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Alzheimer’s disease (AD) is a progressive neurodegenerative disease. Synaptic dysfunction is
an integral feature of AD pathophysiology and a significant factor in early cognitive impairment
in AD. Microglia, which are intrinsic immune cells in the central nervous system, play important
regulatory roles in the process of synapse formation. Microglia can refine synaptic
connections through synaptic clearance to ensure accurate synaptic transmission.
Synaptic clearance is not only existed during central nervous system development but also
aberrantly activated during AD pathology. However, the mechanisms of synaptic clearance in
AD remain to be investigated. TREM2 is involved in the synaptic clearance of microglia, acting
alone or with other molecules, such as apolipoprotein E (APOE). In addition, C1q is essential
for microglia-mediated synaptic clearance. In this review, we systematically summarized the
potential mechanisms of microglia involved in synaptic clearance, comprehensively reviewed
the role of TREM2 in microglia regulating synaptic clearance and proposed our hypothesis
that TREM2 interacts with APOE and C1q to promote synaptic clearance. This review
provides new insights into the role of TREM2 regulation in microglia synaptic clearance and
provides potential prospects for the treatment of AD.

Keywords: Alzheimer disease, synaptic clearance, microglia, TREM2 (triggering receptor expressed on myeloid
cells), APOE, complement
INTRODUCTION

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by progressive
memory loss and cognitive dysfunction (1). The typical pathological changes in AD are neuronal plaques
and neurofibrillary tangles (2). Oligomeric amyloid-beta peptide (Ab) has been shown to play an
important role in cognitive impairment in AD. The primary targets of Ab are synapses and synapse-
related signaling pathways, which damage synaptic plasticity, learning and memory (3). Another key
component of AD pathogenesis is tau protein hyperphosphorylation to form neurofibrillary tangles
(NFTs). NFTs are less susceptible to degradation by proteolytic enzymes and accumulate in neurons,
disrupting the normal function of neuronal axons, leading to structural and functional abnormalities of
synapses, interfering with synaptic transmission between neurons, and ultimately leading to
Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; Ab, amyloid-b; C1q:complement component 1q; CNS,
central nervous system; CR3:complement receptor 3; CSF, cerebrospinal fluid; GWAS, Genome-wide association studies;
LOAD, late-onset AD; NFTs, neurofibrillary tangles; TREM2, triggering receptor expressed on myeloid cells 2.
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neurodegeneration (4). Thus, synaptic loss and altered synaptic
plasticity are the neurobiological basis of cognitive impairment in
Alzheimer’s disease, and synaptic damage is a manifestation of AD
pathological impairment.

Synapses are the key sites of functional connections and
information transfer between neurons, and synaptic plasticity is
the cellular and morphological basis of learning and memory (5, 6).
Synaptic plasticity is thought to play key roles in the development of
neural circuitry and impairments in synaptic plasticity contribute to
several prominent neuropsychiatric disorders, such as AD (7).
Synapse clearance, also known as synaptic elimination, can
eliminate unnecessary synapses and keep the morphological and
functional maturation of the remaining synapses, has been thought
to be a critical step in neural circuits stability and an essential
mechanism underlying synaptic plasticity in the central nervous
system (CNS) (8). Mounting evidence indicates that microglia plays
an important role in synapse clearance (9).

Microglia are resident immune cells in the CNS that regulate
brain development, maintenance of neuronal networks, and injury
repair (10). Microglia serve as brain macrophages. They are
responsible for the elimination of protein aggregates, redundant
synapses, and other particulate and soluble antigens that may
endanger the CNS. Microglia functional changes are implicated in
brain development and aging, as well as in neurodegeneration (11).
Studies have shown that normal microglia phagocytose and clear
toxic Ab oligomers, preventing the development of AD (12).
However, excessive Ab oligomers can stimulate the complement
cascade pathway and induce microglia to excessively phagocytose
and clear synapses in a manner similar to normal synaptic pruning,
resulting in synaptic loss in AD patients (13). Overall, microglia can
mediate synapse loss in AD progression. However, the mechanisms
of microglial regulation remain to be investigated.

Triggering receptor expressed on myeloid cells 2 (TREM2) is an
AD risk gene identified in recent years, and mutations in its coding
region significantly increase the risk of AD (14, 15). TREM2 is
mainly expressed by microglia in the nervous system and regulates
microglial activation, proliferation, survival, phagocytosis, and other
biological functions. Studies have shown that TREM2 is essential for
synaptic clearance (16), but the specific mechanism by which
TREM2 regulates synaptic clearance still needs to be explored.

Apolipoprotein E (APOE), the strongest genetic risk factor for
AD, regulates neurodegeneration mainly by modulating microglial
activation (17). APOE is synthesized and secreted mainly by
astrocytes in the activated state, but in AD, the level of APOE
expression in plaque-associated microglia is significantly increased
and strongly induced in a TREM2-dependent manner (17, 18).
Emerging evidence suggests that APOE binds to TREM2 and
APOE are putative ligands for TREM2 (19), thus raising the
possibility of an APOE-TREM2 interaction may drive the
transcriptional phenotype of dysfunctional microglia and modulate
AD pathology (20). However, whether APOE-TREM2 pathway
participate in microglia-induced synaptic clearance needs
further investigation.

Recent findings suggest that the classic complement cascade
mediates CNS synaptic clearance (21, 22). The complement
proteins C1q and C3 are involved in synaptic clearance by
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microglia (23). During central nervous system development,
redundant neuronal synapses express the complement protein
C1q, which is the initiator protein of the classic complement
cascade and activates CR3 receptors, and microglia are the only
cells in the brain that can express CR3 receptors (24). Activation of
the complement signaling pathway allows microglia to recognize
synapses, leading to synaptic clearance (25). Inhibition of C1q, C3
or the microglial complement receptor CR3 reduces microglial
phagocytosis and prevent synaptic loss (26).

In this review, we systematically summarized the possible
mechanisms of microglia involved in synaptic clearance in AD,
comprehensively reviewed the role of TREM2 in microglia
regulating synaptic clearance and explore the relationship of
TREM2, APOE and C1q in synaptic clearance of microglia. We
proposed our hypothesis that TREM2 interacts with APOE and
C1q to promote synaptic clearance and impaired synaptic
plasticity in AD. This review provides new insights into the
role of TREM2 regulation in microglia synaptic clearance and
provides potential prospects for the treatment of AD.
ROLE OF MICROGLIA IN SYNAPTIC
CLEARANCE

Microglia and Synapses in AD
Neurons in the brain rapidly extend their axons and dendrites after
birth and form cellular connections between neurons (27). Synapses
are the key sites of neuronal information transmission and play an
irreplaceable role in theCNS (7). Synaptic loss is one of the important
histological changes in AD patients, and the degree of synaptic loss
correlates with the degree of dementia in AD patients (28–30).

Recent evidence shows thatmicroglia cancreate tight connections
withneuronal synapses invivoandcontinually contact synapses inan
activity and experience dependent manner, and play a functionally
dynamic role in synaptic plasticity (31).Microglia can also contribute
to structural plasticity through the elimination of synapses via
phagocytic mechanisms, which is necessary for normal cognition
(11).Basedon theseevidence,wesuggest thatmicroglia is essential for
normal synaptic andstructuralplasticity that supports cognition (32).
While in AD condition, plenty of evidence show microglial
interactions with synapses obviously affect the maturation of
synapses and neuronal viability (4, 31). For example, previous
studies have shown that the accumulation of soluble Ab activates
microglia in the brain to release proinflammatory factors that
mediate synaptic dysfunction (3). Activated microglia also clear
synapses and promote synaptic remodeling (9).

In a word, synaptic dysfunction is a key initiator of AD
pathology. Elucidating the underlying molecular mechanisms of
microglia-synapse pathways may provide further insights into
immune system regulation of neuronal circuit development in the
AD brain and novel approaches for AD treatment.
Microglia-Mediated Synaptic Clearance
In the last few years, plenty studies have shown that microglia
can mediate synaptic clearance. The pathway of complement-
May 2022 | Volume 13 | Article 845897
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mediated synaptic clearance has been extensively studied (33).
Synapses requiring pruning can be localized and labelled by
classic complement component 1q (C1q) and phagocytosed
by complement receptor 3 (CR3)-mediated microglia (34, 35).
Functional blockade of C1q by C1q antibodies or artificial
knockdown of the C1q gene can reduce Ab oligomer-induced
and tau-induced excessive synaptic phagocytosis and improve
synaptic deficits (36, 37). In addition, removal of the
complement component C3 or knockdown of the CR3 gene
also protected synaptic loss in the brains of AD transgenic
mice (34, 38).

Besides complement system, TREM2 is also essential for
microglia-mediated synaptic pruning (16). A lack of TREM2
receptors leads to impaired synaptic clearance, increased dendritic
spine density and enhanced excitatory neurotransmission (39).
Studies have shown that phosphatidylserine exposure at the
synapse may be an “eat me” signal for TREM2 receptors (40).
Therefore, TREM2 can mediate synaptic clearance by regulating
microglia phagocytosis.

Another pathway through which microglia mediate synaptic
clearance is the phagocytic signaling pathway of C-X3-C motile
chemokine receptor 1 (CX3CR1) (41). In mice lacking Cx3cr1,
microglia numbers were transiently reduced in the developing brain
and synaptic pruning was delayed (42). Knockdown of CX3CL1
resulted in reduced social interactions and increased repetitive
behavioral traits in both juvenile and adult mice (43). These
results strongly suggest that microglia perform synaptic clearance
via CX3CL1/CX3CR1 signaling.

In AD pathology, the abnormal mechanism of synaptic
clearance mediated by microglia is not clear. Hence, we will
summarize the various factors associated with microglia-mediated
synaptic clearance in AD.

THE MECHANISM MAY INVOLVE IN
MICROGLIA-MEDIATED SYNAPTIC
CLEARANCE IN AD
In recent years, genome-wide association studies (GWAS) have
identified more than 25 genetic loci that are strongly associated
with the risk of developing late-onset Alzheimer’s disease
(LOAD), one of them is TREM2 gene variants (44). TREM2
has been suggested to play a crucial role in AD pathogenesis.
TREM2 may act as a multifaceted player in microglial functions
in AD brain homeostasis. TREM2 can not only influence
microglial functions in amyloid and taupathologies, but also
participate in inflammatory responses and metabolism. In this
review, we will focus the role of TREM2 in microglia-mediated
synaptic clearance in AD.

APOE is also undoubtedly associated with LOAD (45). AD
patients carrying the ϵ4 allele of APOE have an earlier age of
onset, more severe amyloid, tau deposition and brain atrophy,
and more rapid disease progression (17). APOE not only
involve in the aggregation and clearance of Ab but also
participate in the regulation of microglial activation, immune
regulation and cytokine release (46). However, the role of
APOE in synaptic clearance and neural pathway regulation
needs to be further explored.
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Furthermore, the complement system has recently been
shown to plays both neuroprotective and neuroinflammatory
roles in AD pathophysiology (47). During the early stages of AD,
the complement system can succeed in clearing Ab in
conjunction with glial cells (48). However, when Ab starts to
accumulate and Ab plaques develop, the complement system can
further increase the phagocytic capability of microglia (49). Here,
we will discuss how the complement system is involved in the
effective functioning of microglia-mediated synaptic clearance in
Alzheimer’s disease.

TREM2 Is Involved in Synaptic Clearance
by Microglia in AD
TREM2 is a transmembrane protein expressed in myeloid
microglia and play important roles in functional maintenance
of normal brain activity (50). Recent whole-genome sequencing
studies have shown that rare TREM2 variants increase the risk
of AD by 2-4-fold (15). In the cerebrospinal fluid (CSF) of AD
patients, soluble TREM2 has been shown to correlate with total
tau and phosphorylated tau (p-tau, Thr181) levels (51).
Therefore, TREM2 has become a new hotspot in the study of
AD pathogenesis and treatment.

TREM2 regulates a variety of biological functions (52–54),
but the molecular mechanisms involved in AD pathogenesis
are unclear. Most of the current studies on TREM2 regulation
of microglial function have focused on its role in the regulation
of abnormal protein accumulation and neuroinflammation
(55–57). For example, TREM2 has been shown to have a
critical role in reducing Ab-induced neuronal atrophy and
tau seeding/spreading (55, 56, 58). Other studies also point out
TREM2 may affect the inflammatory response and energy
metabolism, regulating microglial phagocytosis of abnormal
proteins and damaged neurons (50, 52).

It is worth mentioning that several recent studies suggest that
TREM2 is also essential for synaptic clearance by microglia (16, 39,
59). In vitro experiments showed that TREM2 knockdown
significantly affected microglial activation and phagocytosis. In
vivo, TREM2 mutant mice showed abnormal microglial synaptic
phagocytosis, and functional magnetic resonance imaging also
revealed altered functional connectivity in neural pathways
throughout the brain (16). In TREM2-deficient mice, microglia
fail to recognize redundant synapses, synaptic modification is
absent, neuronal synaptic density is increased, arousal is
enhanced, normal brain function is impaired, and the mice
develop abnormal behaviors and social deficits (39). All in all,
these data suggest microglia modified synapses via phagocytosis,
which required the involvement of TREM2.

APOE Interacts With TREM2 in AD
Both APOE and TREM2 were identified as independent risk
factors for LOAD. They are also expressed in glia cells and
related immune response. Both TREM2 and APOE play
important roles in promoting microglial activation, survival,
and barrier formation. TREM2 expression and function are
positively associated with APOE expression in AD pathology
(60), and APOE expression may be dependent on TREM2
May 2022 | Volume 13 | Article 845897
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regulation (18). Several groups have shown that TREM2 binds to
APOE (61–63). APOE can increase the phagocytosis of apoptotic
neurons via the TREM2 pathway. The TREM2 R47H variant was
shown to reduce TREM2 affinity to bind APOE. Besides, recent
study suggests that human APOE contain the binding site for
TREM2, and that there is an APOE-isoform-dependent binding
to TREM2. Recent reports also identified TREM2-APOE pathway
can drive the transcriptional phenotype of dysfunctional microglia
in AD, which can induce a shift from a homeostatic phenotype to
a neurodegenerative phenotype in microglia (62).

Overall, emerging evidence suggests that APOE binds to
TREM2 and APOE are putative ligands for TREM2, thus
raising the possibility of an APOE-TREM2 interaction
modulating different aspects of AD pathology. TREM2-APOE
interaction may promote microglial activation, survival,
phagocytosis and thus modulate inflammatory responses and
neuronal injury. However, whether the TREM2-APOE pathway
can modulate microglial synaptic clearance remains unclear and
needs to be further investigated.
Complement Signaling Pathway Involves
in Microglia-Mediated Synaptic Clearance

Previous studies have identified the complement signaling pathway
as a component of the innate immune system that is involved in
synaptic clearance by microglia in AD (21, 47). C1q, the initiating
protein in the classical complement cascade, is expressed by
postnatal neurons in response to immature astrocytes and is
localized at synapses (64). During CNS development, redundant
neuronal synapses express the complement protein C1q, which
activates CR3 receptors, and since microglia are the only cells that
can express CR3 in the brain, activation of the complement
signaling pathway enables the recognition of synapses by
microglia, leading to phagocytosis and synaptic clearance. Mice
lacking either complement protein C1q or downstream
complement protein C3 exhibit a greater sustained deficit in CNS
synaptic elimination (21, 24). Hong et al. examined a mouse model
of Alzheimer’s disease and showed that C1q was significantly
increased before significant plaque deposition and was associated
with synapse clearance (65). Inhibition of C1q, C3, or the
complement receptor CR3 in microglia reduces the number of
phagocytic microglia and decreases the extent of synaptic loss
in AD.

C1q and APOE were previously thought to act separately and
perform independent tasks in many tissue contexts. Recent studies
have shown a correlation between C1q and APOE (66). Currently,
C1qhas been shown to colocalizewithAPOE in the brain inhuman
AD (67). In vitro experiments also demonstrated that APOE is a
checkpoint inhibitorof classic complement cascadeactivity (68).All
human APOE isoforms attenuate classic complement cascade
activity in vitro through high affinity binding to activated C1q.
The C1q-APOE complex is a marker of sustained complement
activity in Ab plaques in vivo. The C1q-APOE complex in Ab
plaques is associated with reduced cognitive performance. APOE
activates C1q through the formation of the C1q-APOE complex,
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which in turn initiates the classic complement cascade. In AD, Ab
depositsmay lead to the loss of synapses by activating complement-
related clearance pathways. In summary, APOE binds to C1q and
regulates the activation of the classic complement cascade. C1q-
APOE complex may affect AD by regulating synaptic clearance
by microglia.

Moreover, in recent years, it has been found that the levels of
both TREM2 and C1q are significantly increased around Ab,
suggesting an association between TREM2 and C1q in microglia-
mediated synaptic phagocytosis (40, 64). Therefore, clarifying
the interaction between TREM2 and C1q in microglia-mediated
synaptic clearance will further refine our understanding of
TREM2 and the complement system in AD.

In conclusion, the exact relationship between TREM2, APOE
and C1q is still unclear. Therefore, further in-depth and
comprehensive studies are needed to investigate how these three
pathways regulate microglial synaptic clearance in AD Table 1.
SUMMARY AND PROSPECTS

As the most important immune cells in the brain, microglia
play significant roles in almost all central nervous system
disease processes. The studies of microglia function have been
a hot topic in the field of AD research. Microglia can refine
synaptic connections through phagocytosis to ensure accurate
TABLE 1 | The specific mechanism in microglia-mediated synaptic clearance in
Alzheimer’s Disease.

Factors Mechanism in synaptic clearance in Alzheimer’s Disease

TREM2 1) Lack of TREM2 receptors lead to impaired synaptic clearance.
2)TREM2 knockdown significantly affect microglial activation and
phagocytosis.
3) TREM2 recognize phosphatidylserine “eat me” signal at the
synapses.

C1q 1) Synapses requiring pruning can be localized and labelled by C1q.
2) Inhibition of C1q can reduce Ab oligomer-induced and tau-induced
excessive synaptic phagocytosis and improve synaptic deficits.
3) Removal of the complement component protect synaptic loss in the
brains of AD transgenic mice.

CX3CR1 1) In mice lacking Cx3cr1, synaptic pruning is delayed.
2) Knockdown of CX3CL1 results in reduced social interactions and
increases repetitive behavioral traits.

APOE 1) APOE can increase the phagocytosis of apoptotic neurons via the
TREM2 pathway.
2) APOE is a checkpoint inhibitor of classic complement cascade
activity.

TREM2-
APOE

1) APOE binds to TREM2 and APOE are putative ligands for TREM2
2) TREM2-APOE pathway can drive the transcriptional phenotype of
dysfunctional microglia in AD.
3) TREM2-APOE interaction promotes microglial activation, survival,
phagocytosis.

APOE-
C1q

1) C1q has been shown to colocalize with APOE in the brain in human
AD.
2) APOE activates C1q through the formation of the C1q-APOE
complex, which in turn initiates the classic complement cascade.
3) C1q-APOE complex affect microglia-mediated synaptic clearance.

TREM2-
C1q

An association between TREM2 and C1q in microglia-mediated
synaptic phagocytosis needs to be explored.
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transmission of information. TREM2, a microglia surface
receptor, is essential for synaptic clearance by microglia, but
the exact mechanism needs to be further explored. TREM2
binds with high affinity to APOE and promotes the clearance
of apoptotic neurons and cellular debris by microglia.
Previous studies have identified the complement signaling
pathway is also involved in synaptic clearance. APOE may
affect the classic complement cascade through the C1q-APOE
complex, which affects microglia and influences synaptic
pruning. In recent years, significantly increased levels of
both TREM2 and the complement protein C1q have been
found around Ab, suggesting an association between TREM2
Frontiers in Immunology | www.frontiersin.org 5
and C1q. Therefore, we propose that TREM2, APOE and C1q
interact with each other and promote microglia mediated
synaptic clearance in AD Figure 1.

In this review, we systematically summarized the potential
mechanisms of microglia involved in synaptic clearance,
comprehensively reviewed the role of TREM2 in microglia
regulating synaptic clearance and proposed our hypothesis
that TREM2 interacts with APOE and C1q to promote
synaptic clearance in AD. This review provides new insights
into the role of TREM2 regulation in microglia synaptic
clearance and provides new clues to elucidate the role of
TREM2 in the pathogenesis of AD.
A B

C

FIGURE 1 | Diagram of the synergistic effects of TREM2, APOE and C1q in microglia-mediated synaptic clearance in AD. TREM2, APOE and C1q interact
with each other and promote microglia mediated synaptic clearance in AD. (A) TREM2 binds to APOE and promotes microglia activation and survival,
thereby regulates synaptic clearance. (B) APOE activates C1q by forming the C1q-APOE complex, which in turn initiates the classic complement cascade
to regulate synaptic clearance by microglia. (C) An association between TREM2 and the complement protein C1q needs to be explored.
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