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Abstract: Glioblastoma multiforme (GBM) is the most common infiltrating lethal tumor of the brain.
Tumor heterogeneity and the precise characterization of GBM remain challenging, and the disease-
specific and effective biomarkers are not available at present. To understand GBM heterogeneity
and the disease prognosis mechanism, we carried out a single-cell transcriptome data analysis of
3389 cells from four primary IDH-WT (isocitrate dehydrogenase wild type) glioblastoma patients
and compared the characteristic features of the tumor and periphery cells. We observed that the
marker gene expression profiles of different cell types and the copy number variations (CNVs)
are heterogeneous in the GBM samples. Further, we have identified 94 differentially expressed
genes (DEGs) between tumor and periphery cells. We constructed a tissue-specific co-expression
network and protein–protein interaction network for the DEGs and identified several hub genes,
including CX3CR1, GAPDH, FN1, PDGFRA, HTRA1, ANXA2 THBS1, GFAP, PTN, TNC, and VIM. The
DEGs were significantly enriched with proliferation and migration pathways related to glioblastoma.
Additionally, we were able to identify the differentiation state of microglia and changes in the
transcriptome in the presence of glioblastoma that might support tumor growth. This study provides
insights into GBM heterogeneity and suggests novel potential disease-specific biomarkers which
could help to identify the therapeutic targets in GBM.

Keywords: glioblastoma; transcriptome analysis; tumor heterogeneity; biomarkers; network

1. Introduction

Glioblastoma multiforme (GBM) is a highly heterogeneous tumor, with diverse co-
existing cell types that include tumor cells, endothelial cells, fibroblasts, and different cell
types from the immune system [1,2]. Recently, it has been shown that the GBM subtypes
can co-exist in different regions and cells within the same tumor [3]. Variability is found
across tumor tissues, at different stages, and in different gender and age proportions. The
invasive and metastatic ability of the tumor cells contributes to its high heterogeneity.
The cells from the same tumor tissue can also have different mutations, which results in
different phenotypic and epigenetic changes [4]. For example, the genes SETD2, PTEN,
and KDM5C encountered multiple distinct and spatially separated inactivating mutations
within a single tumor, and caused phenotypic evolution [5]. Similarly, Liu et al. [6] reported
that the hypermethylation phenotype in the IDH1 mutant is involved in silencing of the
α-KG-dependent DNA-modifying enzyme (Tet methylcytosine dioxygenase 2 (TET2))
and eventually increased the tumor formation. Tumor heterogeneity in patients and the
characterization of its invasive nature remains a significant challenge for research and
targeted therapeutic approaches [3,7]

Glioblastic cells affect stromal cells as well as the central nervous system (CNS) im-
mune cells, including microglia, astrocytes, oligodendrocytes, neurons, and monocytes [8].
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Maas et al. [9] reported that glioblastoma tumor cells communicate with microglial cells
by releasing extracellular vesicles and these cells hijack the immune system. Similarly,
cancer cells use tunneling nanotubes (TNT) as an efficient cell-to-cell communication sys-
tem to adapt the microenvironment, which is also responsible for the invasive nature of
the GBM tumors [10]. Neftel et al. [11] classified glioblastomas based on the intra and
inter-tumoral cell state and genetic diversity of glioblastomas by comparing pediatric and
adult glioblastomas. Macrophages, monocytes, and microglial cells are reported to be
important in glioblastoma tumor growth, and glioblastoma invasion has been reduced
with the depletion of these cells [12]. However, the exact pathways involved in tumor
supportive process have not been characterized.

Although traditional bulk RNA-seq approaches have helped to identify key genes
and pathways that drive GBM cells [13–16], they provide limited insights into the tumor
heterogeneity and molecular mechanisms underlying GBM invasion. Darmanis et al. [17] re-
ported the nature of infiltrating GBM cells and characterized neoplastic and non-neoplastic
cells. However, other cell types, such as neural, glial, immune, and vascular cells, and the
dynamic transition state of GBM cells remain unexplored. Hence, a better understanding
of GBM heterogeneity between tumor and periphery cells and the molecular mechanism
behind the transition of distinct cell types are necessary for further investigations.

In this work, we carried out a single-cell transcriptome data analysis of 3389 cells
from four primary IDH-WT glioblastoma patients and provided a detailed analysis of
the heterogeneity between the tumor and periphery cells. Further, we have carried out
transcriptome studies based on the hg38 genome and with recent scRNA-seq analysis
pipelines for preprocessing and downstream analysis. From copy number variation (CNV)
analysis, distinct amplifications or deletions in different chromosomes have been observed
for the patient samples. The novel and potent cell type-specific differentially expressed
genes (DEGs) screened from different approaches, their functional enrichment and the
co-expression networks, which have not previously been reported, strengthen our analysis
regarding the disease-specific target genes. The potential DEGs are enriched with glial
cell differentiation and mononuclear cell migration. Our study also explains the interplay
between immune microglial cells and neoplastic cells and reveals the transition state of
microglial cells.

2. Method
2.1. Data Collection and Quality Check

Darmanis et al. [17] reported high-depth single-cell RNA sequencing for a cohort of
four primary GBM patients (IDH1-negative, grade IV GBMs confirmed via pathological
examination). Two separate tissue samples were collected from each patient (one originat-
ing from the tumor core and another from the peritumoral space immediately adjacent
to the tumor core, also termed the periphery). The details of the dataset are provided in
Supplementary Table S1. Out of 3589 cells, 2343 cells are from tumor cores and 1246 cells
are from the peripheral region [17].

The scRNA-seq raw reads were analyzed using FASTQC for a quality check and the
short reads (less than 30) were discarded. The adapters were removed using cutadapt [18].
The processed reads were mapped against the hg38 human transcriptome using quasi-
mapper “SALMON” (version 1.1.1) [19]. The transcripts were quantified and obtained
as transcripts per million (TPM) values. The workflow of the present work is illustrated
in Figure 1.
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Figure 1. Schematic diagram for the study design.

2.2. Dataset Preprocessing by Seurat

The TPM-based count matrix obtained from SALMON was taken as an input for the
cell preprocessing, which was performed using the Seurat package [20]. We excluded the
low-quality cells based on the following quality measures: (i) the genes showed expression
in at least three cells and (ii) the minimum length of the RNA read should be 200 bps
(Supplementary Figure S1). Mitochondrial genes were removed from the dataset as they
represent contamination in the sequencing technique.

2.3. Dimensionality Reduction and Cluster Identification

The dimensionality of the dataset was determined by principal component analysis
(PCA), and the number of PCs which captured the highest variance was obtained from
the elbow plot (Supplementary Figure S1). Furthermore, the dataset was reduced to two
dimensions with UMAP (Uniform Manifold Approximation and Projection). Clustering the
groups of similar cells was performed with the FindClusters function based on the KNN
algorithm. This is a graph-based clustering algorithm with edges drawn between cells
with similar gene expression patterns. The “resolution” argument will set the “granularity”
of the downstream clustering, which will be needed to be optimized for the experiments.
In addition, we computed the average expression and dispersion of each gene using the
module “FindVariableGenes” in Seurat and selected the top 1000 over-dispersed genes
(outliers) for our study.

2.4. Determination of Copy Number Variations (CNVs)

InferCNV was used to explore the tumor single-cell RNA-seq data to identify large-
scale chromosomal CNVs [21]. All genes were ranked by their chromosomal location, and
the copy number of each gene was calculated as the sliding average of log2-transformed
TPM values with a window of 100 flanking genes within each chromosome, which was
then centered across all cells. Furthermore, we performed hierarchical clustering and
removed the nontumor cells, which showed a few CNVs, similar to the normal cells. A
hidden Markov model was used to predict the CNV states, and the gene location data were
obtained from the Biomart database.

2.5. Differential Gene Expression and Functional Annotation

Tximport was used to import the transcript level estimates (TPM values) from SALMON
and summarize them as gene abundance. Subsequently, DESeq2 software [22] was used to
identify the genes, which were differentially expressed in tumor core and periphery cells.
The genes with log2FC > 1 and log2FC < 1 with adj. p-value < 0.05 were considered as
significant differentially expressed genes. Benjamini and Hochberg’s method was used to
get the adj. p-value.

“FindMarkers” and “FindAllMarkers” from Seurat were used to identify the DEGs,
and a gene expression level with log2FC > 1 and an adj. p-value < 0.05 were used as filtering
criteria. The commonly observed DEGs from DESeq2 and Seurat were filtered for further
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analysis. The ontology and functional annotations of DEGs were analyzed using ClueGO
from Cytoscape.

2.6. Network Analysis

The significantly differentially expressed genes were analyzed using the STRING and
Humanbase databases in order to analyze the interacting partners [23]. The protein–protein
interaction network was generated from STRING, and the tissue (human cortex) specific
co-expression network was generated from Humanbase. Cytoscape plugin MCODE was
used to find the cluster and hub genes.

2.7. Monocle Pseudotime Trajectory Reconstruction and Analysis

Single-cell pseudotime trajectories were constructed with MONOCLE 2. This method
uses the reverse graph embedding (a machine learning technique) method to reduce the
given high-dimension expression profile to low-dimensional space [24]. Single-cell data
points were projected onto this low-dimensional space and ordered into a trajectory with
branch points. This method tests whether differences in gene expression are associated
with particular branching events on the trajectory.

3. Results
3.1. Cell Clusters and Tumor Heterogeneity in GBM

A schematic diagram of the study design and the principal findings are shown in
Figure 1. A total of 2343 tumor cells and 1246 periphery cells from four IDH-WT patients
were adapted for this study (Supplementary Table S1). After stringent quality control and
normalization, we analyzed these 3389 cells with 42,970 genes. In order to identify and
characterize GBM cellular heterogeneity, we clustered the similar cells using UMAP (see
Materials and Method). UMAP computed a total of 16 clusters for the 3389 human GBM
cells (Figure 2). PCA variance analysis captured the highly variable genes across the PCs
(Supplementary Figure S1b) and the top 1000 cell-to-cell variable genes are reported in
Supplementary File S1. The positive and negative correlation of these variable genes along
with their PCs are represented in Supplementary Figure S1c.

3.1.1. Cell Type Identifications of the Clusters

Based on metadata and marker gene identification, the UMAP identified clusters
were grouped into seven major cell types (astrocyte, oligodendrocyte, vascular, OPC,
neuron, immune, and neoplastic), as shown in Figure 2b. From each cluster, genes showing
significant expression changes (log2FC > 1 and adj. p-value < 0.05) were filtered out and
annotated with ScCATCH and PanglaoDB databases and subsequently labeled as potent
markers for the cell types.

Clustering based on cluster ID: As seen from Figure 2b, the immune cluster is the
largest cluster comprising 0, 1, 4, 5, 8, and 9 subclusters. Cluster 0 contains 540 cells and is
annotated as microglial cells; clusters 1, 4, 5, 8, and 9, containing 1290 cells, are annotated
as Schwann cells (a type of glial cell). The second largest cluster is the neoplastic cluster,
comprising 3, 6, 7, 10, 13, and 14 subclusters. Clusters 3, 6, 7, 10, and 14, containing 945 cells,
are annotated as microglial cells, and subcluster 13 contains 49 cells and is annotated as
macrophages. Clusters 2, 11, 12, and 15 are annotated as OPCs, oligodendrocytes, astrocytes,
and vascular cells, respectively. The number of cells in each cluster is represented in
Supplementary Figure S1e.

Clustering based on patient ID: Figure 2c shows the clusters which are grouped based
on patient ID. The patient BT_S2 and BT_S4 samples are highly crowded with immune and
neoplastic cells. However, the patient ID BT_S1 and BT_S6 samples are mainly occupied
with neoplastic cells (Figure 2c).

Clustering based on tissue: The clusters are grouped based on tissue characteristics
and the data are shown in Figure 2d. The neoplastic cells are mainly from tumor core cells.
However, the immune clusters contain both tumor and periphery core cells.
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Figure 2. (a) UMAP plot showing the distribution of cells with cluster ID. (b) UMAP clusters are
labeled based on major cell types. (c) Clustering of the cells based on patient-ID. (d) Clustering of the
cells based on tissue. The table displays the cluster ID matches with cell type.

3.1.2. Marker Genes in Each Cluster

Genes that are significantly expressed in each cell type (astrocytes, immune cells,
neurons, neoplastic cells, OPCs, oligodendrocytes, and vascular cells) have been reported
in Supplementary File S1. Furthermore, we have reported the genes, which are differentially
expressed between tumor and periphery cells and unique to each cluster, shown as a dot
plot in Figure 3. The cytokine genes CCL4, CCL4L2, and CCL3L1 are down-regulated in
tumors and are up-regulated in periphery cells, and these genes are found to be markers
for the immune cell cluster. The genes TNR, OLIG1, and PDGFRA are specific to the OPC
cluster and are differentially expressed in tumor and periphery cells. These genes are
up-regulated in tumors and down-regulated in periphery cells. It has been reported that
co-expression of EGFR and PDGFRA is a driver event early in GBM [25,26]. The heat-shock
genes HSPA1A and HSPA1B show down-regulation in tumor and up-regulation in the
periphery, and act as marker genes for neuron clusters. TUBA1A, DBI, and TUBB are up-
regulated in tumor cells and down-regulated in periphery cells, and these are marker genes
for the neoplastic cluster. The tubulin proteins TUBA1A and TUBB and their heterogeneity
has been associated with GBM, whereas DBI maintains high proliferation rates, promoting
tumor growth [27]. The oligodendrocyte marker genes OPALIN, MAG, and KLK6 are
up-regulated in tumor cells and down-regulated in the periphery. The highly variable
genes MAG (Supplementary Figure S1b) and OPALIN encode glycoproteins involved in
myelinating oligodendrocytes. The genes COL3A1, ISLR, and IFITM1 are specific for
vascular cells and show up-regulation in the tumor and down-regulation in the periphery.
The genes COL3A1 and IFITM1 are involved in cell migration, and ISLR is the contemporary
gene identified from this current study.
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Figure 3. Top three marker genes and their expression unique to each cluster represented in a dot plot.

3.2. Differentially Expressed Genes (DEGs) between Tumor and Periphery Cells

Considering the DEGs from each cluster, we were interested to infer the differentially
expressed genes in the tumor and periphery cell populations, so we used DESeq2 and
Seurat to analyze the differentially expressed genes between the tumor and periphery
cells. We compared the results from DESeq2 and Seurat and the consensus results are
discussed below.

Using DESeq2, the DEGs from tumor and periphery cells were obtained. With
3389 cells, a nonzero read count of 21,250 was obtained. We have applied the filters adj.
p-value < 0.05, log2FC > 1 for up- and log2FC < 1 for down-regulated genes. We obtained
2.1% up-regulated (454 genes) and 3.2% down-regulated genes (680 genes). The outliers
and the low counts had been removed. Figure 4 shows the clear separation of up- and
down-regulated genes, with significant genes marked in red.

DEGs from Seurat were filtered with log2FC > 1 and adj. p-value < 0.05 and 100 genes
(33 up-regulated and 67 down-regulated) were obtained. The complete list of differentially
expressed (up- and down-regulated) genes from DESeq2 and Seurat are presented in
Supplementary Table S2. We considered the common DEGs from DESeq2 and Seurat,
resulting in 94 significant differentially expressed genes. Among them, 22 DEGs are novel
in the GBMs found in this study. Furthermore, DHRS9, IPCEF1, TNR, MEGF11, EDIL3,
PDZD2, ATP1A2, PDGFRA, and MEG3 are novel down-regulated genes that are involved
in focal adhesion, cell adhesion to the extracellular matrix (ECM), thereby allowing the
cells to crawl during migration. Similarly, the genes CHI3L1, FN1, IGFBP2, TNC, FCGBP,
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CYR61, F13A1, ANXA2, AC006064.4, and MIF-AS1 are novel up-regulated genes which are
involved in ECM–receptor interactions and collagen cross-linking. Integrins interact with
ECM components, such as collagen, brevican, tenascin-C, fibronectin, and thrombospondin,
which leads to the adhesion and migration of glioma cells [28].

Figure 4. (a) Volcano plot for the differentially expressed genes from DESeq2. The up- and down-
regulated genes with the cut-off of log2FC > 1 and with adj. p-value < 0.05 are shown in the figure.
(b) The heat map representation for the important DEGs and their expression rates in tumor and
periphery core tissues.

These 94 genes were again checked for overlap with highly variable genes which
were obtained from Seurat (top 1000 genes). We ended up with 23 common genes
(Supplementary Table S3); the expression of these important genes in tumor and periphery
conditions are shown in Figure 4b. The heatmap shows the differential expression of these
key genes in tumor and periphery tissues. Mainly, the cytokine genes (CCL3, CCL4, CCL3L1,
and CCL4L2) show moderate expression in tumor core cells and show less expression
in periphery cells, which correlates with the results from Darmanis et al. [17]. MT2A,
TIMP1, and GFAP are more highly expressed in tumor cells and are down-regulated in the
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periphery. The change in the expression level of the novel gene AC243829.4 is not distinct;
however, this lncRNA function is not reported. Similarly, the genes FCGBP, THBS1, IGFBP2,
IGFBP7, and FN1 are down-regulated in periphery cells and up-regulated in a disease
condition. These 23 common genes are mainly involved in ECM–receptor interactions
and epithelial–mesenchymal transitions (EMTs). EMT is a dynamic process of converting
epithelial cells to mesenchymal phenotypes. Hypoxia, cytokines, growth factors secreted
from the tumor environment, and treatment with anticancer drugs act as inducers for the
EMT process [29]. Eventually, EMTs can create tumor cells with stem cell properties that
are more aggressive and can increase their metastatic activity [30].

3.3. Tumor Heterogeneity with CNV Profiles

Genomic CNVs are commonly associated with tumor initiation and progression [31].
Thus, we attempted to infer large-scale copy-number alterations for each cell by averaging
its relative expression levels over large genomic regions. This allowed us to suppress the
individual gene-specific expression patterns and emphasize the signal of large-scale CNVs.
InferCNV package was used to calculate CNV vectors for each cell and then clustered
cells based on their respective profile CNV vectors (the details are given in the section
on Method).

Overall, the non-neoplastic cells did not show any chromosomal abnormalities, only
the neoplastic cells from all the patients having aberrations in their chromosomes (Figure 5).
The CNV profiles revealed the coherent chromosomal aberration in each tumor cell. From
the CNV profile, the gain of chromosome 7 expression and the loss of chromosomes
10 and 13 were constantly observed from the cells from all patient samples.

We mapped the DEGs which are located at chromosomes 7 and 10, which exhibited
the copy number alternations in these chromosomes. Further, we filtered the genes based
on transcript levels (gene expression) and observed that 10 potential DEGs are involved
in the CNV of chromosome 7. The copy number gain of chromosome 7 is associated
with the up-regulation of genes ANLN, SRI, PON2, ITGB2, PTN, CAV1, PTPRZ1, MEST,
CALD1, RAPGEF5, and NDUFA4, which are mainly involved in epithelial–mesenchymal
transitions. The down-regulated genes NPTX2, PTPRZ1, EGFR, and COL1A2 also showed
associations with the copy number gain of chromosome 7 and are involved in epithelial cell
signaling. EGFR is the most frequently amplified oncogene in astrocytic tumors; expression
of genes SRI, NPTX2, MEST, RARRES2, and SEPTIN7 in association with GBM is reported
in this study.

Similarly, the genes SCD, EGR2, HTRA1, PIP4K2A, PHYHIPL, PSAP, and LINC00844
showed significant down-regulation with the loss of chromosome 10. These genes are
mainly involved in Schwann cell differentiation and among them SCD, OPALIN, and
PHYHIPL are novel genes. Wang et al. [32] reported that the Linc RNA (LINC00844)
is associated with glioblastoma prognosis, cell proliferation, invasion, cell cycle, and
metastasis [32]. However, genes VIM and PPA1 showed up-regulation with the loss
of chromosome 10. The up-regulation of VIM protein and its role in the formation of
lamellipodia and invadopodia during cell invasion and migration have already been
reported [33]. Prosaposin (PSAP) is highly expressed and secreted in gliomas and can
promote glioma invasion and epithelial–mesenchymal transitions. Significant expression
changes of these genes might also be the reason for the CNV change. A list of genes
responsible for the chromosome alteration along with its expression changes is tabulated
in Table 1.
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Figure 5. (a) Inferred chromosomal CNV profiles of complete cells based on average relative expres-
sion in a window of 100 genes. Oligodendrocytes that lack CNVs are shown as a reference group at
the top. (b) The CNV profile of each patient’s sample cells. Red indicates amplifications and blue
indicates deletions.
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Table 1. Candidate DEGs located on the chromosomes and their expression changes.

Chromosome Gene Symbol Start Position End Position Description Expression

Chr 10

VIM 17228241 17237593 Vimentin UP

HTRA1 1.22 × 108 1.23 × 108 HtrA serine peptidase 1 DOWN

SCD * 1 × 108 1 × 108 Stearoyl-CoA desaturase DOWN

PSAP 71816298 71851251 Prosaposin DOWN

EGR2 62811996 62819167 Early growth response 2 DOWN

PIP4K2A 22534854 22714578 Phosphatidylinositol-5-phosphate
4-kinase type 2 α

DOWN

SRGN 69057533 69104811 Serglycin -

PPA1 70202831 70233429 Inorganic pyrophosphatase 1 DOWN

OPALIN * 96343221 96359002 Oligodendrocytic myelin paranodal
and inner loop protein NI

PHYHIPL * 59175872 59247770 Phytanoyl-CoA 2-hydroxylase
interacting protein like DOWN

Chr 7

ANLN 36389806 36453791 Anillin actin binding protein UP

SRI * 88205118 88226993 Sorcin UP

PON2 95404863 95435329 Paraoxonase 2 UP

ITGB8 20330702 20415754 Integrin subunit β 8 UP

PTN 1.37 × 108 1.37 × 108 Pleiotrophin UP

CAV1 1.17 × 108 1.17 × 108 Caveolin 1 NI

NPTX2 * 98617297 98629868 Neuronal pentraxin 2 DOWN

PTPRZ1 1.22 × 108 1.22 × 108 Protein tyrosine phosphatase
receptor type Z1 DOWN

MEST * 1.30 × 108 1.31 × 108 Mesoderm specific transcript UP

RARRES2 * 1.50 × 108 1.50 × 108 Retinoic acid receptor responder 2 NI

SEPTIN7 * 35800932 35907105 Septin 7 NI

CALD1 1.35 × 108 1.35 × 108 Caldesmon 1 UP

GNAI1 80133955 80219402 G protein subunit α I1 -

RAPGEF5 22118238 22357144 Rap guanine nucleotide exchange
factor 5 UP

EGFR 55019021 55256620 Epidermal growth factor receptor DOWN

IGFBP3 45912245 45921874 Insulin-like growth factor binding
protein 3 NI

COL1A2 94394561 94431232 Collagen type I α 2 chain DOWN

GPR37 1.25E+08 1.25 × 108 G protein-coupled receptor 37 NI

NDUFA4 10931951 10940256 NDUFA4 mitochondrial complex
associated UP

GRM3 86643914 86864884 Glutamate metabotropic receptor 3 NI
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Table 1. Cont.

Chromosome Gene Symbol Start Position End Position Description Expression

Chr 13

TSC22D1 44432143 44577147 TSC22 domain family member 1 -

HSPH1 * 31134974 31162388 Heat shock protein family H
(Hsp110) member 1 NI

COL4A2 1.10E+08 1.11 × 108 Collagen type IV α 2 chain NI

SLAIN1 * 77697854 77764242 SLAIN motif family member 1 DOWN

AMER2 * 25161684 25172288 APC membrane recruitment
protein 2 DOWN

GPR183 * 99294530 99307405 G protein-coupled receptor 183 DOWN

PCDH9 * 66302834 67230445 Protocadherin 9 DOWN

COL4A1 1.10 × 108 1.10 × 108 Collagen type IV α 1 chain NI

HMGB1 30456704 30617597 High mobility group box 1 NI

Chr6

TNF 31575565 31578336 Tumor necrosis factor UP

F13A1 * 6144084 6320662 Coagulation factor XIII A chain DOWN

MYO6 75749203 75919537 Myosin VI DOWN

AKAP12 * 1.51 × 108 151358559 A-kinase anchoring protein 12 DOWN

CD109 * 73696203 73828313 CD109 molecule UP

SLC16A10 1.11 × 108 111231194 Solute carrier family 16-member 10 DOWN

UST * 1.49 × 108 149076990 Uronyl 2-sulfotransferase DOWN

IPCEF1 * 1.54 × 108 154356803 Interaction protein for cytohesin
exchange factors 1 UP

TSPYL4 * 1.16 × 108 116254075 TSPY like 4 DOWN

SELPLG * 1.09 × 108 108633894 Selectin P ligand UP

ENO2 6914580 6923697 Enolase 2 NI

DUSP6 89347235 89352501 Dual specificity phosphatase 6 UP

Chr 12

C3AR1 * 8056844 8066359 Complement C3a receptor 1 DOWN

FAIM2 * 49866896 49903900 Fas apoptotic inhibitory molecule 2 UP

FMNL3 49636499 49707405 Formin like 3 DOWN

NAV3 77571856 78213010 Neuron navigator 3 DOWN

GPN3 1.1 × 108 110468721 GPN-loop GTPase 3 DOWN

PRPF40B 49622717 49645129 Pre-mRNA processing factor 40
homolog B NI

LGALS3 55129252 55145430 Complement C3a receptor 1 UP

NDRG2 21016763 21070872 Fas apoptotic inhibitory molecule 2 DOWN

HSPA2 64535905 64543237 Formin like 3 DOWN

RTN1 59595976 59871288 Neuron navigator 3 UP

SLC22A17 23346304 23354991 GPN-loop GTPase 3 UP

PLD4 1.05 × 108 104937789 Pre-mRNA processing factor 40
homolog B UP
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Table 1. Cont.

Chromosome Gene Symbol Start Position End Position Description Expression

Chr 17

CCL2 34255285 34257203 C–C motif chemokine ligand 2 UP

SOX9 72121020 72126416 SRY-box transcription factor 9 DOWN

CCL3 36088256 36090143 C–C motif chemokine ligand 3 UP

CCL4 36103827 36105614 C–C motif chemokine ligand 4 UP

ABCC3 50634881 50692253 ATP-binding cassette subfamily C
member 3 UP

CCL4L2 36211063 36212873 C–C motif chemokine
ligand 4 like 2 UP

Chr 22

MIF 23894383 23895223 Macrophage migration
inhibitory factor DOWN

LGALS1 37675636 37679802 Galectin 1 DOWN

PDGFB 39223359 39244982 Platelet-derived growth factor
subunit B DOWN

TNFRSF13C * 41922032 41926806 TNF receptor superfamily
member 13C DOWN

CECR2 17359949 17558151 CECR2 histone acetyl-lysine reader DOWN

* Novel genes reported in this study.

Interpatient heterogeneity is also studied from this CNV profile; the unique CNV
abnormalities of each patient sample cell are described below. The CNV profile from each
patient sample has been captured for deeper understanding (Figure 5b). It can be seen
in the patient B1 sample that the neoplastic cells show the major changes, especially in
the loss of chromosome 12 and the gain of chromosomes 6 and 14, whereas B2 samples
show a gain of chromosomes 17 and 22. However, samples from patient B4 did not show
significant changes in any chromosomes. Neoplastic cells from patient B6 samples display
the disorder copy number changes in chromosomes 7, 10, and 13 in the neoplastic cells. The
DEGs are located on chromosomes 6, 7, 10, 12, 13, 17, and 22, and their expression change
is tabulated in Table 1.

3.4. Pathway/Function Enrichment Analysis for DEGs

The significant 94 DEGs and their gene ontology terms were calculated using ClueGO
analysis. Gene ontology (GO) functional enrichment analyses [34] were used to de-
termine the potential molecular mechanisms employed by these 94 important genes
(33 up-regulated and 61 down-regulated). The pathways in which these genes are involved
are discussed below.

ERK1 and ERK2 cascade: ClueGO analysis revealed that regulation of the ERK1 and
ERK2 cascade is the major pathway experienced by the DEGs (Figure 6). Extracellular signal-
regulated kinase plays a central role in transmitting extracellular signals to intracellular
targets, including proliferation, differentiation, and survival. It has been reported that
the ERK pathway is aberrantly activated in malignant gliomas [35]. In total, 16 genes
actively participate in the ERK signaling cascade, of which 5 genes are up-regulated
and 11 genes are down-regulated. The genes CCL2, CCL3, CCL3L1, CCL4, CCN1, CD44,
CHI3L1, CSF1R, DUSP6, FN1, IL1B, MIF, PDGFRA, PDZD2, TIMP1, and TNF from our
study are shown to be involved in the ERK1 and ERK2 pathway. Among them, CD44,
CHI3L1, FN1, MIF, and TIMP1 are up-regulated, whereas CCL2, CCL3, CCL3L1, CCL4,
DUSP6, CSF1R, IL1B, PDGFRA, PDZD2, and TNF are down-regulated. CHI3L1 binding to
CD44v3 activates ERK protein, CD44 and MIF are required to activate the MEK–ERK–MAP
kinase pathway [36]. The binding of FN1 to integrins induces conformational changes and
activates the recruitment of focal adhesion kinase (FAK) [37]. FAK signaling enhances the
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activation of metalloproteinase and stimulates the diffuse nature of cells through ECM.
ERK cascade signaling is essential to the production of inflammatory cytokines, and this
signaling pathway is hyperactive in malignant gliomas due to overexpression of EGFR and
PDGFR [38].

Figure 6. Functional annotations of the important DEGs (94 overlapping genes) obtained using
ClueGO. (a) Go enrichment analysis; (b) Expression regulation network of DEGs.

Glial cell differentiation: The main function of glial cells is to provide support to neu-
rons and maintain hemostasis. The DEGs identified from our study involved in glial cell
differentiation are CNP, DNER, EGR2, GFAP, GPR37L1, GSN, OLIG1, PTN, TNF, and VIM.
Among them, GFAP, PTN, and VIM are up-regulated and CNP, DNER, EGR2, GPR37L1,
GSN, OLIG1, and TNF are down-regulated. The gene DNER is an epigenetically modified
gene that enhances GBM progression. The genes GFAP and VIM are reported as glial cell
markers, whereas CNP and OLIG1 are novel genes from our study for glial cell differenti-
ation. Generally, glial cells differentiate into neuron-rich and neuron-free regions which
include astrocytes and oligodendrocytes. GFAP-positive radial glial cells transform into as-
trocytes, whereas OLIG2 is involved in glial cell transformation into oligodendrocytes [39].

Mononuclear cell migration: Mononuclear cells are mainly monocytes and lympho-
cytes and these cells are critical components of the innate and adaptive immune system.
The genes ANXA1, APOD, C3AR1, CCL2, CCL3, CCL3L1, CCL4, CH25H, CSF1R, CX3CR1,
THBS1, and TNF are identified as important genes and are involved in mononuclear cell
migration. We noticed that ANXA1 and CH25H, which are involved in mononuclear cell mi-
gration, are reported here for the first time. The genes ANXA1 and THBS1 are up-regulated
and CCL2, CCL3, CCL3L1, CCL4, APOD, CX3CR1, and C3AR1 are down-regulated. The
mononuclear cell migration pathway is associated with cell adhesion, leukocyte migra-
tion, chemotaxis, and inflammatory response. CCL2, CCL4, and TNF are mainly involved
in all the pathways except cell adhesion, whereas FN1 and TNF are involved in the cell
adhesion pathway.

Fibroblast migration: Cytokines and growth factors, which are released as an inflam-
matory response, attract the fibroblast into the wound site, consequently starting the repair
process. The genes CCL2, CD44, EGR3, NR4A1, SULF2, THBS1, and TNC are identified as
potent genes for fibroblast migration. The genes DE44, THBS1, and TNC are up-regulated;
CCL2, EGR3, NR4A1, and SULF2 are down-regulated. Regulation of NR4A1 and TNC
expression in glioblastomas remains unreported; however, TNC is an ECM receptor protein
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that involves ECM receptor interactions. The PI3K–Akt–mTOR, FGF, and ERK signaling
pathways are involved in fibroblast migration. EGR3, CD44, and CCL2 are known to be
involved in the ERK signaling cascade.

Active migration is in the nature of glioma cells; it is a dynamic process of interaction
between tumor cells and their microenvironment. Further, tumor cell attachment to the
ECM plays an important role in tumor progression. The common feature of all GBM types
is that aberrant kinase signaling includes the PI3K–Akt, MAPK, and ERK1/2 signaling
pathways. Hannen et al. [40] suggested that ERK1/2 signaling is activated by phospho-
rylation in GBM (mainly in the mesenchymal subtype). A hypoxic microenvironment is
created due to signaling disruptions which will lead to the recruitment of macrophages
and microglia and to the release of growth factors (EGR, TGF, HGF, PDGF, HIF, and IGF1).
The potential growth factors will be the inducers for epithelial–mesenchymal transitions
(EMT) and numerous proteases that increase invasiveness into the surrounding normal
brain [41–43].

3.5. The Transition of Microglial Immune Cells to Neoplastic Cells: Pseudotime Analysis

The main function of most of the DEGs is related to glial cell differentiation. Cell
migration is mainly governed by the differentiation of microglial cells present in the brain.
Usually, for healthy people, microglial cells in the brain regulate tissue homeostasis by
surveying their environment. Their functions include phagocytizing the synaptic elements,
living/dying cells, and apoptotic cells. In GBM disease conditions, where microglia are in
close interaction with neurons, astrocytes and oligodendrocytes can shift into different func-
tional states, modifying GBM proliferation and morphology [44]. During the response to
inflammation or tumor growth, these microglial cells alter their morphological appearances
and sometimes retract their ameboid appearance. These phenotypic changes in the immune
cells have been associated with patient prognosis, though the detailed mechanism/crosstalk
between GBMs and microglia is poorly understood [45–47]. Chen et al. [45] reported that
the transition state of microglia significantly altered disease prognosis. Glioblastomas
recruit neighboring resident microglia through the secretion of various chemokines and
cytokines. CCL2 and CCL3 are associated with monocyte and macrophage recruitment
and may act as chemoattractants to attract other microglial cells, causing disease inva-
sion [48,49]. Bachiller et al. [44] showed that aging causes changes in gene expression as
well as in the occurrence of dystrophic microglia. These changes related to aging might
have an impact on the progression of neurodegenerative disorders [44].

We studied the differentiation state of microglial cells using pseudotime trajectory
analysis. The immune cell landscape differs strongly between infiltrating and central
regions of glioblastomas and changes from one cell type to another. Monocle 2 constructs
the single-cell trajectories in pseudotime, which consist of two branch points (five branches
and five states). The trajectory roots 1 and 2 (based on branch points 1 and 2) are more
populated with immune and neoplastic cells, respectively (Figure 7). The trajectory starting
state (state 1, dark blue) is crowded with immune cells. The highly differentiated cells (light
blue) are populated with neoplastic cells (end-state 5). The transition paths from immune to
neoplastic cells are represented with black arrows. The proposition of cells in each state also
represents that the starting immune and neoplastic cell states have the highest proposition
of cells (state 1 has 1829 cells and states 4 and 5 have 577 and 703 cells, respectively). The
immune cells, especially those from cluster 0, are mainly microglial cells, which have
migration potential, differentiating from states 1 to state 5 through state 3. To confirm
this assumption, we used a heatmap to confirm the transition of microglial genes from
immune cluster marker genes. The DEGs from the immune cluster which show significant
expression changes are filtered out and used for the heatmap. The branch-dependent
trajectory analysis of these microglial marker genes is shown in Figure 7b. As seen from
Figure 7b, the marker genes FN1, SLC1A2, SPARCL1, IGFBP7, MT2A, CYR61, CHI3L1, and
TIMP1 have expression changes while traveling from root to branches B1 and B2, whereas
TNR, CNP, and APOD show expression changes towards immune cells. Branches 2 and 3
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are enriched with neoplastic cells. We set the root as branch point 2 and the genes show
significant expression change while traveling towards B3 (neoplastic cells). The microglial
immune cells are experiencing the transition state in pseudotime, which is observed with
the heatmap analysis.

Figure 7. (a) DDR three-dimensional reduction of the cells computed using Monocle 2 contains five
main branches; the cells took the path based on the pseudotime represented with the black arrow.
(b) Trajectory states based on cell type. (c) Trajectory based on pseudotime. Dark blue represents the
initial state (less differentiated) of the immune cells and light blue (more differentiated) represents
the differentiated cell state (neoplastic cells). (d) Heatmap depicting the transition state of microglial
marker genes in a branch-dependent manner for root points 1 and 2. Each row represents the dynamic
expression of a gene. (e) Branch point 2 set as the root; the left arrow shows the root to the trajectory
path 2; the right arrow shows the root to trajectory path 3.

3.6. Protein–Protein Interaction Networks (PPI) and Tissue-Specific Co-Expression Networks
for DEGs
3.6.1. PPI Network in DEGs

The protein–protein interaction network and the tissue-specific gene co-expression net-
work for the significant DEGs were obtained from the STRING and HumanBase databases,
respectively. The 94 DEGs obtained from DESeq2 were provided as inputs to the STRING
database for PPI networks with a confidence score of 0.8 (Figure 8). The network was
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obtained from the STRING database with 103 nodes and 149 edges (PPI enrichment
p-value < 1.0 × 10−16).

Figure 8. PPI network for the significant DEGs. Cluster and Hub gene screening from the network
were performed using MCODE of Cytoscape.

The Cytoscape plugin MCODE was used for clustering the network and filtering out
the hub genes. From MCODE we obtained cluster 1 with a score of 6.286 (eight DEGs),
cluster 2 with a score of 6 (six DEGs), and cluster 3 with a score of 3.3 (three DEGs) (Figure 8).
Network node sizes are represented based on the degrees of connectivity. The PPI network
shows that TNF, CCL2, IL1B, FN1, CCL4, and GAPDH are the important genes having a
greater number of interactions with the high degree of 6. All other genes except GAPDH
are down-regulated. Based on the degrees of connectivity and the cluster analysis, RPL19,
CX3CR1, LDHA, TPI1, RIPK1, TRAF2, GFAP, APOA1, PLAT, TNF, CCL2, IL1B, FN1, CCL4,
GAPDH, and ALDOC are termed hub genes for the interactions. These hub genes are mainly
involved in the vitamin B12 metabolism pathway. The important biological function of
vitamin B12 is to accomplish DNA synthesis, which is necessary for cell division. All the
living cells require vitamin B12 for survival and it strongly promotes glioblastoma cell
proliferation; therefore, B12 deficiency is not favorable to GBM prognosis [50].

3.6.2. Tissue-Specific Co-Expression Network of DEGs

The human base tissue-specific network displays the co-expression network specific to
the 94 DEGs. The reference network was obtained from human brain cortex tissue; the DEGs
were mapped against the reference network and our co-expression network was constructed
(Figure 9). The genes CCL4L2, HTRA1, GFAP, PLTP, PDGFRA, and GSN constitute the central
part of the network with high closeness centrality (~0.6) and high-degree parameters (49).
GFAP protein-expressing neural stem cells (NSCs) are responsible for the activation of PDGF
receptors and their stimulation, which eventually form the glioma-like mass [51]. PDGFRA
is also responsible for proinflammatory cytokines, including CCL4L2. We have identified
the genes co-expressed together: gene CCL4L2 is co-expressed with PLTP, SELPLG, ANXA2,
RPLP1, and P2RY12. CCL4L2, SELPLG, and P2RY12 are down-regulated, whereas PLTP,
RPLP1, and ANXA2 are up-regulated. The genes SULF2, PTN, FTL, TPI1, LDHA, THBS1,
and TGFBI are co-expressed together. CCL3L1 interaction with ATP1A2 has the highest
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centrality; HTRA1 interaction with B3GNT5, GFAP, PLTP, and GSN is shown to form the
highest interaction network (Figure 9).

Figure 9. Co-expression network of DEGs constructed using Humanbase and visualized with Cy-
toscape. Proteins are represented with color nodes; the size of the nodes represents the degree param-
eter. The networks for up- and down-regulated genes are represented in red and cyan, respectively.

Increased expression of B3GNT5 strongly correlated with the progression of breast
cancer, lung cancer, and ovarian cancer. However, B3GNT5 is identified as a novel gene
for GBM progression. Copy number alteration of HTRA1 is strongly associated with poor
prognosis of GBM; however, there has been no clear study of the expression level of HTRA1.
Therefore, the interaction of HTRA1 with B3GNT5, GFAP, PLTP, and GSN could be a novel
identification in the GBM disease mechanism.

4. Discussion

In this study, we utilized scRNA-data to explore the molecular cascade of GBM disease
progression. Initially, we performed a single-cell transcriptome analysis to characterize
tumor heterogeneity and the molecular mechanism of GBM invasion. It has been reported
that GBM comprises morphologically and phenotypically diverse cells and cell types [4].
We have identified 7 major clusters and 16 subclusters from the population of 3389 cells. The
functional annotation of the cluster-specific marker genes displays distinct gene ontology,
representing the heterogeneity of the cells. The CNV profile explains the intra-patient
tumor heterogeneity and the data shown in Figure 5 demonstrate the distinct large-scale
chromosomal variation across individual patient samples. The gain of chromosome 7 and
the loss of chromosomes 10 and 13 are common to all the patient sample cells, and the
chromosomal aberrations are mainly caused by neoplastic cells.
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According to experimental reports, the gain of chromosome 7 has been associated with
the simultaneous loss of chromosome 10 and suggests that EGFR amplification and the
deletion mutation of PTEN is associated with the abnormalities of chromosomes 7 and 10,
respectively [52]. Along with chromosomes 7 and 10, abnormalities in chromosomes 12,
13, and 6 have also been reported for patients with human gliomas, Alzheimer’s disease,
and Parkinson’s disease [53]. Transcriptional downregulation of the NDRG2 gene on
chromosome 14 has been observed in primary glioblastoma patients [54]. All the above-
reported genes are also observed to be the same in our study. Loss of chromosomes 17
and 22 have been reported in gliomas; however, we have observed a gain in chromosomal
abnormalities [55,56]. This might be because, except for the SOX9 oncogene, the chemokine
genes (CCL2, CCL3, CCL4, and CCL4L2) of chromosome 17 are up-regulated. Apart from
these reported genes, other novel DEGs contributing to chromosomal abnormalities are
tabulated in Table 1. However, further experimental results and analysis are needed for
these genes.

We have identified the DEGs from tumor and periphery cells, suggesting the func-
tionally important genes. Darmanis et al. [17] identified 30 potent differentially expressed
genes across neoplastic and non-neoplastic cells, and among them CA2, GAP43, PMP2,
CRYAB, SOX9, EGFR, and ATP1A2 are reported to be DEGs between tumor and periphery
cells in our analysis. The filtered DEGs are further used for the PPI and co-expression
network construction. The DEGs DHRS9, IPCEF1, TNR, MEGF11, EDIL3, PDZD2, PDGFRA,
SPOCK1, CHI3L1, FN1, IGFBP2, TNC, FCGBP, CYR61, F13A1, ANXA2 NCAM1, RPL19,
SLC1A12, CNP, MT2A, CHI3L1, POSTIN, LTF, MPDZ, CPZ, LRRC32, CTNNA3, LRFN5,
and SLc22A17 reported in our study are not explored by many other studies related to
GBM. The novel genes identified in our study have been tabulated in Table 2. The main
functions of the DEGs are mostly involved in the ERK1/2 signaling cascade, glial cell
differentiation, and mononuclear migration. These main pathways are interlinked with
ECM cell adhesion and adhesion to surrounding cells, and the ECM is important for GBM
cancer cell maintenance. The DEGs are involved in cell adhesion and ECM receptor inter-
actions. It is evident that the above-mentioned potent DEGs and the novel DEGs play an
important role in GBM progression. Targeting these DEGs and their pathway might help
for therapeutic applications.

Table 2. Novel genes identified from our study.

Analysis Type Novel Genes Total

Filtered DEGs

DHRS9, IPCEF1, TNR, MEGF11, EDIL3,
PDZD2, ATP1A2, PDGFRA, LINC00632,

AC243829.4, AC024909.2, MEG3, CHI3L1,
FN1, IGFBP2, TNC, FCGBP, CYR61,

F13A1, ANXA2, AC006064.4, ANXA1,
CH25H and MIF-AS1

24

CNV detection

SCD, OPALIN, PHYHIPL, PSAP, SRI,
NPTX2, MEST, RARRES2, SEPTIN7,
HSPH1, SLAIN1, AMER2, GPR183,

PCDH9, F13A1, AKAP12, CD109, UST,
IPCEF1, TSPYL4, SELPLG, C3AR1, FAIM2

and TNFRSF13C

24

Network construction B3GNT5, SELPLG and TPI1 3

We have also explored glial cell differentiation by identifying the microglial cell
transition state by single-cell trajectory reconstruction. The pseudotime analysis revealed
that the microglial cells differentiate into neoplastic cells. The trajectory analysis identified
the pseudotime starting state as immune cells and the ending state as neoplastic cells.
We determined the path along which cells traveled from root to branch, representing the
transition of the cells (Figure 7). Some of the marker genes from microglial cells, such as
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FN1, SLC1A2, SPARCL1, IGFBP7, MT2A, CYR61, CHI3L1, and TIMP1, showed a gradual
increase in expression while they traveled from root to branch. A glioblastoma takes control
over the microglial immune cells of periphery tissue by various kinds of cytokine and
chemokine signaling [9]. The invasive microglial cells from periphery cells are a possible
target for the GBM disease breakthrough.

Comparison with Other Related Works

Several investigations have been carried out to understand the tumor heterogeneity
of glioblastomas using RNA-seq analysis [57]. Patel et al. [4] showed that the glioblas-
toma subtype classifiers are variably expressed across individual cells and discussed the
intra-tumoral heterogeneity within a tumor. Neftel et al. [11] compared the scRNA-seq
of 20 adults and 8 pediatric glioblastomas (24,131 cells in total) and identified four main
cellular states. Darmanis et al. [17] reported the characterization of neoplastic and non-
neoplastic cells and determined that the neoplastic cells share common characteristics
regardless of the patient of origin. However, GBM heterogeneity across tumor and periph-
ery cells and the molecular mechanism underlying the transition of distinct cell types are
not completely explored.

We have identified cell type-specific DEGs and DEGs between tumor and periphery
cells to characterize tumor and periphery cells. The filtered cell type-specific DEGs are used
for hub gene identification using PPI and co-expression network analysis, and 51 novel
genes were identified in our study (Table 2). Among the novel differentially expressed
genes, IPCEF1, F13A1, TPI1, B3GNT5, ATP1A2, FN1, PDGFRA, and GSN are found to be
hub genes, and we suggest that these genes could be potential therapeutic targets in GBM
disease prognosis. In addition, we compared the significantly expressed genes identified in
our analysis with other experimental studies reported in the literature [11,17,58–61] and the
results are presented in Supplementary File S2. We observed that 422 genes can be matched
with other studies.

We have also explored the transition state of microglial immune cells during the
invasion process with pseudotime analysis. The trajectory path starts with immune cells
and ends with neoplastic cells. The differentiation state of immune microglial genes (FN1,
SLC1A2, SPARCL1, IGFBP7, MT2A, CYR61, CHI3L1, and TIMP1) showed the expression
changes while traveling from the root to the end state (Figure 7). In addition, we were able
to capture the patient-wise chromosome alterations in chromosomes 13, 14, 17, and 22, and
the genes responsible for the alterations.

5. Conclusions

We have performed single-cell transcriptome data analysis of 3389 cells from four
primary glioblastoma patients and provided a detailed description of cellular heterogeneity
in GBM. This study emphasized the tumor heterogeneity of GBM samples and the chro-
mosomal aberration associated with it. We studied the cell differentiation state of glial
cells, suggesting that the microglial cells are the possible target cells for GBM to invade.
The filtered differentially expressed genes were used to construct the co-expression and
PPI (protein-protein interaction) networks and subsequently identified the novel potential
genes, which may act as therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13030428/s1, Figure S1: (a) The cell quality filtering with
Seurat. (b) The genes show the higher cell to cell variation (Red dots), black dots represent house-
keeping genes. (c) The correlation of highly variable genes from first two PCs. (d) represent the elbow
plot for the number of PCs and its standard deviation. (e) Histogram representing the number of
cells in each cluster. Table S1: Particulars of the dataset obtained from GSE84465. Table S2: List of
DEGs analyzed from Seurat and DESeq2. Table S3: Overlapped DEGs between Seurat, DESeq2 and
highly variable genes. File S1: List of cell-type markers and variable genes. File S2: Comparison of
identified potent genes in the present study with those reported in the literature.
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