , we must first find the 
connection between �̄gk

 and �gk
 , so that (26) can be evalu-

ated. The deformation gradient between B̄k and Bgk is 
�k�

−1
Gk−1

 . Let �rk
= �k�

−1
Gk−1

 , then we have the connection

(22)�1 = ��1

�Wg1
(��1

)

���1

− p� =
�W�1

(�, �1)

��e1

− p�.

(23)� = ��k�k = �ek
��k

,

(24)�k = �̄ek
�̄𝜏k−1

�̄gk−1
�̄ek−1

...�̄𝜏1
�̄g1

�̄e1
= (𝛿�k)

−1�ek
�𝜏k

(25)�Ek
= ��−1

Gk
= �ek

��k
.

(26)�Gk
= �gk

�Gk−1
.

Fig. 4   General roadmap after 
k steps of continuous growth 
and deformation. The deforma-
tion gradient from B

0
 to Bt 

is � , the incremental growth 
from the loaded configuration 
B̄k is 𝛿�k = �̄𝜏k

�̄gk
 . The total 

cumulative pure growth tensor 
B

0
 to Bgk

 is �Gk
 . Bgk

 is the 
grown, stress free but incompat-
ible configuration, and B�k

 is 
the compatible and residually 
stressed configuration
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where �rk
 is the rotation of �rk

.
The procedure is now the same as before. So we give the 

general expressions. The Cauchy stress in Bt is

where

Similar to (22), the residual stress �
k
 is

Again, �k and �k both obey the corresponding equilibrium 
equations and the appropriate boundary conditions. From 
these, we can solve for ��k

 and �ek
.

At this point, all we need is an incremental growth law 
for �̄gk

.

2.4 � Incremental growth law

If we consider continuous growth and deformation, then 
we can write �gk

= �gt
 , similarly, �Gk

= �Gt
 . For simplicity, 

we assume that the growth tensor is diagonal for a fibre-
reinforced material. This assumption is widely accepted by 
the community and seems to hold for the left ventricle (Li 
et al. 2021). Consequently, all the incremental growth ten-
sors are also diagonal. Note it is not essential to assume a 
diagonal incremental growth tensor in this framework. A 
more general growth law including off-diagonal elements 
can equally work if one has experimental data to support 
the expression. However, the assumption is used to illustrate 
the framework more clearly, and to compare our results with 
those from previous work. Let �̄gt

= d� be the incremental 
growth tensor, we write

where ( �t, �t, �t ) is the fibre structure of the material at time 
t, which is related to the fibre structure at t = 0 via

and 𝜗̇f , 𝜗̇s, 𝜗̇n in (31) are the rates of change of the growth 
multipliers in the �t, �t, �t directions, respectively, which can 
be written as �̇(�, t) =

[
𝜗̇f , 𝜗̇s, 𝜗̇n

]
 . Note � = diag(�Gt

) , so � 
represents the total cumulative growth vector of the elastic 
body with respect to the reference configuration B0.

(27)�gk
= (�rk

)T�̄gk
�rk

,

(28)�k = �Ek

�Wgk
(�Ek

)

��Ek

− p� = �ek

�W�k
(�ek

, �)

��ek

− p�,

(29)W�k
(�ek

, �k) = Wgk
(�Ek

) −Wgk
(��k

).

(30)�k = ��k

�Wgk
(��k

)

���k

− p� =
�W�k

(�, �k)

��ek

− p�.

(31)�̄gt
∕dt = 𝜗̇f �t ⊗ �t + 𝜗̇s�t ⊗ �t + 𝜗̇n�t ⊗ �t,

(32)�t =
��0

||��0||
, �t =

��0

||��0||
, �t =

��0

||��0||
,

We now assume that growth can be either stress or strain 
driven. Using a similar evolution law as in (Lubarda and 
Hoger 2002; Göktepe et al. 2010a), we write

where �t and �t =
1

2
(� − �−T�−1) are the Cauchy stress and 

Eulerian strain tensors in Bt , respectively.
The growth threshold � is a scalar function of either the 

Cauchy stress tensor or the Eulerian strain tensor, depending 
if growth is stress or strain driven. In other words, growth 
is activated once the stress or strain during physical activity 
exceeds the physiological threshold level. If � is negative, 
then there is no growth. l=

[
lf , ls, ln

]
 is a limiting or scaling 

vector function since growth cannot continue infinitely. In 
this paper, we follow Lubarda and Hoger (2002); Göktepe 
et al. (2010a) to choose

where �jmax are the maximum values of the growth multipli-
ers �j , and �j , �j are growth parameters. The choice of � and 
lj(�) in (33) will ensure the growth rate changes smoothly 
until the growth multiplier �j has reached its maximum value 
�jmax . The nonlinearity and the speed of the growth are gov-
erned by �j and �j , respectively.

2.5 � The strain energy function

We choose the grown and stress-free configuration Bgt
 as 

the reference configuration which evolves with time. We 
also adopt a modified Holzapfel–Ogden (HO) model for the 
fibre-reinforced material (Holzapfel and Ogden 2009) in Bgt

,

where I1 , I4 are invariants of �Et
= �T

Et
�Et

 , the right 
Cauchy–Green tensor with respect to Bgt

 , �Et
 is the total 

elastic deformation from Bgt
 to Bt,

I1 = �Et
∶ � and I4 = �gt (�g) ⋅ �Et

�gt (�gt
).

�gt
 and �gt

 are angles between �gt and �0 , and �gt and �0 in 
the �0 − �0 plane, respectively, and

the fibre direction in Bgt
 changes according to

And a, b a1 , b1 are material parameters.

(33)
diag(�̄gt

∕dt) = �̇ = l(�)𝜙(�t) or

diag(�̄gt
∕dt) = �̇ = l(�)𝜙(�t),

(34)lj(�) =
1

�j

[
�jmax − �j

�jmax − 1

]�j
, j = f , s, n,

(35)
Wgt

(�Et
) =

a

2b

{
exp[b(I1 − 3)] − 1

}

+
af

2bf

{
exp[bf(I4(�g,�g) − 1)2] − 1

}
,

(36)�gt =
�−1
Gt
�0

||�−1
Gt
�0||

, �gt =
�−1
Gt
�0

||�−1
Gt
�0||

, �gt =
�−1
Gt
�0

||�−1
Gt
�0||

.
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At t = 0 there is no growth, Bg0
 overlaps with B0 , so 

Wg0
= W0.

3 � Numerical methods

3.1 � Finite element model and numerical algorithm

The LV diastolic dynamics with growth from loaded con-
figuration is simulated using the finite element package 

FEAP 8.3, with 2100 8-node hexahedral elements and 
2375 nodes (Fig. 5). In addition to the equilibrium equa-
tions and boundary conditions, where we fix all the nodes 
on the base, we also need to solve the evolution equation 
(33). Since the continuous growth occurs at a time scale 
much slower than the time for the system to reach the equi-
librium, the equations are quasi-time-dependent.

At the current time t, after k steps of growth.
The growth evolution equation (33) predicts the incre-

mental growth

where �t = t − tk.
At every time step, we use a mixed variational approach 

in FEAP to solve the mechanical behaviour of the nearly 
incompressible soft tissue that is free from locking. For 
each element, FEAP uses the Hu–Washizu variational 
principle

where �̂ , �̂ are the element ordered vectors of stress and 
strain tensors, u is the displacement vector, ℂ(2) is the 
ordered matrix of tangent moduli tensor �(4) (see (Taylor 
2014) for details of the definition of an ordered matrix), t 
is the traction, ∇(s)� is the symmetric part of ∇� , �b is the 
traction on the force boundary ��� , �b is the displacement 
vector on the displacement boundary ��� . The computa-
tional algorithm for the volumetric growth is given below.

(37)
diag(�̄gt

) = l(�k)𝜙(�k)𝛥t or diag(�̄gt
) = l(�k)𝜙(�k)𝛥t,

(38)
𝛱(�, �̂, �̂) =

1

2 ∫
𝛺

�̂
T
ℂ

(2)
�̂ d𝛺 + ∫

𝛺

�̂
T (∇(s)� − �̂)d𝛺

− ∫
𝜕𝛺�

�T (� − �b)d𝛺 − ∫
𝜕𝛺�

�T �bd𝛺

Fig. 5   a The LV geometry with 28mm long axis, an internal radius of 
5mm and external radius of 10mm at the base, and a block cut from 
the LV wall. The ratio between the LV wall thickness and the internal 
radius is chosen to be one following  Omens and Fung (1990). The 
basis vectors at the reference configuration are ( �

0
 , �

0
 , �

0
 ) for local 

coordinates, where �
0
 , �

0
 , and �

0
 are the local circumferential, longi-

tudinal and transmural unit vectors. The basis vectors at the reference 
configuration are ( � , � , � ) for global Cartesian coordinates, with ori-
gin O at the LV apex. b The fibre structure through the thickness of 
the LV wall. c Five longitudinal–circumferential sections through the 
wall thickness. Collagen fibres lie in the �

0
–�

0
 plane
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4 � Test examples

We now use the following examples to illustrate our approach. 
Henceforth, we use Growth-B0 to refer to the volumetric 
growth from the reference configuration, and Growth-Bt to 
indicate the growth from the current configuration.

4.1 � Modelling G&R in myocardium

4.1.1 � Geometry of the LV model

Myocardium is considered to be a fibre-reinforced material 
composed of collagen fibres and myocytes.

A local coordinate system with the circumferential, lon-
gitudinal, and transmural basis vectors ( �0 , �0 , �0 ), is intro-
duced to describe the layered fibre structure within the ven-
tricular wall, as shown in Fig. 5. An idealized half ellipsoid 
geometry is used for a rat LV. Global Cartesian coordinates 
(X, Y, Z) are used to describe material points in the unde-
formed reference configuration, with the corresponding 
basis vectors denoted {�X ,�Y ,�Z} . Note that

(39)�0 = �Z × �0, �0 = �0 × �0.

Let the myofibre architecture be described by a 
“fibre–sheet–normal” system ( �0 , �0 , �0 ) in the reference 
configuration, B0 (Wang et al. 2013). Here, we assume that 
the fibre direction �0 always lies in the �0–�0 plane, the sheet 
direction is transmural, and the sheet–normal �0 = �0 × �0.

We consider two cases of growth in the myocardium, one 
is the isotropic growth of athletic’s heart, and the other is the 
growth following a pathological cardiac dilation. For moti-
vation and physiology, please refer to Göktepe et al. (2010a), 
who first considered these cases. In both cases, to simulate 
the LV growth under loading, we use the strain energy func-
tion defined in (35), with parameters chosen to be a = 2.28 
kPa, b = 1.8 . We also impose a constant internal pressure of 
12 mmHg from t = 0 throughout the growth.

4.1.2 � LV case 1: athletic heart and isotropic growth

Since this is isotropic growth, we have 𝜗̇n = 𝜗̇s = 𝜗̇f = 𝜗̇ 
such that (31) becomes

(40)�̄gt
∕dt = 𝜗̇�.
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We note in this special case, the fibre structure ( �t, �t, �t ) in 
the updated stress-free configuration Bk is the same as the 
initial fibre structure ( �0, �0, �0).

For Growth-B0 , we follow Göktepe et al. (2010a) by 
assuming the growth is stress driven, using the growth ten-
sor defined in (2), together with the evolution law

Fig. 6   Contours of the growth factor � in the Case 1 after 0, 1, 3, and 5 weeks growth. Above: Growth-B
0
 . Blow: Growth-Bt . Path 1 at the 

upper middle section of the LV is defined to compare the transmural variation of results, see text for details

(a) (b)

Fig. 7   Transmural distribution of the Eulerian residual strain eff  
(a), and stress �ff  (b), in the mean fibre direction along path 1 for 
Growth-B

0
 (dash-dot) and Growth-Bt (solid), at weeks 1, 3, and 5. 

The corresponding experimental measurement of eff  from a canine 
heart mid-anterior wall by Costa et al. (1997) is also plotted in (a) for 
comparison
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where

Here � is the Mandel stress tensor, � = �� , � = �T� , � 
is the second Piola–Kirchhoff stress tensor, and Mcrit is a 
critical stress value. The parameters are chosen as

For Growth-Bt , we have the growth tensor (40) and its evo-
lution law defined in Bt , and (33)1 and (34), with

and similarly choose

with all other parameters being the same as in Growth-B0.
Figure 6 shows that both models display ventricular dila-

tion and wall thickening.
However, the growth patterns are clearly different. In 

Growth-B0 , most of the growth is focused on the apex area, 
which is opposite to that of the Growth-Bt model. Away 
from the apex area, the growth is also very different. To 
make more detailed comparisons, we define a transmural 
path 1 (see Fig. 6) at the same location for both models.

We then compare the Eulerian residual strain and stress 
components, eff  and �ff  , along the mean fibre direction, cal-
culated from the residually stressed configuration B�t

 as 
shown in Fig. 4. The transmural distributions of eff  and �ff  
at weeks 0 to 5 are shown in Fig. 7 for both models. We can 
see that the trends of these distributions are opposite in the 
two models. For Growth-B0 , eff  is positive from the endocar-
dial surface, and decreases transmurally; but for Growth-Bt , 
eff  is negative from the endocardial surface, and increases 
transmurally. The trend of Growth-Bt is supported by the 
published experiments and previous studies, e.g. Costa et al. 
(1997); Omens et al. (1993); Wang et al. (2014). In particu-
lar, the experimental data by Costa et al. (1997) measured 
from the mid-anterior part of the canine LV are drawn in 
Fig. 7 to illustrate the qualitative dis/agreements with the 
two models.

4.1.3 � LV case 2: Pathologic cardiac dilation

In the second example, we consider dilated cardiac growth, 
which is often a result of myocardial infarction (heart 
attack). In this case, the heart responds to a volume overload 
while attempts to maintain the cardiac output at a physi-
ological level (Cheng et al. 2006).

�g = 𝜗�, 𝜗̇ = l(𝜗)𝜙(�),

(41)l(�) =
1

�

[
�max − �

�max − 1

]�
, and � = tr(�) −Mcrit.

Mcrit = 0.0012 M Pa, �max = 1.75, � = 2, and � = 1.

�(�) = tr(�) − �crit.

�crit = 0.0012 M Pa,

This cardiac dilation can be described as a strain-driven, 
transversely isotropic, and irreversible growth. Again we fol-
low Göktepe et al. (2010a) and model the process assuming

For Growth-B0 , the growth tensor is defined in B0 as

The strain-driven involution law is Göktepe et al. (2010a),

where l(�) is the same as in (41)1 , �f0 is the stretch along the 
direction of �0 , i.e. �f0 = (�0 ⋅ ��0)

1∕2 , and � obeys

where �crit
f0

 is the criteria value of elastic stretch. The param-
eters are chosen to be

following Göktepe et al. (2010a).
For Growth-Bt , we have the incremental growth tensor 

defined in Bt,

We use the same strain-driven law as (43), except the func-
tion � is function of �f = (�t ⋅ �Et

�t)
1∕2,

where �crit
f

 is the criteria value of elastic stretch along �t . In 
this case, the fibre structure in either Bt or Bg changes with 
time, so we need to compute the updated fibre structures 
using (32) and (36). Other than this, we keep the same 
parameters as in (45) with �crit

f
 replacing �crit

f0
.

The distribution of � for both models is compared in Fig. 9. 
Again, similar patterns are seen in each model, with more 
growth in the apex area for Growth-B0 , and more growth away 
from the apex area for Growth-Bt . We also see that compared 
to the isotropic growth in the previous example, in both mod-
els, this strain-driven cardiac growth (eccentric dilation) shows 
a more significant increase in the cavity size, but with a less 
noticeable increase in the wall thickness.

The residual strain eff  and stress �ff  along the Path 1 of the 
LV are shown in Fig. 10 for both models. Again, the two mod-
els have opposite strain distributions. Note that we do not see 
wall thinning of the LV wall in either model, which is fre-
quently observed in clinic cases, e.g. (Hankiewicz et al. 2008; 
Venco et al. 1987), or modelled in (Zhuan et al. 2019). How-
ever, here no local growth or infarction zone is considered, 
which is responsible for wall thinning. Similar simulation and 

�s = �g and �s = �n ≡ 1.

(42)�g = � + (𝜗 − 1)�0 ⊗ �0.

(43)𝜗̇ = l(𝜗)𝜙(𝜆f0 ),

(44)� = �f0 − �crit
f0

,

(45)�crit
f0

= 1.001, �max = 1.5, � = 2, � = 1,

(46)�̄gt
∕dt = � + (𝜗̇ − 1)�t ⊗ �t.

(47)�(�f ) = �f − �crit
f

,
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conclusion are seen in (Göktepe et al. 2010b; Lee et al. 2015; 
Klepach et al. 2012).

Similar trends of the maximum residual loop stress in Fig. 8 
are observed in this case.

4.2 � Saturated growth in a multi‑layer cylinder

To understand the differences between the two approaches in 
greater depth, here we consider a stress-driven growth in a 
cylindrical model subject to internal pressure, similar to that 
studied by (Goriely et al. 2008), except we use four layers here 
to enable the cross-layer growth. This model also allows us 
to compare to the special case considered by (Goriely et al. 
2008), where a constant growth tensor (saturated homogenized 
growth) is used.

The model geometry in terms of the polar coordinates (R, 
� , Z) is given by

where L is the LV length, and R(i)

j
 , R(o)

j
 denote the inner and 

outer radii of each layer ( j = 1, 2, 3, 4 ), respectively.
In terms of cylindrical polar coordinates (r, � , z), the geom-

etry of the deformed configuration is given by

where � is the axial stretch. Similar to the incremental 
growth used by Goriely et al. (2008), we choose the incre-
mental growth tensor in Growth-Bt to be

and the growth tensor for Growth-B0 to be

with a simplified stress-driven growth involution law as in 
(Genet et al. 2015),

and

(48)
R
(i)

1
⩽ R ⩽ R

(o)

1
, 0 ⩽ � ⩽ 2�, 0 ⩽ Z ⩽ L (layer I),

(49)
R
(o)

1
⩽ R ⩽ R

(o)

2
, 0 ⩽ � ⩽ 2�, 0 ⩽ Z ⩽ L (layer II),

(50)
R
(o)

2
⩽ R ⩽ R

(o)

3
, 0 ⩽ � ⩽ 2�, 0 ⩽ Z ⩽ L (layer III),

(51)
R
(o)

3
⩽ R ⩽ R

(o)

4
, 0 ⩽ � ⩽ 2�, 0 ⩽ Z ⩽ L (layer IIII),

(52)r = r(R), � = �, z = �Z,

(53)�̄gt
= diag(1, d𝜗, 1),

(54)�g = diag(1, �, 1),

(55)𝜗̇ =
1

𝛽
(
𝜗max − 𝜗

𝜗max − 1
)tr(�), for Growth- Bt,

(56)𝜗̇ =
1

𝛽
(
𝜗max − 𝜗

𝜗max − 1
)tr(�), for Growth-B0,

where � and �max are chosen to be 1 and 1.75, which are 
arbitrarily set to reach the limit (saturated growth) sooner. 
Notice for this simple model, the rotation tensor caused by 
elastic deformation is always identity; therefore, the cumu-
lative growth tensor �Gt

 of Growth-Bt is the same as the 
growth tensor �g in Growth-B0.

Note in the approach by Goriely et al. (2008), no stress- or 
strain- driven law is used; the cumulative growth tensor for the 
saturated growth is simply given as

where �∞ is chosen to be �max here.
Solving the momentum equilibrium equation with com-

patibility conditions as in (Zhuan and Luo 2020), we obtain 
solutions of the problem. Figure 11 shows the transmural 
distributions of the residual hoop strain e�

��
 and stress ��

��
 for 

the 4-layer cylindrical model at different growth times, using 
Growth-B0 and Growth-Bt approaches. Figure 12 plots the 
cumulative growth factor and the time history of the maxi-
mum value of ��

��
 (the history of the residual loop strain has 

a similar trend, not shown).
Note that in both models, � increases monotonically 

with time. However, the trend of stress/strain is differ-
ent; it increases monotonically with time for Growth-B0 , 
whereas for Growth-Bt it reaches a local maximum first 
before decreasing. When growth is saturated, Growth-B0 
and Growth-Bt both reach the exactly same solution as in 
(Goriely et al. 2008).

To be more general, we can assume the cylinder is made 
of many layers of equal thickness d in the reference configu-
ration. We consider the cumulative diagonal growth tensors 
for all the layers

After the growth, the jth layer is deformed with the middle 
perimeter 2�(R(i)

j
+ d∕2)�j, and the radius (R(i)

j
+ d∕2)�j , 

where R(i)

j
 indicates the inner radius of the jth layer. Simi-

larly, the middle radius of the next layer is (R(i)

j+1
+ d∕2)�j+1, 

where R(i)

j+1
 indicates the inner radius of the (j + 1) th layer. 

Material continuity (compatibility) requires that

Since d = R
(i)

j+1
− R

(i)

j
 , (59) can be rearranged to read

If we consider infinitely many layers, i.e. taking the limit of 
d → 0, then (60) is simply

(57)�Gt
= diag(1, �∞, 1),

(58)
�
j

Gt
= �j

g
= diag(1, �j, 1), j = 1,

2, 3, ...(from inner to outer walls).

(59)(R
(i)

j
+ d∕2)�j + d = (R

(i)

j+1
+ d∕2)�j+1.

(60)
�j+1 − �j

R
(i)

j+1
− R

(i)

j

=
�j+1 − 1

R
(i)

j

.
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where �′ is the derivative of with respect to R. This is the 
material compatibility condition. If (61) holds, then the 
local volumetric growth is compatible and does not induce 
residual stress. If (61) is true everywhere, then the whole 
configuration is residually stress free. Hence, we can intro-
duce the measure of incompatibility as

If G > 0 , the growth will induce a smaller residual hoop 
stress in the jth layer compared with the (j + 1) th layer. 
If G > 0 across the whole wall, then the hoop stress dis-
tribution will be from negative (compression) to positive 
(stretching). Likewise, if G < 0 , the growth will induce a 
greater residual hoop stress in the jth layer compared with 
the (j + 1) th layer. If G < 0 across the whole wall, then the 
hoop stress distribution will be positive to negative.

Since the cylindrical model is subject to internal pres-
sure, the distribution of the Cauchy hoop stress is from 
positive to negative in the absence of growth. With the 
given growth (58), we found G > 0 across the whole wall 
initially in the Growth −Bt model, leading to a positive 
maximum residual hoop stress towards the outer-most 
wall, as shown in Fig. 7b. This is opposite to the distri-
bution of the Cauchy hoop stress, and tends to even out 
the overall stress distribution. In other words, the residual 
stress should have a beneficial effect under physiological 
loading. As this trend continues, growth, driven by the 
total stress, will have to slow down at some stage, and the 
growth mismatch, hence, the residual stress, will start to 
reduce. This occurs at t=1.5 in Fig. 12.

On the other hand, in the Growth −B0 approach, we 
found G < 0 across the whole wall initially, leading to the 
negative maximum hoop stress towards the outer-most 
wall, as shown in Fig. 7a. This distribution of the residual 
loop stress holds the same trend with the loading induced 
Cauchy stress. Hence, the overall stress increases, which in 
turn enlarges the growth mismatch. The (negative) residual 
hoop stress becomes more negative with time.

Since growth is set to be limited by �max , giving sufficient 
time, all the material points eventually reach the same satu-
rated growth in both approaches, so we have

which leads to G < 0 everywhere. In other words, for a satu-
rated growth, we have the same negative maximum hoop 
stress using both approaches, as predicted by Goriely et al. 
(2008).

(61)�� =
1 − �

R
,

G(R, t) =
1 − �

R
− ��

𝜗 = 𝜗max > 1, 𝜗� = 0,

5 � Discussion

In this paper, we have developed a new approach that allows 
the growth of soft tissues to occur in the current loaded and 
residually stressed configuration, which is different to the 
traditional approaches that need to define growth tensor from 
the reference (unloaded and zero-stressed) configuration. 
Since all functional activities and remodelling processes in 
living tissues continuously occur and respond to bi-environ-
mental signals, it is natural to assume that growth is induced 
in the current configuration to adapt to the time-dependent 
changes. Although we also assumed that the growth tensor 
is diagonal in the examples, our theory also works for more 
general expressions of the growth tensor.

The striking differences in the current approach, 
Growth-Bt , and the previous approach, Growth-B0 , are 
demonstrated in two test cases. Namely, isotropic growth 
and pathologic dilation of myocardium. The most significant 
finding is that the estimated residual strain distributions post 
G&R have opposite transmural distributions using the two 
approaches. And the result of the Growth-Bt model is sup-
ported by experimental observations. The other differences 
we noticed are that in the Growth-Bt model, the overall 
residual fibre stress or strain seems to reach a peak first (e.g. 
about week 3), and then decreases with time. This is differ-
ent to the Growth-B0 approach, where the residual stress or 
strain increase monotonically with time until the set growth 
limit is reached, as shown in Fig. 8.

These differences are explained in detail using a cylin-
drical model. Indeed, the cylindrical model has the same 

Fig. 8   The time history of the maximum residual hoop stress �ff  , at 
growth time t=1-5 weeks in case 1 for Growth-Bt (red solid with cir-
cle) and Growth-B

0
 (black dash-dot with triangle)
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characteristics as the myocardium models, in terms of the 
behaviours of the two approaches. Further, with this model, 
we are able to introduce an incompatibility index, which 
can be used to judge the trend of the transmural distribu-
tion of residual stress. It is also easier to demonstrate that 

at sufficiently long time ( t > 5 in this case), both models 
converge to the same saturated growth limit (black curve), as 
the growth factor of all regions reaches the set limit of �max , 
which is the same solution of the constant growth studied by 
Goriely et al. (2008) for 𝜗 > 1.

Fig. 9   Contours of the growth factor � in the Case 2 after 0, 1, 3, and 5 weeks growth. Above: Growth-B
0
 . Below: Growth-Bt . In both cases, the 

LV cavity size increases more obviously than the wall thickness

(a) (b)

Fig. 10   As in Fig. 7, but for the Example 2
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For the saturated growth in the cylindrical model, we 
have the same negative maximum hoop stress using both 
approaches, as predicted by Goriely et al. (2008). In other 
words, in the saturated growth, the residual stress does 
not help the soft tissue cope with the external loading, 
which is against the experimental observations. However, 
we remark that this limiting steady state is a result of the 
prescribed growth law, which may never be achieved in 

physical situations within a realistic time scale. Not only 
because the residual hoop stress distribution of the limit-
ing case is not seen in experiments, but geometrical and 
time constraints of a living tissue/organ may not allow a 
homogenized (saturated) growth to occur. Clearly, in the 
two myocardium cases, none has reached the saturated 
growth.

(a) (b)

Fig. 11   Transmural distributions of a residual hoop strain e�
��

 , and b 
residual hoop stress ��

��
 , at growth time t =0.3, 1, 3, 5, for the 4-layer 

cylindrical model using Growth-Bt (solid) and Growth-B
0
 (dash-dot) 

approaches. Both models reach the same limit as time goes to infinite 
( t > 5 ), when an uniform growth is reached everywhere

(a) (b)

Fig. 12   Transmural distributions of a the growth factor � for 
Growth-Bt (solid) and Growth-B

0
 (dash-dot), (b) time history of 

the maximum residual hoop stress ��
ff

 for Growth-Bt (red solid with 

circle) and Growth-B
0
 (black dash-dot with triangle), at growth time 

t=0.3, 1, 3, 5, for the 4-layer cylindrical model
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We remark that the cumulative volumetric growth �Gt
 from 

B0 essentially plays the same role as the conventionally used 
growth tensor �0

g
 in (2). In other words, once we know �Gt

 , all 
the classical theories of G&R follow. However, it is impossible 
to define an evolution law for �Gt

 prior to deformation, since ele-
ments of �Gt

 are continuously rotated due to elastic deformation, 
as shown in (26) and (27). On the other hand, one can easily 
prescribe an evolution law for the incremental growth tensor �gt

 . 
This explains why the updated growth theory by Goriely and 
Amar (2007) works for symmetrical geometries with diagonal 
deformation gradient and growth tensors, since deformation 
induced rotations do not make any differences. In this special 
case, a growth law for �Gt

 may be defined prior to deformation.
To be more specific, we now show that under the assumption 

that both the deformation gradient and growth tensors are diago-
nal, the residual stress tensor arising from the incremental growth 
tensor �̄gk used by Goriely and Amar (2007)(i.e. “ �2�1 ” in their 
Fig.2), is the same as in our approach. Note the rotation of �̄gk is 
an identity tensor due to its diagonality (i.e. “ �2

′′ ≡ � )) and “ �1 ” 
is essentially the mapping from Bgk

 to B̄gk
 in Fig. 4, using our 

notation this is �k�
−1
Gk−1

 . The connection of this mapping to �̄gk 
is simply �̄gk�k�̄

−1
gk

 . Since all the tensors are diagonal and orders 
can be swapped, we can show that

In other words, for this special case, we obtain the same 
results as in Goriely and Amar (2007). However, when either 
the growth tensor or the elastic tensor is not diagonal, these 
two approaches are different. Hence, for general G&R pro-
cesses, our residual stress tensor �̄gk�k�̄

−1
gk

 cannot be simpli-
fied to �k�

−1
Gk−1

 and is dependent on the past loading 
history.

G&R modelling is useful even if we do not know the history 
of the tissue growth. Often we encounter situations when all we 
know is that residual stress exists. A growth theory can be used 
to establishes the relationship between the residual strain/stress 
and the history of tissue growth. Hence, with a given growth ten-
sor, we can estimate the residual strain (Zhuan and Luo 2020). 
On the other hand, by estimating the residual strain experimen-
tally, e.g. via the opening angle methods, we can determine the 
cumulative growth tensor at the time when the residual stress is 
released. By considering growth in the current configuration, we 
also naturally included the effects of changed fibre orientations in 
the soft tissue. Indeed, the mean angle of the fibre distributions 
changes after continuous growth, which in turn updates the strain 
energy function.

Finally, we would like to remark that in this work a sim-
plified HO model is used and the tuning factors in the test 
cases are not based on experiments. However, we believe 
these do not affect the qualitative behaviour of the outcome. 

�̄gk�k�̄
−1
gk

= �̄gk�k(�𝜏k�̄gk�
T
𝜏k
�Gk−1

)−1 = �k(�𝜏k�
T
𝜏k
�Gk−1

)−1 = �k�
−1
Gk−1

.

Although our focus is on the myocardium tissue, the devel-
oped G&R framework is applicable to all soft tissues, and 
could pave the way for more realistic growth modelling. In 
reality, the limit of tissue growth should be dictated by local 
maximum stress/strain or physiological homeostasis, given 
boundary conditions. It is seldom that a biological organ 
can reach a saturated global growth. We remark that finding 
a suitable growth limit based on experimental evidence is 
crucially important for practical applications. This research 
topic remains a challenge.

6 � Conclusion

In this paper, we proposed a new theory of volumetric growth 
which depends on fields evaluated in the current configuration. 
In contrast to most previous models that have to define soft tissue 
growth in the natural configuration, we allow such a growth to 
be evaluated in the deformed and loaded configurations, without 
imposing any geometrical restrictions. We illustrated our idea 
using a simplified left ventricle model, that admits inhomoge-
neous growth in residually stressed and loaded configurations. 
We then compared our residual stress distribution with a typical 

previous volumetric growth model in which the growth tensor is 
defined in the natural configuration. Our results show that the new 
framework leads to a qualitative agreement with experiments, 
in contrast to the results from the previous model. In addition, 
using a multi-layer cylindrical model, we explained the nature 
of the differences in these two approaches using an incompat-
ibility index, and demonstrated why, after an infinitely long time, 
both approaches attain the same homogenized/saturated growth 
state as identified by Goriely et al. (2008). We further observed 
that this limit may never be reached in soft tissue growth, since 
a state of saturated growth is unlikely to occur due to geometric 
and time constraints in a living organ. In addition, the distribu-
tion of the saturated residual stress increases the overall stress, 
and therefore acts contrary to the well-known observation that 
the residual stress reduces the stress in the wall under external 
loading. Perhaps it is for this reason, that the residual loop stress 
distribution at the saturation limit has not been observed in exper-
iments on arteries or the heart. We also proved that our theory 
agrees with that of  Goriely and Amar (2007) under the same 
assumptions of symmetric growth and deformation. However, 
for general elastic deformation, the updated growth tensor using 
our approach becomes a function of elastic deformation from all 
previous loadings. Given the wide range of growth and remodel-
ling processes in the living tissues, our theory is an important step 
forward in studying the time-responses of live organs to external 
factors soft tissues.
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Appendix: Thermodynamics compatibility

We now demonstrate that our constitutive approach for soft 
tissue growth satisfies the second law of thermodynamics. 
In other words, the system has a non-decreasing entropy 1.

We consider the constitutive law (5) and (28) that includes the 
growth, but we drop the index k and the incompressibility con-
strain to be more general. For an elastic tissue with growth, the 
mass density �0(�, t) in the reference configuration B0 changes 
with time, and can be computed from the push back of the mass 
density �(�, t) in the current configuration Bt , i.e.

where J = det(�t) . Time derivative of �0(�, t) gives

where r is the mass source per unit volume, � is the velocity 
vector and � is the mass flux across the boundary �Bt.

Growth (or atrophy) is the result of mass production (or 
removal) and comes from a volumetric “source” r per unit 
volume in Bt and the boundary influx m, together written

where � is the outward normal of �Bt . The linear momen-
tum balance equation for the growing tissue then becomes

where ��∗ = �� + (div�)� , �∗ = � −�⊗ � . Let k = 1

2
� ⋅ � 

be the kinetic energy per unit mass, the total kinetic energy 
of the system is

and the rate of K is

From the linear momentum equation (64) and the divergence 
theorem, we write the rate of force working P∗ as

(62)�0(�, t) = J�(�, t),

(63)
𝜌̇0 = J̇𝜌 + J𝜌̇ = J𝜌div(�) + J(

𝜕𝜌

𝜕t
+ � ⋅ grad𝜌)

= J(
𝜕𝜌

𝜕t
+ div(𝜌�) = J(r − div�),

∫
Bt

rdv − ∫
�Bt

� ⋅ �da,

(64)𝜌�̇ = 𝜌�∗ + div�∗

K =
1

2 ∫
Bt

�� ⋅ �dv = ∫
Bt

�kdv = ∫
B0

�0kdV ,

(65)
dK

dt
= ∫

B0

(𝜌̇0k + 𝜌0k̇)dV = ∫
Bt

𝜌� ⋅ �̇dv + ∫
B0

k𝜌̇0dV .

where � = ∇� is the velocity gradient.
The energy balance of the system including thermal 

effects is now

where U = ∫
Bt

�udv is the total internal energy, with u being 
the internal energy of the body per unit mass, G is the rate 
of energy supply to feed the growth (or the additional 
entropy production term), and Q is the rate of heat produc-
tion defined as

in which h is heart source per unit mass and q is the heat flux 
per unit area. (67) is then

We now take

so that last two terms cancel (and this not the only option, 
but is the simplest). We could think of G as consisting of 
bulk growth energy supply g (per unit mass) and energy flux 
� (per unit area): thus,

so locally we would have

Epstein and Maugin (2000) included in their energy balance 
a flux term, which is essentially (k + u)� , that we have not 
included here, but again this does not influence the construc-
tion of constitutive laws unless one brings in second-gradi-
ent effects (which considerably complex the theory). The 
same applies to the various dissipative terms they include 
in the energy balance and entropy production.

(66)

P∗ = ∫
Bt

𝜌�∗ ⋅ �dv + ∫
𝜕Bt

(�∗T�) ⋅ �da

=
dK

dt
+ ∫

Bt

tr(�∗T�)dv − ∫
B0

k𝜌̇0dV

(67)
d

dt
(U + K) = P∗ + Q + G

(68)Q = ∫
Bt

�hdv − ∫
�Bt

� ⋅ �da = ∫
Bt

(�h − div�)dv,

(69)
∫
Bt

𝜌u̇dv = ∫
Bt

tr(�∗T�)dv

+ ∫
Bt

(𝜌h − div�) + G − ∫
B0

(k + u)𝜌̇0dV .

G = ∫
B0

(k + u)𝜌̇0dV ,

G = ∫
Bt

�gdv − ∫
�Bt

� ⋅ �da = ∫
Bt

(�g − div�)dv,

�g − div� = J−1(k + u)�0.

1  Much of the idea is based on Ray Ogden’s lecture notes on 
“Mechanics of a growing continuum: a general framework”.
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The local form of the energy balance (69) can now be 
expressed as

Next define the free energy � per unit mass by

where T > 0 is the absolute temperature, and � is the entropy 
per unit mass. Then, since the free energy is a function of 
density �0 , temperature T and deformation tensor, we can 
write (70) as

With this we associate the entropy equation—in global form 
this is

where H  (a capital version of � ) is the entropy production 
per unit mass, and in local form,

or

Combining this with (71), and assuming that the elastic 
material is isothermal (T is constant), we arrive at

where we have made use of (5) and (28), following Ogden 
(1984), to get

The second law of thermodynamics requires that H ≥ 0 , this 
is known as the entropy production inequality (the entropy 
of an isolated system is non-decreasing—it evolves towards 
thermodynamics equilibrium). From (74), we can see that 
this is satisfied, as in general for a growing tissue we have

Thus, our constitutive modelling of the growing tissue is 
thermodynamically compatible as

(70)𝜌u̇ = tr(�∗T�) + 𝜌h − div�.

� = u − T�,

(71)
(𝜌
𝜕𝜓

𝜕�
∶ �̇� + 𝜌

𝜕𝜓

𝜕T
Ṫ + 𝜌

𝜕𝜓

𝜕𝜌0
𝜌̇0)

+ (𝜌Ṫ𝜂 + 𝜌T 𝜂̇) = tr(�∗T�) + 𝜌h − div�.

(72)

d

dt ∫Bt

��dv = ∫
Bt

�h

T
dv − ∫

�Bt

1

T
� ⋅ �da + ∫

Bt

�Hdv,

𝜌𝜂̇ −
𝜌h

T
+ div(

�

T
) = 𝜌H.

(73)𝜌TH = 𝜌T 𝜂̇ − 𝜌h + div� −
1

T
� ⋅ gradT .

(74)
𝜕𝜓

𝜕𝜌0
𝜌̇0 = TH,

(75)tr(�∗�) = J−1
At

𝜕W0

𝜕�
∶ �̇t = 𝜌

𝜕𝜓

𝜕�
∶ �̇t.

𝜕𝜓

𝜕𝜌0
≥ 0, and 𝜌̇0 ≥ 0.

On the other hand, if the living body is atrophic, i.e.

the entropy production inequality (76) still holds.
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