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ABSTRACT
There is significant interest in increasing the microalgal efficiency for producing high-quality products that
are commonly used as food additives in nutraceuticals. Some natural substances that can be extracted
from algae include lipids, carbohydrates, proteins, carotenoids, long-chain polyunsaturated fatty acids, and
vitamins. Generally, microalgal photoautotrophic growth can be maximised by optimising CO2 biofixation,
and by adding sodium bicarbonate and specific bacteria to the microalgal culture. Recently, to enhance
CO2 biofixation, a thermostable carbonic anhydrase (SspCA) encoded by the genome of the bacterium
Sulfurihydrogenibium yellowstonense has been heterologously expressed and immobilised on the surfaces
of bacteria. Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyse the
physiologically reversible reaction of carbon dioxide hydration to bicarbonate and protons: CO2 þ H2O �
HCO3

� þ Hþ. Herein, we demonstrate for the first time that the fragments of bacterial membranes con-
taining immobilised SspCA (M-SspCA) on their surfaces can be doped into the microalgal culture of the
green unicellular alga, Chlorella sorokiniana, to significantly enhance the biomass, photosynthetic activity,
carotenoids production, and CA activity by this alga. These results are of biotechnological interest because
C. sorokiniana is widely used in many different areas, including photosynthesis research, human pharma-
ceutical production, aquaculture-based food production, and wastewater treatment.
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1. Introduction

Photosynthesis employs sunlight and the reaction between CO2

and H2O to generate carbohydrates and oxygen as a side product.
This gas is necessary for the aerobic respiration but also promotes
the formation of the ozone layer in the upper atmosphere. During
the photosynthetic reactions, the energy of sunlight is converted
into chemical energy, i.e., ATP and NADPH, which are thereafter
involved in the biosynthesis of carbohydrates from CO2 as a
unique carbon source1,2. The aerobic respiration (glucoseþO2 !
H2OþCO2), on the contrary, is the process of energy production,
which converts sugars into carbon dioxide and water. These two
opposite reactions influence the global carbon cycle, being funda-
mental for most life forms on earth2. The light-dependent reac-
tions to form glucose and other carbohydrates are known as the
Calvin-Benson cycle. There are three photosynthetic pathways, C3,
C4, and CAM (Crassulacean Acid Metabolism) that exist among ter-
restrial plants3,4. In the C3 photosynthesis, which is the most
ancestral form, the enzyme ribulose bisphosphate carboxylase-
oxygenase (RuBisCO)5, which is present in the chloroplast stroma
of C3 plants, combines the ribulose-1,5-bisphosphate (RuBP), a
molecule containing five carbon atoms, with CO2 to form two
molecules of phosphoglycerate (PGA, a 3-carbon molecule)6,7. In

the C4 pathway, the CO2 is converted into bicarbonate, which is
subsequently reacted with phosphoenolpyruvic acid (PEP), a 3-car-
bon molecule, in the presence of phosphoenolpyruvate carboxyl-
ase (PEPC)8. The product of this reaction is a 4-carbon molecule,
oxaloacetic acid (OAA), which is thereafter reduced to malate,
another four-carbon acid8. The CAM pathway was documented for
the first time in plant families that are adapted to very arid
regions, such as many epiphytes and succulents9. These plants
have a dual pathway of carboxylation temporally separated into
the same tissue. In the night with the stomata opening, the CO2

is fixed as an organic acid form of the anion malate by PEPC. In
contrast, during the day, with the stomatal closure, the malic acid
undergoes decarboxylation, determining an increase of CO2

around the enzyme RuBisCO of about 60 times the ambient levels,
allowing the photosynthetic reaction typical of the C3 cycle men-
tioned above9. The RuBisCO enzyme also uses O2 as substrate, not
only CO2

10
. The rate of the oxygenation and carboxylation by

RuBisCO is controlled by the levels of O2 and CO2 and is the pri-
mary factor in determining the efficiency of the photosynthetic
process11. CAM is one example of a carbon-concentrating mech-
anism (CCM) in higher order plants, in which, as mentioned above,
decarboxylation of malic acids affords supplementary amounts
of CO2.
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Microalgal growth is driven by the same photosynthetic pro-
cess present in higher plants12–15. Both freshwater and marine
microalgae, also developed a CCM to increase CO2 concentration
close to that for RuBisCO that is up to 1000-fold compared to the
low CO2 concentrations found in aquatic environments16. In the
single-cell green alga, Chlamydomonas reinhardtii, the microalgal
inorganic carbon uptake has been well described17,18. It involves
the diffusion of CO2 and transport of HCO3

� across the microalgal
membranes and the interconversion of CO2 and HCO3

� by the
algal carbonic anhydrases (CAs, EC 4.2.1.1), with the final result of
concentrating the CO2 in the proximity of RuBisCO17, which is
localised mostly within the pyrenoids, the chloroplast microcom-
partments found in algae19–23. In cyanobacteria, carboxysomes are
the equivalent of the pyrenoids24–27.

Indeed, CAs are a superfamily of metalloenzymes, which cata-
lyse the simple but physiologically reversible and crucial reaction
of carbon dioxide hydration to bicarbonate and protons: CO2 þ
H2O � HCO3

� þ Hþ28–35. To date, CAs are categorised into eight
genetically distinct families (or classes), named with the Greek let-
ters: a, b, c, d, f, g, h, and i36. The last three classes were only
recently discovered37–41. The distribution of CA-classes is very var-
iegated in most living organisms investigated so far. CAs present
in animals belong to a-class21,42, plants and algae have a, b, c, d,
f, h and i-classes; fungi encode for a and b-CAs; protozoa for a, b
and/or g-CAs; bacteria for a, b, c, and, as recently reported, for
i-CA classes34,37,40,43–47. The proposed physiological role of CAs in
all these organisms is to regulate pH and to assist the transport of
carbon dioxide and bicarbonate, making possible their balance
inside the cells, which will not be ensured by the very low kcat
(0.15 s�1) of the uncatalyzed CO2 hydration/dehydration reac-
tion43,48–52. All these roles of CAs have in the end crucial physio-
logical functions for the metabolism of the organisms in which
they are found43,48–52.

Recently, considerable and diverse efforts have been made to
improve the efficiency of microalgal cultures, as they provide bio-
mass abundant in high-value products, such as lipids, carbohy-
drates, and proteins53,54. Moreover, they are also a biological
factory of carotenoids, long-chain polyunsaturated fatty acids, and
vitamins, which are commonly used as food additives in nutra-
ceuticals53,55,56. Generally, for maximising the microalgal biomass
during the photoautotrophic growth, the microalgal cultures are
usually optimised improving the CO2-fixation or, by adding
sodium bicarbonate57,58 or specific bacteria59. Recently, our
groups heterologously expressed and immobilised on the surface
of bacterial hosts a thermostable a-CA (SspCA is the acronym)
from the bacterium Sulfurihydrogenibium yellowstonense60. This
approach, entitled in vivo immobilisation, was achieved by trans-
forming the E. coli cells with a plasmid containing a chimeric gene
resulted by the fusion of a signal peptide (pelB gene), which
directs the neosynthesized protein to the bacterial periplasmic
space; the gene (INPN gene) encoding for the Pseudomonas syrin-
gae INP domain, which anchors the neosynthesized protein to the
bacterial outer membrane (external side); and the gene encoding
for the thermostable enzyme SspCA60. The anchored SspCA was
thus efficiently overexpressed on the external bacterial surface of
E. coli and was stable and active for 15 h at 70 �C and for many
days at 25 �C60. Assuming that the CA activity facilitates the rapid
conversion of the aqueous CO2 to HCO3

�, we hypothesised that
the addition of an exogenous and thermostable CA into the
microalgal culture might enhance the algal bicarbonate uptake
ameliorating the microalgal growth. Thus, in the present paper,
this concept was investigated for the first time and used to
enhance the biomass, photosynthetic activity, carotenoids

production, and CA activity of Chlorella sorokiniana. This was
achieved by supplementing the microalgal culture with fragments
of bacterial membranes containing the immobilised SspCA on
their surface and biocarbonate. Furthermore, the results were
compared with those obtained by adding only sodium bicarbon-
ate at the concentration of 1.0 g/L.

2. Materials and methods

2.1. Chemicals and instruments

All the chemicals used in this study were of reagent grade and
purchased from Sigma and GE Healthcare. SDS–PAGE apparatus
was procured by BioRAD.

2.2. Protein determination

The protein quantification was carried out by Bradford
method (BioRAD)61.

2.3. Preparation of the bacterial membrane with the
immobilised SspCA

Competent E. coli BL21 (DE3) cells were transformed with con-
struct indicated with the acronym pET-22b/INPN-SspCA and pre-
pared as describe by Del Prete et al.60. Bacterial cells were grown
at 37 �C, and when cells reached an OD600 of 0.6–0.7, the protein
surface expression was induced with 0.5mM isopropyl-thio-b-D-
galactoside (IPTG) and 0.5mM ZnSO4. After additional growth for
6 h, the cells were harvested by centrifugation and washed three
times with PBS. Aliquots of cells were resuspended in 25mM Tris-
HCl, pH 8.0. Membrane fragments containing the immobilised
SspCA (M-SspCA) were prepared disrupting the cells by sonication
(10 s, for 10 cycles). 0.5 g of M-SspCA were added at time 0 and
48 h to the algal medium containing the bicarbonate.

2.4. Assay for carbonic anhydrase using CO2 as substrate

CA activity assay was performed as described by Capasso et al.62.
Briefly, the assay was based on the monitoring of pH variation
due to the catalysed conversion of CO2 to bicarbonate.
Bromothymol blue was used as the indicator of pH variation and
the assay was performed at 0 �C. The CO2-satured solution was
used as substrate. To test the activity of carbonic anhydrase,
1.0mL of 25mM Tris, pH 8.3, containing bromothymol blue as a
dye (to give a distinct and visible blue colour) was added to two
test tubes chilled in an ice bath. An appropriate amount of the
enzyme solution (e.g. microalgal cell extract) were added to one
tube, and an equivalent amount of buffer was added to the
second tube as control. One millilitre of CO2 solution was added,
and the time required for the solution to change from blue to yel-
low was recorded (transition point of bromothymol blue is pH
6.0–7.6). The time required for the colour change is inversely
related to the quantity of enzyme present in the sample. Wilbur-
Anderson units were calculated according to the following defin-
ition: One Wilbur-Anderson unit (WAU) of activity is defined as
(T0�T)/T, where T0 (uncatalyzed reaction) and T (catalysed reac-
tion) are recorded as the time (in seconds) required for the pH to
drop from 8.3 to the transition point of the dye in a control buffer
and in the presence of enzyme, respectively.
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2.5. Protonography

To prepare Chlorella crude extract for protonography, aliquots of
200mL of algal culture were harvested by centrifugation at 4000 g
for 7min; the pellets were re-suspended in 4.0mL of cold extrac-
tion buffer (50mM Tris-HCl, pH 8.3) and the cells were lysed by
two passage at 1100 psi through French pressure cell (Aminco).
The lysate was cleared by centrifugation at 12,000 g for 30min at
4 �C and the obtained supernatant represented the crude extract.
To perform the protonography, wells of 12% SDS-PAGE gel pre-
pared as described by Laemmli63, were loaded with an appropri-
ate amount of the microalgal crude extract mixed with loading
buffer without 2-mercaptoethanol and without boiling the sam-
ples, in order to avoid protein denaturation. The gel was run at
150 V until the dye front ran off the gel. Following the electro-
phoresis, the 12% SDS-PAGE gel was treated as described by
Capasso et al.64–67 to detect the yellows bands due to the hydra-
tase activity.

2.6. Algal strains and growth conditions

Chlorella sorokiniana Shihira and Krauss, strain 211/8k (CCAP of
Cambridge University) was grown in Erlenmeyer flask at
30 ± 2.5 �C, under continuously light (led panel, 70mmol photons
m�2 s�1) and flushed with air. The composition of the basal
medium was previously reported by Salbitani et al.68, and the pH
of the medium was 7.5 at T0. Cultures of C. sorokiniana were
grown with a supplementation of 0 (control) and 1.0 g L�1 of
NaHCO3. The bicarbonate was added, in a single administration at
T0, when cultures were into lag phase (�2.0� 106 cell mL�1). To
some cultures supplemented with bicarbonate 1.0 g L�1, at T0 or
T2 fragments of bacterial membranes (0.5 g) with the immobilised
thermostable SspCA were added. The number and cells size of
Chlorella were determined by Countess II FL Automated Cell
Counter (Thermo Fisher Scientific) equipped with a fluorescence
filter (Ex 628/40, Em 692/40; EVOS Light Cube for Cy5; Termo
Fisher Scientifc Inc.).

2.7. Pigment contents

Total chlorophyll and carotenoids contents were estimated spec-
trophotometrically after extraction into N,N-dimethylformamide
according to Inskeep and Bloom69 and Wellburn70, respectively.

2.8. Photosynthetic efficiency

The maximum PSII photochemical efficiency (Fv/Fm) has been
determined using a Phyto_PAM II compact unit (Walz). All samples
were acclimated at the dark for 30min before the analysis to min-
imise the non-photochemical dissipation of excitation, and meas-
urements were blank corrected filtering the sample through
0.2lm filter71. As regard Fv/Fm, samples were illuminated with a
saturating pulse following as reported in Maxwell and Jonson72,
and values derived from the formula Fv/Fm ¼ (Fm�F0)/Fm.

3. Results and discussion

3.1. Basal hydratase activity of the endogenous microalgal CAs

The analysis of the genome belonging to different microalgal spe-
cies evidences a very variegated pattern of CA classes. It is pos-
sible to identify seven of the eight CA-classes discovered up to
now in these organisms. The different classes can coexist or have

different localizations inside the cells, such as the cell wall, plasma
membrane, cytosol, mitochondria, chloroplast stroma, and chloro-
plast thylakoid lumen73–75. Besides, for each enzyme class, many
isoforms were reported to exist74. In the present manuscript, the
interest was focussed on the freshwater green microalga Chlorella
sorokiniana as it can be useful in many fields, such as photosyn-
thesis research, pharmaceuticals for humans, aquaculture foods,
and wastewater treatment. In 1998, a soluble form of CA belong-
ing to the a-class76 was purified and characterised from C. soro-
kiniana. Other CA-classes appear to be encoded by this green
microalga genome although they have not yet been
characterised76.

The C. sorokiniana extract was subjected to the Wilbur-
Anderson (WA) assay and protonography, to investigate the
microalgal endogenous CA hydrates activity. Using CO2 as a sub-
strate, the CA specific activities of the microalgal extract resulted
to be 20± 0.7 WAU/mg. The protonography analysis, which is spe-
cific for the detection of the CO2 hydratase activity on the poly-
acrylamide gel, was performed treating the SDS-PAGE gel with
blue bromothymol, which is blue in its deprotonated form. The
production of Hþ ions, due to the CA hydratase activity, lowers
the pH of the solution to pH 6.8, the colour transition point of the
dye, developing a yellow band in correspondence of the hydra-
tase activity. As a positive control, the commercial bovine a-CA
(bCA) has been used. Figure 1 shows the protonogram obtained
using the C. sorokiniana crude extract. Intriguing, the protonogram
evidenced three yellow bands corresponding to the CO2 hydratase
activity (Figure 1). One band is at the gel position corresponding
to 29 kDa, the molecular weight of the C. sorokiniana a-CA,
whereas the other two bands (very close to each other) are visible
at a molecular weight above 50 kDa. The latter two bands could
be a different oligomeric state of the a-CA (not wholly dissociated
in the monomer form with MW of about 29 kDa) or a different
class of the microalgal CAs not yet characterised (Figure 1). It is
interesting to note that, these microalgal CAs, such as the CAs
identified in other species64, can refold and generate their active
form correctly after the removal of the SDS by the gel to accom-
plish the protonography analysis.

Figure 1. Microalgal endogenous activity revealed by the protonography
analysis. Legend: Lane 1, molecular markers; Lane 2, C. sorokiniana cellular
extract; Lane 3, commercial bovine CA used as positive controls. The arrows iden-
tified the yellow bands corresponding to CO2 hydratase activity due to the micro-
algal CAs.
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3.2. Microalgal growth

C. sorokiniana cells were cultivated under four different conditions:
(1) Control: culture growth in the basal medium; (2) Bic: culture
supplemented at T0 (0 h) with bicarbonate at 1.0 g L�1; (3) M-
SspCA-0: culture supplemented at T0 with bicarbonate (1.0 g L�1)
and fragments of bacterial membranes (0.5 g) with the immobi-
lised thermostable SspCA; (4) M-SspCA-2: culture supplemented at
T0 with bicarbonate (1.0 g L�1) and at T2 (48 h) with fragments of
bacterial membranes (0.5 g) having the immobilised thermo-
stable SspCA.

Figure 2 indicates the growth of C. sorokiniana under the four
different conditions (specified above). The growth was monitored
by determining the number of microalgal cells and the optical
density (OD800 nm) of the cultures. The algae biomass growth
based on the optical density was not shown because it displayed
a profile very similar to that of the number of cells mL�1. From
Figure 2 is readily apparent that when the microalgal medium
was supplemented with bicarbonate or bicarbonate and M-SspCA
at the two growing times (0 and 48 h), there was an increase,
already at 24 h, in the number of cells with respect to the control
(Figure 2). Interestingly, after 48 h, bicarbonate supplemented
medium provoked an increase of the number of cells
(9.97� 106 ± 0.015 cell mL�1) that was similar to that for M-SspCA-
2, and 1.5 times higher compared to the number of cells
(6.85� 106 ± 0.212 cell mL�1) obtained using bicarbonate plus M-
SspCA added at the initial time. Obviously, up to 48 h the Bic and
M-SspCA-0 cultures proceed in a completely similar manner.
Intriguing, the addition of M-SspCA at 48 h (M-SspCA-2), resulted
in better microalgal growth, generating, at 72 h, an evident
increase in the number of the cells, which was of about 2.2 times
(16.86� 106 ± 1.95 cell mL�1) than the control (7.8� 106 ± 0.26 cell
mL�1), 1.7 time than M-SspCA-0 (9.7� 106 ± 0.5 cell mL�1) and 1.3
times than Bic (12.75� 106 ± 0.14 cell mL�1). We can speculate
that the addition of the M-SspCA at the initial time transforms the
bicarbonate in CO2, reducing the availability of bicarbonate and
the uptake from the microalgal cells. On the contrary, the addition
of M-SspCA at 48 h increased the number of cells mL�1. These can
be explained considering that during the first 48 h, the microalgal
growth in M-SspCA-2 cultures is supported only by bicarbonate; in
fact, in absence of exogenous carbon dioxide, in M-SspCA-2 cul-
tures, the bicarbonate is only in a very small part spontaneously
converted in CO2. In addition, the bicarbonate is consumed by the

algal growth and there is an accumulation of CO2; the addition of
M-SspCA at 48 h immediately converts the CO2, from air and cellu-
lar metabolism, into bicarbonate, giving a further boost to micro-
algal growth. Thus, the bicarbonate coming from the catalysed
reaction of the thermostable SspCA ameliorate the microalgal
growth, as demonstrated by the fact that the number of cells is
increased up to 17� 106 cell mL�1 (see Figure 2). This is corrobo-
rated by the fact that, as described in the literature, microalgal
growth is improved by the addition of bicarbonate, reducing the
microalgal oxidative stress induced by the macronutrient deficient
conditions77,78.

Another exciting aspect is the difference in the C. sorokiniana
cell size when the alga is grown in the four different conditions
aforementioned. Figure 3 shows the microalgal cell size monitored
at different times. As a result, at 24 h the cell size increased in the
cultures supplemented with bicarbonate or bicarbonate plus the
M-SspCA (added at 0 or 48 h) (Figure 3). It is fascinating to note
that the addition of M-SspCA at 0 and 48 h determines at 72 h an
increase of about 1.7 times of the microalgal cell size compared
to the control. On the contrary, the medium supplemented with
bicarbonate alone determined at 24 h an increase of the microal-
gal cell size of 1.3 times respect to the control, which slightly
started to decrease after the 24 h (Figure 3). The increase of aver-
age cell diameter could be related to intracellular carbon storage;
in fact, according to previous studies, bicarbonate supplementa-
tion to microalgae cultures promotes lipid accumulation79,80.

3.3. Microalgal photosynthetic efficiency (Fv/Fm)

Figure 4 shows the photosynthetic efficiency (Fv/Fm) of C. sorokini-
ana in the cultures supplemented with bicarbonate or bicarbonate
containing M-SspCA. An increase of Fv/Fm was observed growing
C. sorokiniana in the presence of bicarbonate and M-SspCA. The
microalgal photosynthesis efficiency reached its maximum value
at 72 h in the cultures supplemented with bicarbonate plus the
M-SspCA at time 0 and 48 h compared to the control. In contrast,
the photosynthetic behaviour of the cells grown in the presence
of only bicarbonate showed a maximum of Fv/Fm at 24 h (about
0.42 ± 0.03) and, after that time, started to decrease at 0.32 ± 0.02
Fv/Fm. It can be hypothesised that the reduction of Fv/Fm after
24 h is due to the low availability of bicarbonate in the medium
caused by microalgal utilisation. This is supported by the fact that

Figure 2. Cellular density (cells mL�1) in control and experimental cultures (Bic,
M-SspCA-0, M-SspCA-2) of Chlorella sorokiniana. Error bars represent SD (n¼ 3).

Figure 3. Average cell diameter of C. sorokiniana cells in control and experimen-
tal cultures (Bic, M-SspCA-0, M-SspCA-2). Error bars represent SD (n¼ 3).
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the presence of M-SspCA guarantees bicarbonate in the microal-
gal culture medium through the reaction catalysed by the thermo-
stable CA, which converts CO2 of the medium into bicarbonate.
Moreover, as shown in Figure 4, the addition of M-SspCA at 48 h
determined an increment of the microalgal photosyn-
thetic activity.

Furthermore, since the shortage of bicarbonate in the culture
determines a condition of stress for the microalgal culture, slow-
ing down the photosynthetic carbon fixation, the total content of
the chlorophylls had been also monitored. As expected, consider-
ing the data previously shown, the photosynthetic pigment had a
maximum in the microalgal culture grown in the medium contain-
ing bicarbonate and M-SspCA (Figure 5). In fact, the addition of
M-SspCA, with its hydratase activity and using the CO2 present in
the medium solution, regenerates the bicarbonate, which is neces-
sary for increasing the microalgal metabolism and, thus, the
photosynthetic pigment. The addition of M-SspCA at T0 is only
responsible of an increase of the total chlorophyll contents at 24 h
(Figure 5).

3.4. Carotenoids production

Microalgae are considered to be one of the best commercial sour-
ces of natural carotenoids, such as b-carotene, astaxanthin, can-
thaxanthin, lutein, etc. These molecules are produced in a variable
amount depending on microalgal growth conditions69. Besides,
carotenoids are of great interest to humans since they are used as
antioxidants, anti-inflammatories, antidiabetics, anti-obesities, anti-
tumoral, and it has been reported that they possess a cardiovascu-
lar and neuronal protective role69. For this reason, we explored
the carotenoids production by C. sorokiniana in the medium sup-
plemented with bicarbonate and bicarbonate with M-SspCA.
Figure 6 evidences the content of the total carotenoids in the
Chlorella cells. The carotenoids content remained almost constant
up to 24 h in the four conditions. At 48 h, the microalgal caroten-
oid production was slightly enhanced by the presence of bicar-
bonate or bicarbonate with M-SspCA, however, at 72 h, its amount
in M-SspCA-2 became three times higher (4.8mg L�1 ± 0.09) com-
pared to the control (1.62mg L�1 ± 0.17). These results are fasci-
nating for a biotechnological application because the membrane-
bound SspCA can be used in the microalgal culture for obtaining
a very high production of the carotenoids.

3.5. Determination of the microalgal endogenous hydratase
activity at 72 h

As described above, the basal specific activities of the microalgal
endogenous CAs resulted to be of 20 ± 0.7 WAU/mg. Since the CA
is a crucial enzyme in the carbon concentration mechanism by
enhancing the conversion between CO2 and bicarbonate ions,
the microalgal CA activity of the microalgal cells coming from the
control medium has been measured at 72 h, as well as in the
medium supplemented with bicarbonate and the culture medium
containing bicarbonate and M-SspCA added at the two different
times (0 and 48 h). The cells were extensively washed and recov-
ered by centrifugation. To avoid the interference of the external
M-SspCA added to the culture medium, a control containing M-
SspCA-0 or M-SspCA-2 without microalgal cells was prepared. As a
result, the CA specific activity at 72 h of the microalgal culture was
of 60 ± 0.8 WAU/mg when the M-SspCA was added at 48 h to the
medium culture supplemented with bicarbonate. At the same
time, it resulted to be 40± 0.7 WAU/mg when added at time 0
and in the medium containing only bicarbonate. The addition of

Figure 4. Maximum quantum yield (Fv/Fm) in Chlorella sorokiniana control and
experimental cultures (Bic, M-SspCA-0, M-SspCA-2). Error bars represent
SD (n¼ 3).

Figure 5. Total chlorophyll content in control C. sorokiniana cells and experimen-
tal cultures (Bic, M-SspCA-0, M-SspCA-2). Error bars represent SD (n¼ 3).

Figure 6. Total carotenoids content in control C. sorokiniana cells and experimen-
tal cultures (Bic, M-SspCA-0, M-SspCA-2). Error bars represent SD (n¼ 3).
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M-SspCA at 48 h to the microalgal medium drastically influences
the metabolic efficiency of the microalgal culture, determining an
increase of the photosynthetic efficiency, microalgal cell size, total
chlorophyll, as well as a higher production of carotenoids (see
Figures 3–6). It can be speculated that the extra-CA activity pro-
vided by SspCA may enhance the conversion of bicarbonate to
CO2 in the proximity of the RuBisCO enzyme affecting thus the
metabolic efficiency of C. sorokiniana.

4. Conclusions

In the present paper, fragments of the bacterial membranes con-
taining a thermostable SspCA (M-SspCA) immobilised on their sur-
face were used for exploring the effect on growth and
photosynthetic efficiency of the freshwater green microalga
Chlorella sorokiniana. M-SspCA was added to the microalgal cul-
ture medium supplemented with bicarbonate at two different
times (0 and 48 h). The microalgal metabolic efficiency was investi-
gated following the variation in the number of cells, photosyn-
thetic activity, carotenoids production, and CA activity. The results
presented in the present paper evidenced that the maximum algal
growth was reached when M-SspCA is added to the culture at
48 h. The addition of M-SspCA at T0 mainly affects the microalgal
growth and the photosynthetic efficiency at 48 h. In conclusion, it
can be speculated that when the bicarbonate is consumed by the
algal uptake and there is an accumulation of CO2 into the microal-
gal medium, the addition of M-SspCA at T2, immediately converts
the CO2 into bicarbonate. Mainly, its effect is to increase the
microalgal metabolic efficiency significantly with respect to the
control medium or the medium supplemented only with bicar-
bonate. This is of a great interest from a biotechnological view-
point because the freshwater green microalga Chlorella
sorokiniana can be useful in many fields, such as photosynthesis
research, human pharmaceutical production, aquaculture foods,
and wastewater treatment as well as third-generation biofuels
feedstock81.
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