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The increasing global prevalence of diabetes is a critical problem for public health. In particular, diabetic retinopathy, a
prevalent ocular complication of diabetes mellitus, causes severe vision loss in working population. A better understanding of
the pathogenesis and the development of new pharmacologic treatments are needed. This paper describes the relevance between
Rho/ROCK pathway and the pathogenesis of diabetic retinopathy from its early to late stages. Moreover, the therapeutic potential
of ROCK inhibitor in the total management of diabetic retinopathy is discussed.

1. Introduction

The growing prevalence of diabetic retinopathy (DR), the
common ocular complication of diabetes mellitus, is a
critical problem for global public health [1, 2]. Early
nonproliferative stages of DR are characterized by blot
hemorrhages and vascular abnormality such as retinal
vascular microaneurysms or hyperpermeability which could
cause diabetic macular edema (DME). Proliferative diabetic
retinopathy (PDR), later stage of the diseased state, causes
neovascularization, vitreous hemorrhages, preretinal fibro-
vascular proliferation, and tractional retinal detachment.
While visual acuity is not always affected in early stages,
progression of the disease leads to severe vision loss.

Panretinal photocoagulation (PRP) and vitreoretinal
surgery remain the primary therapeutic strategies for pro-
gressed DR. However, PRP is destructive to the retina and
accompanied by adverse effects such as decreased visual
acuity, increased risk of macular edema, and pain [3,
4]. Moreover, recent advances in vitreous surgery cannot
always achieve a satisfying visual acuity [5]. Now it is at a
point where new alternative and adjunctive agents from the
earlier stages are urgently required because of overwhelming
patient’s physical and economic burdens of these treatments.

The various clinical findings in earlier DR stages
are related to endothelial damage secondary to increased
leukocyte adhesion mediated through adhesion molecules,

intercellular adhesion molecule-1 (ICAM-1), and leukocyte
β2-integrins (CD18/CD11a and CD18/CD11b) [6–8]. In
addition, the critical mechanism of this leukocyte-induced
endothelial damage is the interaction of endothelial Fas with
Fas ligand, expressed on adherent leukocytes in diabetic rats
[9] and DR patients [10].

Recent accumulating evidences indicate that vascular
endothelial growth factor (VEGF) plays a critical role in
pathogenesis of both DME and neovascularization in PDR
[11, 12]. Clinical studies with anti-VEGF antibodies are
potentially useful strategy and improve outcome for treating
DR [13]. However, the adaptation is only for progressed
states and there is a possibility of systemic adverse compli-
cations such as hypertension, cerebrovascular accidents, and
myocardial infarcts by anti-VEGF therapy [14].

Meanwhile, neovascularization and proliferative vitre-
oretinopathy (PVR) are hallmark of the later DR stages.
VEGF-induced endothelial migration and proliferation is
essential process for angiogenesis. ERK1/2 signaling pro-
motes the proliferative activities of endothelial cells in angio-
genic processes [15, 16]. Moreover, endothelial migration is
mediated by Rho-kinase (ROCK) pathway which activates
remodeling of endothelial F-actin cytoskeleton [17].

Our recent findings indicated that hyalocytes, a known
resident macrophage in the cortical vitreous under physi-
ological conditions, appeared to be involved in the patho-
genesis of PVR associated with a cicatricial contraction of
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Figure 1: Rho/ROCK activation in retinal vessels. In immunohistochemical analysis, RhoA (a), ROCK1 (b) and ROCK2 (c) were detected in
retinal vessels. Yellow (white arrowhead) indicates double-stained vasculature (magnification: ×400). (d and e) The levels of Rho-GTP were
significantly higher in streptozotocin induced-diabetic rat bretinas, compared with those in nondiabetic control, detected by Rho pull-down
assay. Average signal intensities are quantified and expressed as percentage of the ratio of control (∗∗P < .01, n = 5 each). Prevention of
leukocyte-induced retinal endothelial damage by fasudil. (f–i) In vivo visualization of adhering leukocytes (green, concanavalin A lectin) and
injured endothelial cells (red, propidium iodide (PI)) and endothelial nuclei (blue, DAPI) in rat retinas. PI positive cells (white arrowhead)
widely coincided with adherent leukocytes (white arrow). The number of PI positive cells per retina was significantly higher in the diabetic
animals, compared with the nondiabetic controls. Fasudil caused a significant reduction in the number of PI positive cells in the retinas of
the diabetic animals, compared with the vehicle-treated controls (∗∗P < .01, N.S., not significant, n = 5 each).

proliferative membranes in PDR [18–20]. The expression
of α-smooth muscle actin (α-SMA) and phosphorylation of
myosin light chain (MLC) in hyalocytes, which is associated
with stress-fiber formation and contractile rings, are facilitat-
ing cell contraction [21, 22]. We demonstrated that vitreous
from patients with PDR significantly promoted expression
of α-SMA and phosphorylation of MLC, and enhanced

contraction of hyalocyte-containing collagen gels, compared
with vitreous from patients with nondiabetic controls [23].

In this paper, we first place the Rho/ROCK pathway plays
a critical role in diabetic retinal microvasculopathy, neo-
vascularization, and tractional retinal detachment associated
with a cicatricial contraction of proliferative membranes. We
then describe our current knowledge about ROCK inhibition
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Figure 2: Impact of fasudil on PDR vitreous-induced collagen gel contraction and MLC phosphorylation. After pretreatment with
or without anti-TGF-β mAb or fasudil, hyalocytes were stimulated with vitreous with PDR. (a) In hyalocyte-containing collagen gels,
fasudil almost completely suppressed the contraction of collagen gels treated with PDR vitreous. The diameter of the gels was measured
and statistically analyzed (∗P < .05; ∗∗P < .01; NS, not significant, n = 3 each). (b) Western blot analysis was performed to
detect phosphorylated MLC (pMLC). Fasudil abolished MLC phosphorylation, induced by PDR vitreous. Lane-loading differences were
normalized by MLC. Signal intensities were quantified and expressed as percentages of the pMLC/MLC ratio compared with control
(∗P < .05; ∗∗P < .01, n = 3 each). Experimental PVR in rabbit eyes. (c) Therapeutic potential of fasudil in reducing the progression
of experimental PVR. PVR was classified into six stages (0–5). Rhombus, vehicle (n = 5); purple square, fasudil 10 μM (n = 5); trigone,
fasudil 30 μM from stage 2 (n = 6); blue square, fasudil 30 μM (n = 5) (∗P < .05, ∗∗P < .01, not significant versus vehicle). (d) Tractional
retinal detachment because of formation and cicatricial contraction of preretinal proliferative membrane was observed by stereomicroscopy
in vehicle-treated eyes (stage 5 PVR). (g) In contrast, intravitreal membranes adhered to the retina without causing retinal detachment
(arrowhead) in 30 μM fasudil-treated eyes with stage 2 PVR. Micrographs depict α-SMA expression (brown) in preretinal proliferative
membrane with stage 5 PVR (e) and stage 2 PVR (h) by immunohistochemical analysis. (Scale bar, 200 μm). (f and i) Magnified images of
(e) and (h), respectively, (Scale bar, 10 μm).

as a new strategy in the total management of DR from its
early to late stages.

2. Involvement of Rho/ROCK Pathway in
the Pathogenesis of Diabetic Retinopathy

Recent studies have revealed that small GTP-binding protein
Rho and its target protein ROCK are implicated in the
important physiological roles such as cell adhesion and
migration mediated through MLC phosphorylation [19, 24].
Rho activity is also increased in bovine aortic endothelial
cells treated with high glucose [25], and involved in the
pathogenesis of renal and aortic complications during
diabetic states [26, 27]. Furthermore, we revealed that
Rho/ROCK pathway is activated in retinal microvessels
during diabetes (Figures 1(a)–1(e)).

Rho/ROCK pathway promotes leukocyte adhesion to
the microvasculature by affecting the expression and func-
tion of adhesion molecules, including ICAM-1 [28, 29]
and integrins [30]. Moreover, ROCK causes firm adhesion
through the activation of ezrin, radixin, and moesin in
endothelial cells, which jointly form the anchoring structures
for leukocytes’ integrins [31, 32]. These findings suggest
that elevated activity of the Rho/ROCK pathway is involved
in the pathogenesis of diabetic microvasculopathy mediated
through leukocyte adhesion.

Rho/ROCK signaling is also involved in the pathogenesis
of VEGF-induced angiogenesis. In endothelial cells ROCK
pathway plays a critical role in VEGF-induced endothelial
migration by regulating stress fiber formation associated
with MLC phosphorylation [17, 33]. Moreover, recent in vivo
studies have also demonstrated that the ROCK pathway plays
a critical role in angiogenesis [34, 35].
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Figure 3: Contractile impacts of ROCK activation in rat retinal vasculature. Intravitreal injections ofllysophosphatidic acid (LPA), Rho
activator, were performed into rat’s eyes over a period of 1 minute with a 33-gauge needle. The final intraocular concentration of LPA was
20 μM. We monitored the retinal fluorescein with a scanning laser ophthalmoscope ((a) no injection, (b) 5 minutes after injection, (c) 10
minutes after injection). Intravitreal injection of induced sever retinal vessel contraction.
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Rho-kinase (ROCK) is its target protein. Glucose, TNF-α, and TGF-β, elevated in diabetic serum or vitreous, activate Rho/ROCK pathway
in endothelial cells or hyalocytes. ROCK activation induces endothelial damage mediated through inactivation of endothelial nitric oxide
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Previously we showed TGF-β2 contributes to transdiffer-
entiation of hyalocytes into α-SMA positive myofibroblast-
like cells that causes hyalocyte-containing collagen gel con-
traction [19]. Moreover, we revealed that TGF-β2, overex-
pressed in the vitreous and contractile membranes of PDR
patients, activates ROCK pathway and forms stress fibers and
contractions mediated through ROCK activation [20, 23].
These results suggest the central role of ROCK in the cicatri-
cial contraction of proliferative membrane in PDR patients.

3. Therapeutic Strategy in Diabetic Retinopathy
by ROCK Inhibition

3.1. ROCK Inhibition Ameliorates Diabetes-Induced Microvas-
cular Damage. Fasudil, a potent and selective ROCK
inhibitor, is relatively safe and effective in the treatment
of cardiovascular disease including cerebral and coronary
vasospasm, angina, hypertension, and heart failure with no
serious adverse side effect in fasudil-treated patients [36].
In our animal experiments, intravitreal injection of fasudil
did not cause apparent electrophysiological or morpholog-
ical changes in retinal tissues at least within its effective
concentrations [23]. However, several adverse effects such
as hepatic function abnormal, intracranial hemorrhage, and
hypotension have been reported [37, 38]. We thus need
further examination regarding the safety and adverse effects
of ROCK inhibitor before its clinical use in the field of
intraocular diseases.

Nevertheless, we recently could reveal the therapeutic
potential of fasudil in the management of earlier stages
of DR. Treatment with intravitreal injection of fasudil
significantly decreased retinal leukocyte adhesion in dia-
betic rat mediated through reduction of ROCK activation.
Moreover, fasudil effectively suppressed endothelial damage,
even when leukocytes firmly adhered to the endothelium
(Figures 1(f)–1(i)). This suggests that fasudil directly causes
endothelial protection in addition to its impact on leukocyte
adhesion. Rho/ROCK inactivates endothelial nitric oxide
synthase (eNOS) in human umbilical venous cells [39].
eNOS generates physiological levels of nitric oxide (NO),
a potent vasodilator [40] and antiapoptotic factor [41, 42].
Fasudil treatment almost completely reversed the decreased
eNOS activity in diabetic rat retinas. In addition, the
protective effect of fasudil on microvascular endothelial cells
was significantly blocked by NOS inhibition with L-NAME,
without apparent effect on leukocyte adhesion in vitro.
These findings suggest that fasudil has a direct endothelial
protective potential through induction of physiological levels
of NO, synthesized by eNOS.

3.2. Antiangiogenic Properties of ROCK Inhibitor. We
demonstrated that ROCK inhibitor could inhibit
VEGF-elicited bovine retinal capillary endothelial cell
(BREC) migration and proliferation in vitro and corneal
neovascularization in vivo. A ROCK inhibitor fasudil
had inhibitory effect on BREC migration with a scratch-
wound assay. Moreover, fasudil could inhibit VEGF-
induced BRECs [3H]-thymidine incorporation and ERK1/2

phosphorylation, whose activity indicates the proliferative
activities of endothelial cells in angiogenic processes [15].
In vivo, fasudil strongly attenuated VEGF-induced corneal
neovascularization in a corneal pocket assay [43].

3.3. ROCK Inhibition Suppresses Critical Contraction of
Proliferative Membrane. We could also demonstrate the
therapeutic potential of ROCK inhibitor fasudil in the
management of later stages of DR. In hyalocyte-containing
collagen gels assay, fasudil almost completely abolished the
PDR vitreous-induced collagen gel contraction mediated
through the suppression of MLC phosphorylation (Figures
2(a) and 2(b)). In experimental PVR rabbit model, fasudil
also effectively disrupted α-SMA organization and blocked
contraction of proliferative membrane (Figures 2(c)–2(i)).

Statins, inhibitors of the 3-hydroxy-3-methyl-glutaryl-
(HMG-) CoA reductase, are widely used to reduce
endogenous cholesterol synthesis and improve hypercholes-
terolemia [44]. By inhibiting HMG-CoA reductase, statins
also block ROCK activation mediated through the meval-
onate pathway [45].

We demonstrated that simvastatin almost completely
inhibited vitreous-induced contraction of the collagen gels
in exvivo and proliferative membrane in experimental PVR
model mediated through ROCK inhibition [46]. Our results
indicate that ROCK inhibition suppresses PVR progression
in later DR stages.

3.4. Other Beneficial Effects of Fasudil on

Retinal Tissue during Diabetes

3.4.1. Vasodilatory Property and Improvement of Hemody-
namics in the Retinal Vessels. Development of chronic retinal
ischemic state aggravates diabetic retinopathy. Rho/ROCK
activation plays an important role in the pathogenesis of
vasoconstriction, such as cerebral and coronary spasm [47]
or hypertension [48], by NO-dependent mechanisms. We
could show that intravitreal injection of lysophosphatidic
acid, a potential Rho activator, induced severe retinal vessel
constriction (Figures 3(a)–3(c)). Recent studies suggested
that ROCK inhibitor fasudil improved hemodynamic states
in human [49], and also dilated rat retinal vessels, and
increases blood flow [48]. These results suggest that fasudil
has preventable benefit on retinal ischemia during diabetes
through improvement of hemodynamics in the retinal
vessels.

3.4.2. Retinal Neuroprotective Effect of Fasudil. Retinal
ischemia secondary to DR causes functional and irreversible
damage not only in retina vasculature but also in retinal
neuronal cells. Chronic loss of neuronal cells from the inner
retina by increasing the frequency of apoptosis reduces the
thickness of the nerve fiber layer in diabetic retina [50].
Impaired retinal electrophysiology and neurodegeneration
have been shown in diabetic patients [51, 52]. Recent studies
revealed that Rho/ROCK pathway also seems to be associated
with the pathogenesis of this neuronal damage. Abnormal
activation of the Rho/ROCK pathway is important in the
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pathogenesis of several neurological diseases [53]. In rat
retina, Rho/ROCK pathway is also involved in N-methyl-D-
aspartat-induced neurotoxicity in the rat retina. [54]. These
studies suggest that ROCK inhibitor would protect against
neuronal damage by acting directly on neurons. In fact, the
ROCK inhibitor Y-27632 increases regeneration of retinal
ganglion cell in the rat optic nerve crush model [55]. More-
over, ROCK inhibition attenuates ischemia-induced retinal
neuronal cell death by inhibiting leukocytes extravasation
and release of proinflammatory cytokines such as TNF-α or
IL-6 in vitro/vivo [56, 57]. These data suggest that inhibition
of Rho/ROCK pathway leads to neuroprotective effect and
promote retinal cell survival during diabetes.

4. Conclusion

Rho/ROCK pathway is involved throughout the pathogenesis
of DR, particularly in diabetic retinal microvasculopathy,
neovascularization, and tractional retinal detachment asso-
ciated with cicatricial contraction of preretinal proliferative
membranes (Figure 4). Since we must consider frequent
intravitreal injections as administration method due to a
short biological half-life time of the compound in the
vitreous cavity, we are considering intravitreal implantation
of a slowly releasing drug-delivery system. For preventable
benefit on progressing retinal microvascular damage and
keeping good visual acuity, timing of intravitreal fasudil
implantation prefers when early clinical DR findings such
as microaneurysm begin to appear. In addition, pre- and
postoperative intravitreal implantations for active PDR
patients with proliferative membrane are also considered
to be effective for prevention of PVR and tractional retinal
detachment. Whereas further basic and clinical studies to
reveal the effectiveness and safety of ROCK inhibitor are
needed for clinical use in the field of eye diseases, ROCK
inhibition might become a novel therapeutic strategy in the
total management of DR from its early to late stages.

References

[1] J. H. Kempen, B. J. O’Colmain, M. C. Leske, et al., “The
prevalence of diabetic retinopathy among adults in the United
States,” Archives of Ophthalmology, vol. 122, no. 4, pp. 552–
563, 2004.

[2] H. King, R. E. Aubert, and W. H. Herman, “Global burden
of diabetes, 1995–2025: prevalence, numerical estimates, and
projections,” Diabetes Care, vol. 21, no. 9, pp. 1414–1431,
1998.

[3] “Early photocoagulation for diabetic retinopathy. ETDRS
report number 9. Early Treatment Diabetic Retinopathy Study
Research Group,” Ophthalmology, vol. 98, pp. 766–785, 1991.

[4] L. P. Aiello, “Angiogenic pathways in diabetic retinopathy,” The
New England Journal of Medicine, vol. 353, no. 8, pp. 839–841,
2005.

[5] D. S. Fong, L. Aiello, T. W. Gardner, et al., “Diabetic
retinopathy,” Diabetes Care, vol. 26, no. 1, pp. S99–S102, 2003.

[6] A. M. Joussen, T. Murata, A. Tsujikawa, B. Kirchhof, S.-E.
Bursell, and A. P. Adamis, “Leukocyte-mediated endothelial
cell injury and death in the diabetic retina,” American Journal
of Pathology, vol. 158, no. 1, pp. 147–152, 2001.

[7] C. W. Smith, S. D. Marlin, R. Rothlein, C. Toman, and D. C.
Anderson, “Cooperative interactions of LFA-1 and Mac-1 with
intracellular adhesion molecule-1 in facilitating adherence
and transendothelial migration of human neutrophils in
vitro,” Journal of Clinical Investigation, vol. 83, no. 6, pp. 2008–
2017, 1989.

[8] F. C. Barouch, K. Miyamoto, J. R. Allport, et al., “Integrin-
mediated neutrophil adhesion and retinal leukostasis in
diabetes,” Investigative Ophthalmology and Visual Science, vol.
41, no. 5, pp. 1153–1158, 2000.

[9] A. M. Joussen, V. Poulaki, N. Mitsiades, et al., “Suppression of
Fas-FasL-induced endothelial cell apoptosis prevents diabetic
blood-retinal barrier breakdown in a model of streptozotocin-
induced diabetes,” The FASEB Journal, vol. 17, no. 1, pp. 76–
78, 2003.

[10] R. Arita, Y. Hata, S. Nakao, et al., “Rho kinase inhibition by
fasudil ameliorates diabetes-induced microvascular damage,”
Diabetes, vol. 58, no. 1, pp. 215–226, 2009.

[11] N. Ferrara, “Vascular endothelial growth factor: basic science
and clinical progress,” Endocrine Reviews, vol. 25, no. 4, pp.
581–611, 2004.

[12] A. P. Adamis and D. T. Shima, “The role of vascular endothelial
growth factor in ocular health and disease,” Retina, vol. 25, no.
2, pp. 111–118, 2005.

[13] S. Moradian, H. Ahmadieh, M. Malihi, M. Soheilian, M. H.
Dehghan, and M. Azarmina, “Intravitreal bevacizumab in
active progressive proliferative diabetic retinopathy,” Graefe’s
Archive for Clinical and Experimental Ophthalmology, vol. 246,
no. 12, pp. 1699–1705, 2008.

[14] C. Shima, H. Sakaguchi, F. Gomi, et al., “Complications
in patients after intravitreal injection of bevacizumab,” Acta
Ophthalmologica, vol. 86, no. 4, pp. 372–376, 2008.

[15] B. P. Eliceiri, R. Klemke, S. Stromblad, and D. A. Cheresh,
“Integrin αvβ3 requirement for sustained mitogen-activated
protein kinase activity during angiogenesis,” Journal of Cell
Biology, vol. 140, no. 5, pp. 1255–1263, 1998.

[16] G. Mavria, Y. Vercoulen, M. Yeo, et al., “ERK-MAPK signaling
opposes Rho-kinase to promote endothelial cell survival and
sprouting during angiogenesis,” Cancer Cell, vol. 9, no. 1, pp.
33–44, 2006.

[17] G. P. van Nieuw Amerongen, P. Koolwijk, A. Versteilen,
and V. W. M. Van Hinsbergh, “Involvement of RhoA/Rho
kinase signaling in VEGF-induced endothelial cell migration
and angiogenesis in vitro,” Arteriosclerosis, Thrombosis, and
Vascular Biology, vol. 23, no. 2, pp. 211–217, 2003.

[18] Y. Noda, Y. Hata, T. Hisatomi, et al., “Functional properties
of hyalocytes under PDGF-rich conditions,” Investigative
Ophthalmology and Visual Science, vol. 45, no. 7, pp. 2107–
2114, 2004.

[19] K. Hirayama, Y. Hata, Y. Noda, et al., “The involvement
of the Rho-kinase pathway and its regulation in cytokine-
induced collagen gel contraction by hyalocytes,” Investigative
Ophthalmology and Visual Science, vol. 45, no. 11, pp. 3896–
3903, 2004.

[20] T. Kita, Y. Hata, K. Kano, et al., “Transforming growth
factor-β2 and connective tissue growth factor in proliferative
vitreoretinal diseases: possible involvement of hyalocytes and
therapeutic potential of rho kinase inhibitor,” Diabetes, vol. 56,
no. 1, pp. 231–238, 2007.

[21] K. E. Kamm and J. T. Stull, “The function of myosin and
myosin light chain kinase phosphorylation in smooth muscle,”
Annual Review of Pharmacology and Toxicology, vol. 25, pp.
593–620, 1985.



8 Journal of Ophthalmology

[22] Y. Fukata, K. Kaibuchi, M. Amano, and K. Kaibuchi, “Rho-
Rho-kinase pathway in smooth muscle contraction and
cytoskeletal reorganization of non-muscle cells,” Trends in
Pharmacological Sciences, vol. 22, no. 1, pp. 32–39, 2001.

[23] T. Kita, Y. Hata, R. Arita, et al., “Role of TGF-β in proliferative
vitreoretinal diseases and ROCK as a therapeutic target,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 105, no. 45, pp. 17504–17509, 2008.

[24] K. Kaibuchi, S. Kuroda, and M. Amano, “Regulation of the
cytoskeleton and cell adhesion by the Rho family GTPases in
mammalian cells,” Annual Review of Biochemistry, vol. 68, pp.
459–486, 1999.

[25] H. Iwasaki, R. Okamoto, S. Kato, et al., “High glucose
induces plasminogen activator inhibitor-1 expression through
Rho/Rho-kinase-mediated NF-κB activation in bovine aortic
endothelial cells,” Atherosclerosis, vol. 196, no. 1, pp. 22–28,
2008.

[26] V. Kolavennu, L. Zeng, H. Peng, Y. Wang, and F. R. Danesh,
“Targeting of RhoA/ROCK signaling ameliorates progression
of diabetic nephropathy independent of glucose control,”
Diabetes, vol. 57, no. 3, pp. 714–723, 2008.

[27] J. Tang, I. Kusaka, A. R. Massey, S. Rollins, and J. H. Zhang,
“Increased RhoA translocation in aorta of diabetic rats,” Acta
Pharmacologica Sinica, vol. 27, no. 5, pp. 543–548, 2006.

[28] H. Lee, I. L. Chi, J.-J. Liao, et al., “Lysophospholipids increase
ICAM-1 expression in HUVEC through a G i- and NF-κB-
dependent mechanism,” American Journal of Physiology, vol.
287, no. 6, pp. C1657–C1666, 2004.

[29] B. Wojciak-Stothard, L. Williams, and A. J. Ridley, “Mono-
cyte adhesion and spreading on human endothelial cells is
dependent on Rho-regulated receptor clustering,” Journal of
Cell Biology, vol. 145, no. 6, pp. 1293–1307, 1999.

[30] C. Giagulli, E. Scarpini, L. Ottoboni, et al., “RhoA and ζ PKC
control distinct modalities of LFA-1 activation by chemokines:
critical role of LFA-1 affinity triggering in lymphocyte in vivo
homing,” Immunity, vol. 20, no. 1, pp. 25–35, 2004.

[31] O. Barreiro, M. Yanez-Mo, J. M. Serrador, et al., “Dynamic
interaction of VCAM-1 and ICAM-1 with moesin and ezrin in
a novel endothelial docking structure for adherent leukocytes,”
Journal of Cell Biology, vol. 157, no. 7, pp. 1233–1245, 2002.

[32] D. J. G. Mackay, F. Esch, H. Furthmayr, and A. Hall, “Rho-
and Rac-dependent assembly of focal adhesion complexes and
actin filaments in permeabilized fibroblasts: an essential role
for ezrin/radixin/moesin proteins,” Journal of Cell Biology, vol.
138, no. 4, pp. 927–938, 1997.

[33] L. Zeng, H. Xu, T.-L. Chew, et al., “HMG CoA reductase
inhibition modulates VEGF-induced endothelial cell hyper-
permeability by preventing RhoA activation and myosin
regulatory light chain phosphorylation,” FASEB Journal, vol.
19, no. 13, pp. 1845–1847, 2005.

[34] M. V. Hoang, M. C. Whelan, and D. R. Senger, “Rho activity
critically and selectively regulates endothelial cell organization
during angiogenesis,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 101, no. 7, pp.
1874–1879, 2004.

[35] J.-M. Hyvelin, K. Howell, A. Nichol, C. M. Costello, R.
J. Preston, and P. McLoughlin, “Inhibition of Rho-kinase
attenuates hypoxia-induced angiogenesis in the pulmonary
circulation,” Circulation Research, vol. 97, no. 2, pp. 185–191,
2005.

[36] H. Shimokawa and M. Rashid, “Development of Rho-kinase
inhibitors for cardiovascular medicine,” Trends in Pharmaco-
logical Sciences, vol. 28, no. 6, pp. 296–302, 2007.

[37] M. Shibuya, Y. Suzuki, K. Sugita, et al., “Dose escalation trial of
a novel calcium antagonist, AT877, in patients with aneurys-
mal subarachnoid haemorrhage,” Acta Neurochirurgica, vol.
107, no. 1-2, pp. 11–15, 1990.

[38] M. Shibuya, S. Hirai, M. Seto, S.-I. Satoh, and E. Ohtomo,
“Effects of fasudil in acute ischemic stroke: results of a
prospective placebo-controlled double-blind trial,” Journal of
the Neurological Sciences, vol. 238, no. 1-2, pp. 31–39, 2005.

[39] X.-F. Ming, H. Viswambharan, C. Barandier, et al., “Rho
GTPase/Rho kinase negatively regulates endothelial nitric
oxide synthase phosphorylation through the inhibition of
protein kinase B/Akt in human endothelial cells,” Molecular
and Cellular Biology, vol. 22, no. 24, pp. 8467–8477, 2002.

[40] J. Marin and M. A. Rodriguez-Martinez, “Role of vascular
nitric oxide in physiological and pathological conditions,”
Pharmacology and Therapeutics, vol. 75, no. 2, pp. 111–134,
1997.

[41] L. Rossig, B. Fichtlscherer, K. Breitschopf, et al., “Nitric oxide
inhibits caspase-3 by S-nitrosation in vivo,” The Journal of
Biological Chemistry, vol. 274, no. 11, pp. 6823–6826, 1999.

[42] L. Rossig, J. Haendeler, C. Hermann, et al., “Nitric
oxide down-regulates MKP-3 mRNA levels: involvement in
endothelial cell protection from apoptosis,” The Journal of
Biological Chemistry, vol. 275, no. 33, pp. 25502–25507, 2000.

[43] Y. Hata, M. Miura, S. Nakao, S. Kawahara, T. Kita, and T.
Ishibashi, “Antiangiogenic properties of fasudil, a potent Rho-
kinase inhibitor,” Japanese Journal of Ophthalmology, vol. 52,
no. 1, pp. 16–23, 2008.

[44] J. Molgaard, H. von Schenck, and A. G. Olsson, “Effects of
simvastatin on plasma lipid, lipoprotein and apolipoprotein
concentrations in hypercholesterolaemia,” European Heart
Journal, vol. 9, no. 5, pp. 541–551, 1988.

[45] L. Van Aelst and C. D’Souza-Schorey, “Rho GTPases and
signaling networks,” Genes and Development, vol. 11, no. 18,
pp. 2295–2322, 1997.

[46] S. Kawahara, Y. Hata, T. Kita, et al., “Potent inhibition of
cicatricial contraction in proliferative vitreoretinal diseases by
statins,” Diabetes, vol. 57, no. 10, pp. 2784–2793, 2008.

[47] A. Masumoto, M. Mohri, H. Shimokawa, L. Urakami, M. Usui,
and A. Takeshita, “Suppression of coronary artery spasm by
the Rho-kinase inhibitor fasudil in patients with vasospastic
angina,” Circulation, vol. 105, no. 13, pp. 1545–1547, 2002.

[48] N. Okamura, M. Saito, A. Mori, et al., “Vasodilator effects of
fasudil, a Rho-kinase inhibitor, on retinal arterioles in stroke-
prone spontaneously hypertensive rats,” Journal of Ocular
Pharmacology and Therapeutics, vol. 23, no. 3, pp. 207–212,
2007.

[49] A. Masumoto, Y. Hirooka, H. Shimokawa, K. Hironaga, S.
Setoguchi, and A. Takeshita, “Possible involvement of Rho-
kinase in the pathogenesis of hypertension in humans,”
Hypertension, vol. 38, no. 6, pp. 1307–1310, 2001.

[50] A. J. Barber, “A new view of diabetic retinopathy: a
neurodegenerative disease of the eye,” Progress in Neuro-
Psychopharmacology and Biological Psychiatry, vol. 27, no. 2,
pp. 283–290, 2003.

[51] V. Parisi and L. Uccioli, “Visual electrophysiological responses
in persons with type 1 diabetes,” Diabetes/Metabolism Research
and Reviews, vol. 17, no. 1, pp. 12–18, 2001.

[52] E. Lieth, T. W. Gardner, A. J. Barber, and D. A. Antonetti,
“Retinal neurodegeneration: early pathology in diabetes,”
Clinical and Experimental Ophthalmology, vol. 28, no. 1, pp.
3–8, 2000.



Journal of Ophthalmology 9

[53] B. K. Mueller, H. Mack, and N. Teusch, “Rho kinase, a
promising drug target for neurological disorders,” Nature
Reviews Drug Discovery, vol. 4, no. 5, pp. 387–398, 2005.

[54] Y. Kitaoka, Y. Kitaoka, T. Kumai, et al., “Involvement of RhoA
and possible neuroprotective effect of fasudil, a Rho kinase
inhibitor, in NMDA-induced neurotoxicity in the rat retina,”
Brain Research, vol. 1018, no. 1, pp. 111–118, 2004.

[55] P. Lingor, N. Teusch, K. Schwarz, et al., “Inhibition of Rho
kinase (ROCK) increases neurite outgrowth on chondroitin
sulphate proteoglycan in vitro and axonal regeneration in the
adult optic nerve in vivo,” Journal of Neurochemistry, vol. 103,
no. 1, pp. 181–189, 2007.

[56] A. Hirata, M. Inatani, Y. Inomata, et al., “Y-27632, a Rho-
associated protein kinase inhibitor, attenuates neuronal cell
death after transient retinal ischemia,” Graefe’s Archive for
Clinical and Experimental Ophthalmology, vol. 246, no. 1, pp.
51–59, 2008.

[57] A. Tura, F. Schuettauf, P. P. Monnier, K. U. Bartz-Schmidt,
and S. Henke-Fahle, “Efficacy of Rho-kinase inhibition in
promoting cell survival and reducing reactive gliosis in the
rodent retina,” Investigative Ophthalmology & Visual Science,
vol. 50, no. 1, pp. 452–461, 2009.


