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Silyl Anion Initiated Hydroboration of Aldehydes and Ketones
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Abstract: Hydroboration is an emerging method for mild

and selective reduction of carbonyl compounds. Typically,
transition-metal or reactive main-group hydride catalysts

are used in conjunction with a mild reductant such as pi-
nacolborane. The reactivity of the main-group catalysts is
a consequence of the nucleophilicity of their hydride li-

gands. Silicon hydrides are significantly less reactive and
are therefore not efficient hydroboration catalysts. Here, a

readily prepared silyl anion is reported to be an effective
initiator for the reduction of aldehydes and ketones re-

quiring mild conditions, low catalyst loadings and with a
good substrate scope. The silyl anion it is shown to acti-

vate HBpin to generate a reactive borohydride in situ

which reacts with aldehydes and ketones to afford the hy-
droboration product.

The reduction of aldehydes and ketones is an important organ-

ic transformation. Recently, there has been a drive for the dis-

covery of new catalytic processes exploiting mild and easy to
handle reducing agents, such as pinacolborane (HBpin). A

large number of transition-metal and main-group catalysts
have already been reported to catalyze the hydroboration of
carbonyls using reducing agents including HBpin.[1] In particu-
lar, main-group metal hydride catalysts have been widely ex-

plored for the hydroboration of carbonyl compounds,[1b, c, 2] in-

cluding the seminal work of Hill using a magnesium hydride,[2b]

the low oxidation state germanium and tin hydrides reported

by Jones,[2c] and aluminum catalysts reported by Roesky,[2d]

Inoue[2e] and us.[2g] In most instances, these catalysts were re-

ported to hydrometalate the substrate, followed by metathesis
with the borane source to give the boronic ester product and

regenerate the metal hydride (Scheme 1). In contrast to s- and p-block metal hydrides, silicon hydrides

are typically less reactive due to the lower electronegativity dif-
ferences between Si and H.[3] However, a five-coordinate amidi-
nato silane has been reported to catalyze the hydroboration of

aldehydes.[2h] Importantly, the catalyst-free hydroboration of al-
dehydes has also been reported recently,[4] demonstrating that

HBpin can reduce activated substrates without the use of a
catalyst. Thus, future work should focus on more sterically and

electronically demanding carbonyl compounds, such as ke-

tones and esters. We wanted to investigate if there was an al-
ternative method to engage silicon catalysts in the hydrobora-

tion of such compounds.
Based on recent reports of inorganic bases as pre-catalysts

for hydroboration,[5, 6] we wondered whether a nucleophilic sili-
con center would result in an active species for hydroboration

Scheme 1. Previously reported main-group catalysts and mechanisms for
the hydroboration of carbonyl compounds.
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catalysis. We therefore decided to investigate the common silyl
anion, or silicate, KSi(SiMe3)3, 1,[7] as a potential pre-catalyst.

Here, we report that 1 is an effective initiator for the hydrobo-
ration of aldehydes and ketones, requiring mild conditions and

low catalyst loadings and with a good functional group toler-
ance (Scheme 2).

Initially, we tested the hydroboration of acetophenone using
HBpin and a substoichiometric amount (3 mol %) of silyl anion

1. Under solvent free conditions, the boronic ester product 2 a

was afforded in quantitative yields after just twenty minutes at
room temperature.

After optimization of the reaction conditions (see Support-
ing Information), all further reactions were carried out with

0.5 mol % catalyst loading in toluene. Reactions were run for
1 hour at room temperature before quenching with CDCl3 in

air. Notably, when the catalyst loading was lowered to
0.1 mol %, we were still able to achieve a yield of 75 % after
48 hours, a turnover number of 750. For comparison, the hy-

droboration of acetophenone by HBpin using KOtBu as an ini-
tiator required 5 mol % catalyst loading to achieve 93 % yield

after 2.5 hours.[5]

With optimized conditions established, we investigated the

scope and functional group tolerance of our procedure. Aceto-
phenone derivatives were successfully converted (2 a–2 f). Hal-

ogen substituents (2 d and 2 e) were tolerated, showing the

potential for further functionalization. Vinyl and propargylic ke-
tones were chemoselective for reduction of the carbonyl

group (2 h–2 k). Aldehydes were quantitatively converted to
the boronic esters (2 l–2 n).

We propose a mechanism for the silyl anion initiated hydro-
boration of carbonyls in Scheme 3, which we base on that pre-

viously reported for the alkoxide initiated hydroboration of car-

bonyls.[5] The initiation step is coordination of the silyl anion to
HBpin to generate borohydride 4. Delivery of a hydride from 4
to the carbonyl substrate generates an alkoxide intermediate
which undergoes further coordination to HBpin, regenerating

a borohydride. Coordination of the carbonyl oxygen to the po-
tassium counterion is conceivable, and would accelerate the

nucleophilic addition step.[1p]

We carried out a series of stoichiometric reactions to sup-
port the proposed mechanism. Initially, we investigated the

stoichiometric reaction of silyl anion 1 with HBpin in C6D6 and
[D8]THF. In each case, a gel-like solid formed immediately. The
11B NMR of the C6D6 reaction mixture shows a single broad sin-
glet resonance at d= 37.4 ppm (n1=2

= 230 Hz) which corre-

sponds to silylboronic ester 3.[8] In [D8]THF, besides the signal

for 3 at d= 37.4 ppm, a sharp singlet at d = 8.4 ppm was ob-
served, which is tentatively assigned to silyl boron-ate com-
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Scheme 2. Substrate scope for the silyl anion initiated hydroboration of al-
dehydes and ketones. Reaction conditions: 0.625 mmol substrate,
0.625 mmol HBpin, 0.5 mol % 1, 40 mL toluene, room temperature, 1 hour.
[a] An additional 160 mL was toluene added in order to dissolve the sub-
strate. NMR yields were measured by 1H NMR spectroscopy using 1,3,5-tri-
methoxybenzene as an internal standard.
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plex 4, based on similarity with previously reported Na[t-

BuO(H)Bpin] (d= 6.2)[5] and with Brown’s trialkoxyborohydrides
(d 0.0–6.7).[9] We also observed, a sharp quartet at d=

@45.4 ppm, suggestive of a BH3 adduct. The gel-like nature of

the reaction mixture prevented isolation of any of the ob-
served species other than silylboronic ester 3, which was isolat-
ed by filtration of the reaction mixture through silica. The ob-
servation of boronic ester 3 and (tentatively) the boronate 4 in

stoichiometric reactions supports our proposed mechanism.
It has recently been reported that BH3·THF can catalyze the

hydroboration of alkenes and alkynes.[10] To rule out silyl-anion
induced decomposition of HBpin to BH3, which could act as a
catalyst, we carried out a test reaction using 1 mol % BH3·THF

with acetophenone and one equivalent of HBpin under other-
wise identical reaction conditions. After one hour at room tem-

perature we only observed trace amounts of the hydrobora-
tion product 2 a (Scheme 4), demonstrating that BH3 is not an

efficient catalyst under our conditions. This observation is par-

ticularly important given the observation of a BH3 adduct in
the reaction of 1 with HBpin described above. Furthermore,

the hydroboration of alkynes did not proceed at room temper-
ature under identical conditions (see Supporting Information).

In conclusion, we have presented a fast, reliable and facile
method for the hydroboration of carbonyls using a silyl anion

initiator. We have carried out a substrate scope investigation
which shows the reaction is tolerant to a range of substituents.

Our proposed mechanism is supported by previously reported
protocols and stoichiometric studies.
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