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The epidermis constitutes a continuous external layer covering the body, offering
protection against bacteria, the most abundant living organisms that come into contact
with this barrier. The epidermis is heavily colonized by commensal bacterial organisms that
help protect against pathogenic bacteria. The highly regulated and dynamic interaction
between the epidermis and commensals involves the host’s production of nutritional
factors promoting bacterial growth together to chemical and immunological bacterial
inhibitors. Signal trafficking ensures the system’s homeostasis; conditions that favor
colonization by pathogens frequently foster commensal growth, thereby increasing the
bacterial population size and inducing the skin’s antibacterial response, eliminating the
pathogens and re-establishing the normal density of commensals. The microecological
conditions of the epidermis favors Gram-positive organisms and are unsuitable for long-
term Gram-negative colonization. However, the epidermis acts as the most important
host-to-host transmission platform for bacteria, including those that colonize human
mucous membranes. Bacteria are frequently shared by relatives, partners, and
coworkers. The epidermal bacterial transmission platform of healthcare workers and
visitors can contaminate hospitalized patients, eventually contributing to cross-infections.
Epidermal transmission occurs mostly via the hands and particularly through fingers. The
three-dimensional physical structure of the epidermis, particularly the fingertips, which
have frictional ridges, multiplies the possibilities for bacterial adhesion and release.
Research into the biology of bacterial transmission via the hands is still in its infancy;
however, tribology, the science of interacting surfaces in relative motion, including friction,
wear and lubrication, will certainly be an important part of it. Experiments on finger-to-
finger transmission of microorganisms have shown significant interindividual differences in
the ability to transmit microorganisms, presumably due to genetics, age, sex, and the
gland density, which determines the physical, chemical, adhesive, nutritional, and
immunological status of the epidermal surface. These studies are needed to optimize
interventions and strategies for preventing the hand transmission of microorganisms.
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INTRODUCTION

The transmission of infectious microorganisms between
individuals through skin contact has long been known, driving
the development of hygiene because of the impracticality of
perpetual skin sterilization. Our knowledge of the skin
microbiota has increased considerably since the introduction of
massive sequencing techniques, particularly for bacteria and
fungi, demonstrating the existence of specific ecosystems in
differentiated areas. As with other colonized body surfaces, the
detailed composition of a healthy microbiota has not yet been
fully defined. Interest in bacterial transmission via the skin has
been limited to the spread of pathogens; however, most skin
microorganisms can be classified as both commensal and
pathogenic, as is the case for Cutibacterium acnes, which is
commensal in almost all patients but also causes acne (1).

Skin microbiota can be transmitted by direct contact but is
also released into the atmosphere through the desquamation
process. The environment is an almost infinite source of
microorganisms suspended in the air and water systems or
deposited on surfaces (2), where individuals exchange
microorganisms as donors and recipients. The current SARS-
CoV-2 pandemic has highlighted the importance of determining
certain microorganisms’ skin transmission ability (3),
particularly the high transmission between individuals in
enclosed and crowded spaces such as public transport and
swimming pools (2, 4, 5). After being transmitted, the foreign
microorganism can colonize the skin, sometimes causing an
infection. The epidermis also acts as a platform for
transmission to other individuals/environments. While
differences in bacterial transmission capacity have been
extensively studied, there are still unknown human factors
favoring or limiting the transmission of exogenous bacteria by
the skin.

Continuous external microbial exposure ensures the
frequently transient diversity of the skin microbiome. In the
hospital setting, the skin microbiome’s (both for patients and
healthcare workers) should be carefully controlled, as it is a key
source for transmission events involving pathogenic bacteria. In
fact, nosocomial infection often follows skin colonization by
antibiotic multiresistant pathogenic bacteria. Hand washing by
healthcare workers is still the best strategy for preventing the
transmission of nosocomial pathogens, as has been
demonstrated for Clostridioides difficile whose spores are
resistant to the action of alcohol gels and standard
disinfectants (6) and should be eliminated by shedding
through standardized structured washing techniques (7).
EPIDERMIS, THE BORDER WITH THE
MICROBIAL ENVIRONMENT

Our epidermis, the outermost side of the skin that covers 2 m2 on
average, is not only exposed to a multiplicity of environmental
organisms but also repeatedly makes contact and rubs against
contaminated natural and artificial surfaces. The skin is a
Frontiers in Immunology | www.frontiersin.org 2
compartmentalized habitat, with specific microecological
spaces such as keratinized space, sebaceous glands, and
apocrine and eccrine glands where the bacterial density can
differ considerably. There is also a critical epidermis-mucosal
border, where mucosal microbial populations can coalesce with
those established on the epidermal surface.

Despite the considerable increase in recent years in our
knowledge of human microbiota, more investigation is needed
into the interactions between the two microbial worlds of muco-
cutaneous junctions, from the point of view of biochemistry,
microecology, and immunology (8). It seems clear that there is
no sharp border but rather a gradient of conditions, likely
dependent on physical variables such as humidity and
temperature. These transitional areas are obvious in the lips,
where we observe the non-keratinized epithelium of the labial
mucosa transitioning to the buccal mucosa, with surfaces
changing with age (9–11). Similar “borders” occur at the eyes,
rectum, and vaginal mucosa and the neighboring keratinized
epidermis. The microbiota at these borders has been
poorly characterized.

The common use of fingers for exploring and washing
mucosal orifices and during sexual activities is another
important source of interactions between epidermal and
mucosal microbes. Artificial mucosal-epidermis interfaces are
frequently created in surgery (e.g., in ileostomies), sometimes
with pathogenic consequences (12). In contrast, certain less
exposed skin regions, such as interdigital and other skin folds,
could constitute a potential healthy microbiome reservoir for re-
colonization of altered epidermal communities.

The microbial dialogue with the skin’s immune system, both
with the innate and adaptive cells, determines the tolerance or
inflammation response. Although the response to microbial
infections is well known, the determinants of a tolerance status
are not. Dermatological research is currently focused on the
interplay between the immune system and skin microbiota for
diseases such as acne and seborrheic dermatitis (13). In these
skin conditions, the pathogenic process is probably based on an
excessive response of the local innate immunity against members
of commensal microbiota, including bacteria such as
Cutibacterium acnes, fungi, as Malassezia furfur, and viruses,
as Merkel cell polyomavirus or herpesvirus.

A proinflammatory gut microbiota has been reported in
patients with alopecia areata universalis (14), and there have
been supporting epidemiological hypotheses such as the
relationship between rosacea and Parkinson’s disease on one
hand and the skin-gut-brain axis on the other (15). Detailed
studies of the local microbiome, such as the follicular
microbiome, provide valuable informat ion on the
etiopathogenesis of chronic inflammatory diseases such as
primary cicatricial alopecia and facilitates their understanding
and classification (16). There has recently been major interest in
microbiota composition as a predictor of drug response,
particularly for the gut ecosystem and immunotherapy in
melanoma, and it has been proposed the transference of fecal
microbiota from immunotherapy responders to non-responders
(17, 18).
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THE EPIDERMAL MICROBIOME AND
MODULATION STRATEGIES

Is the epidermal microbiome representative of the dermal
microbiome? Table 1 shows the bacterial genera which are
shared in the dermal and epidermal compartments. In general,
bacterial composition of the stratum corneum does not
significantly differ from that of the full skin (20, 21). Sampling
by swabbing therefore yields analogous results to sampling by
tapping (22). The “constant” epidermal microbiome is a
minority subset of the dermal microbiome, which constitutes a
“real microbiota”, extremely stable and universal in human hosts
(19), where bacteria are adapted to the nutritional conditions of
the dermal compartment. However, the shared bacteria are much
more abundant in number in the epidermis, which also contains
a high density of diverse and transient bacterial organisms, as
expected by the frequency of environmental contacts, and
consequently variable among individuals. Given that our focus
is on transmission, we will not go into detail on the detailed skin
microbiome composition, a topic that has been covered by other
authors (21, 23, 24).

At birth, single clones of a variety of microorganism colonize
human skin. The environmental pressures and particular
condi t ions exper ienced by the indiv idua l l ead to
microevolutions that result in lineage diversification, even in
commensal S. epidermidis (25). During diversification,
commensal microbiota can experience genetic acquisition or
loss after punctual interactions with the transient transmitted
bacteria. In addition, virulent and antibiotic-resistant clones,
such as the Panton-Valentine leukocidin-producing
methicillin-resistant S. aureus clone USA300, are habitually
transmitted by skin contact and cause major outbreaks (26, 27).

The pathogenicity of particular C. acnes lineages has been
reported not only in acne but also in systemic diseases such as
prostatitis/prostate cancer, synovitis-acne-pustulosis-
hyperostosis-osteitis syndrome, sarcoidosis, sciatica, and
implant-associated infections. Skin microbiota transplantation
from a healthy donor has been proposed to treat dermatologic
Frontiers in Immunology | www.frontiersin.org 3
conditions (28, 29), mainly to eradicate virulent C. acnes and S.
aureus clones, or at least to replace the bacteria with non-virulent
ones. The utility of bacteriophages for skin infections,
particularly those caused by Pseudomonas in extensive burns,
has recently been recently reviewed (30).
BACTERIAL NUTRITION AND GROWTH
ON THE EPIDERMIS

Lipids excreted by sebaceous glands (frequently in the facial
epidermis) contain anti-bacterial substances and protective
compounds and are a nutrition source (31). Gram-positive
bacteria in the skin, mainly Staphylococcus and Cutibacterium,
release exoenzymes to enhance the recovery of nutrients from the
environment, particularly proteases for amino acid liberation
from skin proteins such as keratins, collagen and elastin (32). For
instance, lipase production for triglyceride lipid degradations is
significantly higher around comedones, causing inflammation in
acne (21, 33). Other exoenzymes include bacterial hyaluronidase,
which enable the obtention of glucuronic acid and N-acetyl-D-
glucosamine from long-chained hyaluronic acid, and DNase,
which likely degrades the extracellular DNA from apoptotic
keratinocytes or corneocytes. C. acnes can induce keratinocyte
autophagy by stimulating the CD36-CD14-TLR2/4-TLR6
signaling module, triggering ROS generation through
nicotinamide adenine dinucleotide phosphate oxidase and the
TRAF6-ECSIT-NLRX1 pathway and evoking mitochondrial
dysfunction (34, 35). However, we still lack the full picture of
microbial nutrition in the skin, particularly regarding the role
of protocooperative actions among bacterial species in
nutrient exploitation.

The critical factors of bacterial nutrition and growth in the
epidermis are pH and water availability, which also determine
the concentration of free amino acids and lactate. For example,
the water content of the stratum corneum of Japanese individuals
(as measured by Raman spectroscopy) ranges from 30% at the
TABLE 1 | Bacterial microbiota in the epidermal and dermal compartments.

Epidermal-Dermal Genera
Not Phylum
Proteobacteria

Epidermal-Dermal
Genera Phylum
Proteobacteria

Epidermal-Dermal
Genera

Anaerobes

Corynebacterium Pelomonas Finegoldia
Staphylococcus Acinetobacter Peptoniphilus
Micrococcus Moraxella Anaerococcus
Streptococcus Pseudomonas Blautia
Paracoccus Porphyromonas
Brachyobacterium Fenollaria
Kocuria Veillonella
Dietzia Cylindrospermum
Actinomyces Prevotella
Brevibacterium Dialister
Tepidimonas Bifidobacterium
December 2021 | Volume
This Table was inspired by the publication referenced as Bay et al. (19).
Epidermal microbiota is much more abundant and variable (strongly affected by environmental contacts) than dermal microbiota. A subset of most frequent members of the epidermic
microbiota constitute a very stable and universal (preserved in different individuals) dermal bacterial community, adapted to the nutrients of the dermal compartment. In the boxes below,
listed by frequency, the epidermal genera with high representation in the dermal compartment are highlighted in bold characters.
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surface to 70% in the deeper layers (36). Prolonged water
exposure significantly increases the epidermal water content;
however, the external part of the stratum corneum gradually
dries out after the forced hydration is discontinued (36). The
water content of the skin surface is then mainly based on
excretion by eccrine sweat glands. However, free amino acids,
glycerol, sphingolipids and particularly metabolites of filaggrin, a
large protein bound to lipids and keratin, such as urocanic acid
and pyrrolidone carboxylic acid, also function in the outer skin
as natural moisturizing factors, able to absorb large amounts of
water and maintain a low pH (37). The epidermal water content
depends on age, anatomical site and season. Certain molecules
(such as teichoic acids) on the external surface of Gram-positive
bacteria can produce local proinflammatory effects (38), which
results in greater water availability resulting from increased
vascularity. Osmolarity increases with water paucity. Water
tends to be retained in the epidermal keratinocytes outer layer,
particularly in the valleys where it is protected from evaporation;
in addition, under osmotic stress more water-channels are
produced, as aquaporin-3 (39). The skin’s retention of
transmitted bacteria depends strongly on water (40). Sweat
increases water availability, transports molecules with bacterial
impact, and facilitates bacterial transmission through signals
contained in their extracellular vesicles.
BACTERIAL DEATH ON THE EPIDERMIS

Keratinocytes contribute to the innate immune response system
by sensing microbial cell density by detecting pathogen-
associated molecular patterns (PAMPs) through pattern
recognition receptors (PRRs) (21). Such detection results in the
induction of release of cytokines, chemokines, and antimicrobial
peptides (AMPs) such as human beta-defensins HBD-1, HBD-2,
and HBD-3, cathelicidin LL-37, and the antimicrobial proteins
RNase 7 (from the RNase A superfamily) and Perforin-2, the last
being able to kill intracellular organisms (41–43).

The response is modulated by molecules on the surface or
those released by commensal organisms (44). The conditions
favoring the overgrowth and immunological tolerance of skin
commensals are frequently those that are also beneficial for the
growth of certain skin pathogens (Figure 1). The “bacterial
overgrowth” signal is therefore likely triggered by commensals,
resulting in decreased commensal density; however, this decrease
is deleterious for less numerous pathogens. The overgrowth of
skin commensals likely releases immunity-stimulating signals,
including structural bacterial molecules such as teichoic acids or
proteins released from the bacterial cell wall, microbial-secreted
substances such as porphyrins, and molecules, as oleic acid,
resulting from the bacterial metabolism of local lipid substrates
(45). Overgrowth is eventually followed by intracellular
engulfment and the release of more signaling molecules such
as complement and interleukin-1. Perforin-2 upregulation
following S. epidermidis overgrowth increases the intracellular
killing of S. aureus (41). The innate lymphoid cells regulate the
production of antimicrobial lipids (such as palmitoleic fatty
Frontiers in Immunology | www.frontiersin.org 4
acids), reducing the population density of Staphylococcus and,
in general, all Gram-positive bacteria (46).

In normal conditions, a “normal”-sized population of
commensals (such as S. epidermidis) stimulates only the innate
defense system (47). Pathogens such as S. aureus have evolved
mechanisms for subverting immune stimulation, such as
modifying their PAMPS (48); however, these bacterial
protection mechanisms are expected to be effective only after
reaching a cell-density threshold.

The strategy of eliminating pathogens by regulating
commensal overgrowth (Figure 1) is based on the differences
between highly adapted organisms (commensals, those with
large populations) and less adapted organisms (occasional
pathogens, those with small populations) that compete for the
same resources (47). Commensals are better endowed to
reconstruct the original population density after a challenge. In
fact, the population density of commensals is by itself a limiting
factor for pathogenic colonization, either indirectly (e.g., by
nutritional competition) or directly (e.g., antagonistic
substances). Direct antagonism between commensal and
pathogenic staphylococci is frequently mediated by secondary
metabolites such as low molecular weight bacteriocins,
frequently of the lantibiotics type, the equivalent to microcins
in intestinal Enterobacterales (49, 50). Lantibiotics released from
commensal Staphylococcus are synergistic with the human
cathelicidin antimicrobial peptide LL-37 in reducing S. aureus
populations (51). S. epidermidis might also interfere with S.
aureus biofilm-type colonization by expressing the serine-type
protease Esp. In fact, protection against S. aureus involvement in
atopic dermatitis by increasing the density of commensal
microbes is being explored. The immunological response
against pathogens might in fact depends on resident
commensals. The shedding of the stratum corneum acts as a
sink for microorganisms adhered to the skin surface; however,
these organisms persist by colonizing the deeper layers of the
epidermis thereby keeping the population density stable.
GRAM-POSITIVE VERSUS
GRAM-NEGATIVE

The conditions of low moisture, high osmolarity, low pH, and
AMPs presence clearly favors organisms with a thick
peptidoglycan envelope and lacking an outer membrane, as
well as Gram-positive organisms, with the interesting
exception of Enterococcus species, which are not usually found
in the epidermis. Gram-negative organisms are not permanent
colonizers of the outer skin, with the exception of Acinetobacter
in moist intertriginous areas. In experimental transmission
studies, Gram-positive organisms, such as E. faecium and S.
aureus, exhibited the highest transmission efficiency, whereas
Gram-negative organisms were less efficient, particularly E. coli,
which had the lowest transmission rate (52). The recovery of
phages from Gram-negative Proteobacteria might simply reflect
the occasional, transient colonization of these microorganisms,
with the possible exception of individuals with primary
December 2021 | Volume 12 | Article 774018
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immunodeficiencies (53, 54). However, some commensal species
from the Phylum Proteobacteria, as Pelomonas, are consistently
present in the dermal compartment, and might migrate to the
epidermis (Table 1). Important potential human pathogens such
as Enterobacterales and Enterococcus are rare in normal
epidermis, despite expected frequent external contamination
from the intestinal microbiota. It is certainly plausible that
Gram-positive commensals might elicit the production of
human antimicrobial peptides able to eradicate small
populations of Gram-negative bacteria, using the strategy
illustrated in Figure 1.

Skin osmolarity also favors Gram-positive bacteria. Certain
Proteobacteria can be detected by 16S rDNA sequencing from
the skin surface, including Acinetobacter, Enterobacter,
Klebsiella, Pseudomonas, Serratia and Sphingomonas, all of
them environmental organisms and likely transient “skin-
landing” bacteria. In short, the epidermis should not be
considered a niche for Enterobacterales or Enterococcus, given
that it does not support the significant growth of these critical
human pathogens (55). If these organisms are just transiently
bound to the epidermis by weak unspecific adhesion, the
possibility of being transmitted between hosts could
be enhanced.
Frontiers in Immunology | www.frontiersin.org 5
A rarely considered aspect of the epidermal bacterial
microecology (and transmission) is the spatial structure of
bacterial cells, ranging from homophilic clumps to larger
biofilms. In particular, Staphylococcus tends to clump into
multicellular aggregates (staphyle is the Greek name for a
bunch of grapes), facilitating adhesion to the skin and likely
colonization. The intercellular homophilic bonds of
Staphylococcus depend on a polycationic polysaccharide
intercellular adhesin; however, the role of cell wall-anchored
proteins (self-aggregating molecules) appears to be critical in the
process. These proteins (e.g., the bacterial surface serine-
aspartate repeat protein SdrC) might also be considered a
multifunctional adhesin involved in hydrophobic interactions
with surfaces. In fact, clumping-negative S. aureus mutants are
less adhesive to surfaces, including keratinocytes (56).

The interaction between bacteria and the colonizable surfaces
is mediated by cell appendages and specific molecules located at
the cell surface. In particular, a large variety of adhesins assures
the close contact required to exploit structured environments.
Many of these adhesins are involved in the attachment to the host
tissues including skin, and also contribute to in the formation of
interbacterial interactions resulting in the formation of local
biofilms (bacterial multicellular aggregates), increasing the
FIGURE 1 | The hypothesis of indirect epidermal bacterial clearance of a pathogen. Up in the figure, a schematic view of the skin is presented, particularly of the
components of the dermal compartment, determining the commensal microbiota of the epidermis. Below, the indirect epidermal bacterial clearance of a pathogen
(clusters of yellow circles) in the violet layer (surface commensal microbiota). Conditions facilitating the growth of commensals (vertical blue thick arrow) also favors
pathogens, but the commensals overgrowth stimulate (narrow blue arrows) the defense system based on cellular local immune innate response involving cellular
(red squares, circles, stars) and glands secretion. Antimicrobial defense (red arrows) reduces the overall bacterial density, but the lower-numbered pathogens are
eliminated (red X symbol), whereas the dominant commensal population is reduced to its normal density (sequence from the second to the third box at the bottom).
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resilience (permanence) of adhered bacterial populations. The
molecular determinants mediating specific bacterial adhesion to
the outer layers of the epidermis remain scarcely investigated for
most bacterial taxa. On the contrary, excellent information is
accessible for some pathogenic Gram-positive bacteria, including
a thematic Research Topic in Frontiers in Microbiology (57).
Seminal reviews are available on Staphylococcus adhesion
mediated by surface proteins, mostly comprising the
hydrophobic LPXTG transmembrane motif assuring cell-wall
anchoring. Many of these surface components recognize
adhesive matrix molecules as fibronectin, vitronectin, laminin,
fibrinogen or elastin, the MSCRAMM family. Fibronectin-
binding adhesins (FnBPA and FnBPB in S. aureus) regulated by
agr and sar operons, are critical in the adhesion to the squamous
epithelium (58–61).

Interestingly, Staphylococcus LPXTG proteins and some
extracellular adherence proteins also promote bacterial
internalization by keratinocytes, assuring the permanence of
the bacterial population in the epidermal compartment (62).
Populational resilience is enhanced by biofilm formation,
involving, among others, Aap and SdrF proteins (63).
Interbacterial adhesion on the epidermis is also favored by the
small basic protein (Sbp). This protein favors the formation of
amyloid fibrils structuring the biofilm matrix derived from the
effect of adhesins, comprehending microbial polysaccharide
(mostly b-1-6-linked N-acetylglucosamine), intercellular
adhesin surface proteins, DNA, and proteins from dead cells
(60). Other surface components of Gram positives, as teichoic
acids, also contribute to skin adhesion (64).

Consider that in S. aureus there are 24 different LPXTG
adhesins with different specificities and roles. S. epidermidis
expresses more than 10 adhesins (60, 61). Staphylococcus
lugdunensis is also a frequent commensal in the outer layers of
the skin and contains the LPXTG protein SrtA (65, 66).

In the case of Cutibacterium bacteria, mostly probably originated
in the sebaceous glands-ducts where they have their niche (67, 68),
they migrate to the epidermis and remain attached by their
fibronectin-binding surface proteins, also inducing keratinocytes
internalization, which assures the local permanence (35, 62).

The skin adhesion of bacterial spores, including those of
pathogenic organisms such as C. difficile, is poorly known, but
approximately 5% of hospital health workers are carriers of these
organisms (69, 70). Future advances in the “ecology of adhesion”
might result from applying confocal laser scanning microscopy,
given that it has been used for human mucosal surfaces (71).
THE ROLE OF THE EPIDERMIS IN
TRANSMITTING HUMAN PATHOGENS

Although certain key human pathogens are not permanently
established on the surface of the normal epidermis, they use the
surface as a platform for host-to-host transmission. In the case of
Enterobacterales, the hands of intensive care unit (ICU) staff are
frequently (nearly 20%) contaminated by the same Klebsiella
clones that infect patients; however, the absolute count by culture
Frontiers in Immunology | www.frontiersin.org 6
does not exceed 103 per hand, and the survival time was
estimated at approximately 2–3 h (72). In fact, in abiotic dry
surfaces, such as computer keyboards in the ICU used by nurses
and doctors, only Gram-positive skin bacteria are recovered,
mostly S. epidermidis (73). As in the case of ICU health workers,
environmentally linked individuals tend to share bacterial
organisms. In fact, easy transmission of antibiotic-resistant
Enterobacterales, presumptively by hand contamination, occurs
among household members and individuals who visit friends
and relatives (74–76). In closed communities, a common
community epidermal microbiota is expected.

Most of the published works on the epidermal transmission of
human pathogens are derived from hand-washing studies, one of
the key “rituals” in preventive medicine. Although the efficacy
of hand washing is extremely difficult to estimate, hand washing
is undeniably highly effective in decreasing the risk of
contaminating sterile tissues, mechanical devices and food by
low-numbered pathogenic bacteria, as shown in the seminal
work by Semmelweis (77). The effectiveness of hand washing in
eliminating microbial organisms is inversely proportional to the
skin’s bacterial load and frequently has only a marginal, transient
effect on heavily inoculated fingertips (78). It is noteworthy that
Semmelweis discarded as irrelevant the use of microscopes to
explain his results (77). That resulted in an epistemologically
utilitarian “Semmelweis Complex” recommending that the focus
be on efficacy and not the scientific reasons for explaining the
effect. Such scientifically deleterious Complex remains very
much alive in public health. To quote a modern reference,
“studies on practical and efficient means to increase
compliance with hand hygiene guidelines and to influence
behavior surely are needed more than are elaborate and
sophisticated studies on the effects of hand washing” (79).
Such generalized “practical” view has delayed experimental
studies, and consequently there are numerous issues in hand-
washing biology that are unknown or poorly understood. For
instance, if the hand’s commensal bacteria can prevent the
growth of potential pathogens, the controlled reduction of
these commensals might be more advisable than full
eradication (80). Increasing our knowledge of the biology of
epidermal bacterial transmission appears to be the only option
for improving our interventions.
EXPERIMENTAL BACTERIAL
TRANSMISSION

The biology of hand-to-hand transmission is a recent field of
research. In a seminal study published in 2014 (81), broth
suspensions of potentially pathogenic well-defined clones of
E. faecium, a non-skin commensal Gram-positive organism,
were gently deposited and spread on both thumb tip surfaces
(approx. 107 cells over 1.32 cm2) of 30 healthy volunteers (4
experiments per individual, spread over 6 months). After
complete drying, the organisms from a sample surface of 0.78
cm2 on one of the thumbs were suspended by shaking them in a
saline solution. The second contaminated thumb was put in close
December 2021 | Volume 12 | Article 774018
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static contact (with minimal pressure and preventing twists or
wipes) with the index fingertip of the other hand of the same
individual for 10 s, and the transmitted organisms were also
suspended. Over several steps involving the fingers of both
hands, a quantitation curve of the proportion of finger-to-
finger transmission was obtained. The bacterial count showed
an exponential decay in sequential finger-to-finger transfers in
most of the volunteers, typically a decay of 1.5 log in successive
counts. This result is consistent with that obtained in similar
experiments on skin bacterial survival and hand transmission
(82–84). Interestingly, in the E. faecium experiment, the
frequency distribution of the exponential decay parameter
estimated for all individuals clearly showed an asymmetrical
right tail containing an overrepresentation of high transmitter
individuals (13% of the volunteers) with their epidermis
exponential decay parameters close to zero. A variable
transmission rate of the various Enterococcus clones was also
observed, supporting the suggestion that a number of bacterial
variants (including Gram-negative bacteria, such as
Proteobacteria) could be better adapted than others to the
environmental skin circulation (81, 85). A further analysis of
the data proposed 3 transmission efficiency categories: poor,
medium, and high finger-to-finger bacterial transmitters. All 10
male volunteers were classified as poor or high intrahost
Frontiers in Immunology | www.frontiersin.org 7
transmitters, whereas almost all 20 of the female participants
were grouped in the medium category (53).

Experimental fingertip transmission studies extended to
interhost transmission have shown that the success of the
transmission chain depends on the position of a poor
transmitter in the series. Poor-transmitter volunteers had the
ability to cut off the transmission chain independently of their
position (53). Certainly, these preliminary observations might
foster further research to determine the individual risks of
foodborne transmission and healthcare workers.
THE BASIS FOR INDIVIDUAL VARIABILITY
IN BACTERIAL TRANSMISSION

The density and diversity of skin commensal bacteria might
affect the fate of pathogenic bacteria contacting the surface. In
contrast to the low variability of dermal microbiota across
humans, the epidermis shows a higher polymorphic set of
bacterial species, probably because they reflect the host’s
lifestyle and changing environment (e.g., altitude or
temperature) (19, 86). Interindividual genetic differences in
epidermal microbes cannot be totally ruled out, given that
FIGURE 2 | Epidermis tribology. Up in the figure, the surface of a finger pad, showing the epithelial pad crests. Below, two rubbing series of friction (beheaded
arrow) finger pad crests. Because of the pressure and frictional forces (black arrows), and elasticity of the dermal compartment, the (yellow) bacteria of the upper
epithelium frequently migrate to the lower epithelium, and only some of the (red) bacteria are transmitted to the green epithelium. The asymmetry of transmission
might be due to microecological differences, for instance water content (blue circles). Down in the slide, if the epidermis is rubbed on a smooth surface, the
transmission is much less effective.
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variations occur with organisms in fish skin and that of sea
mammals (87, 88). In humans, these genetic differences might
occur (45, 89, 90), but the effects of race have not been
sufficiently evaluated, although peculiarities of the skin
microbiota of Chinese populations have been suggested (90).
Genetics and sex can affect the density of eccrine, apocrine, and
sebaceous glands determining the physical, chemical, adhesive,
nutritional, and immunological status of the epidermal surface
and thereby the density and type of organisms. The influence of
age, stress, and hormonal status also cannot be overlooked. In the
above-mentioned experiments regarding E. faecium finger-to-
finger transmission, no significant association for transmission
decay was found between fingertip temperature measurements
and finger pressure (53, 81). There is a need for studying the
intraindividual and interindividual transmission of organisms
from various epidermic sites, such as sebaceous areas (e.g., face
and back), moist areas (e.g., the armpits and the webbed parts of
the fingers/toes), dry areas (e.g., forearms and buttocks), and sites
containing varying densities of hair follicles, skin folds, and skin
thicknesses. The role of epidermal friction ridges is a possible line
for further research into the biology of the epidermal
transmission of bacteria.
TRIBOLOGY OF SKIN: FRICTION RIDGES
ON THE FINGERTIPS

Tribology is the science of interacting surfaces in relative motion,
including, as said before, friction, wear and lubrication.
Tribological phenomena occur on a large scale, and include
microbiotribology, as in the case of homophilic bacterial cell
interactions, giving rise to frictional phenomena, possibly
creating electromagnetic fields that influence collective and
individual cell behavior (91, 92). For human surfaces, a greater
understanding is needed of the nonlinear effects of plasticity,
adhesion, friction, wear, lubrication and surface chemistry, all of
which play a part in skin tribology (Figure 2) (93).

Fingertips, which are critical surfaces in human-to-human
bacterial transmission, are covered with friction skin (94, 95).
Papillary ridges in friction skin likely evolved to assist in grasping
and holding onto objects and are important in the biology of
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primates and koalas (96). The equilibrium between friction
ridges and optimal hydration (eccrine glands) of the keratin
layer maximizes friction (97). In humans, skin friction and
microbial transmission depend on the tr ibological
configuration; the surface roughness and the finger pad sweat
rates. Age modifies friction forces by reducing skin thickness,
dermal elasticity, and by ridge flattering, possibly in relation with
collagen reduction (98). Dynamic optical coherence
measurements by tomography will likely be essential for
determining the frictional behavior of human finger pads (99,
100). We expect these studies to be applied soon to the human-
to-human transmission of microorganisms (101, 102). Nothing
is known about the triboelectric effects of ridge friction (which
creates magnetic fields) on bacterial adhesion and repulsion.
Multivariate models for predicting the frictional behavior of
human skin, thereby identifying “high-transmitter” populations
(81), could have obvious applications in public health, from food
microbiology to hospital-based cross-infections.
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