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Abstract

An enhanced understanding of how normal aging alters brain structure is urgently needed for the early diagnosis and
treatment of age-related mental diseases. Structural magnetic resonance imaging (MRI) is a reliable technique used to
detect age-related changes in the human brain. Currently, multivariate pattern analysis (MVPA) enables the exploration of
subtle and distributed changes of data obtained from structural MRI images. In this study, a new MVPA approach based on
sparse representation has been employed to investigate the anatomical covariance patterns of normal aging. Two groups of
participants (group 1:290 participants; group 2:56 participants) were evaluated in this study. These two groups were
scanned with two 1.5 T MRI machines. In the first group, we obtained the discriminative patterns using a t-test filter and
sparse representation step. We were able to distinguish the young from old cohort with a very high accuracy using only a
few voxels of the discriminative patterns (group 1:98.4%; group 2:96.4%). The experimental results showed that the selected
voxels may be categorized into two components according to the two steps in the proposed method. The first component
focuses on the precentral and postcentral gyri, and the caudate nucleus, which play an important role in sensorimotor tasks.
The strongest volume reduction with age was observed in these clusters. The second component is mainly distributed over
the cerebellum, thalamus, and right inferior frontal gyrus. These regions are not only critical nodes of the sensorimotor
circuitry but also the cognitive circuitry although their volume shows a relative resilience against aging. Considering the
voxels selection procedure, we suggest that the aging of the sensorimotor and cognitive brain regions identified in this
study has a covarying relationship with each other.
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Introduction

Because cognitive decline and dementia are some of the greatest

health threats to the elderly and old age itself is the biggest risk

factor for developing neurodegenerative disease, studying the

mechanisms and processes that contribute to aging has recently

gained momentum [1]. To prevent the onset of these threats, it is

necessary to identify the distribution of age-related changes in the

healthy human brain [1–12].

It is well established that the human brain shrinks with age

[3,4,7,13–17]. Because the volume of gray matter (GM) undergoes

a significant age-related decline throughout the entire brain [4],

studies involving the effects of aging on GM volume occupy a

unique position in this field [17,18]. Voxel-based morphometric

(VBM) studies estimate that GM loss is 0.18% per year [19]. Most

white matter (WM) changes occur during advanced aging, while

the volume of GM appears to be constantly reduced throughout

the aging process of the human brain [8,13,20,21]. Thus, the

volume of GM can be used as a stable biomarker of an individual’s

age [7].

Current VBM studies of age-related changes of GM in healthy

subjects have reported many different and controversial findings

[2,12,18,22–24]. For example, a cross-sectional study employing a

computerized volumetric analysis of MRI data found that the

prefrontal GM was most sensitive to aging, although small age-

related changes in volume were also observed in the fusiform,

inferior temporal and superior parietal cortices [25]. A study of

normal adults revealed that the bilateral insula, superior parietal

gyrus, precentral and postcentral gyri, central sulcus (CS), right

cerebellum, and cingulate sulcus demonstrated significant age-

related loss in volume [13], while another study found the largest

age-related effect in various regions of the prefrontal cortex,

medial temporal lobe, and striate cortex [26]. The non-uniform

nature of age-related changes, lack of samples, or deficiencies of

conventional methods may lead to these different and controver-

sial conclusions. Thus, new techniques and larger number of

structural MRI images are urgently needed to determine the

global spatial patterns of aging in the human brain.

Many statistical approaches have been implemented under a

general linear model (GLM) framework [27]. Ranking by a two

sample t-test is one of the most widely used univariate methods of

the GLM framework [6]. This method can effectively select voxels

that decrease in volume significantly with age, however, it does not

consider the interrelationships among brain regions [28]. Unlike

the univariate methods, which select discriminative voxels by

focusing on only a single voxel at a time, multivariate pattern

analysis (MVPA) views multiple voxels as a representation of the

brain state [29–32]. As more of the machine learning technique

has been applied to biological imaging analysis [33,34], a number
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of studies have successfully employed MVPA to detect discrimi-

native brain regions from MRI images [5,32,35–39].

In MVPA, sparse representation has recently gained popularity

because of its ability to construct high dimensional data with

compressed samples. In addition, many techniques based on sparse

representation have been successfully applied to MRI studies. As a

Bayesian extension of logistic regression, sparse logistic regression

has performed well in the classification of functional MRI data [40],

and the elastic net has been used to predict and interpret neural

activity based on functional MRI data [41]. By iteratively solving

the linear programming problem, a novel sparse representation

algorithm was presented [42].

Recently, growing evidence has supported the promise of

sparsity in human-brain mapping studies [43,44]. Independent

component analysis is successful in MRI studies because of sparsity

and not because of independence [43]. Furthermore, several

previous studies have shown that the true brain network is sparse

[45–47], and that the brain regions that are functionally connected

can be sparse as well. In addition, the age-related shrinkage of

brain regions is selective, and these regions can be functionally

connected, which may underlie various cognitive functions

[1,25,48]. Based on these findings, we hypothesized that the most

discriminative spatial patterns of aging may be the sparse

representation of aging for the whole brain, and that this may

be the physical substrate of functional decline in the human brain.

However, to our best of knowledge, this is the first report to apply

sparse representation-based methods to analyze structural MRI

data.

Considering the advances made in sparse representation

techniques and the sparse characteristics observed in age-related

MRI studies, we proposed an MVPA scheme based on sparse

representation to extract the spatial patterns of normal aging. This

algorithm calculates sparse resolution by iteratively solving a linear

programming problem. It is particularly fit for decoding tasks

based on MRI data [42,49]. One advantage of this sparse

representation method is that it categorizes the selected voxels into

two parts, where one part were selected for the information

contained in single voxels which is directly correlated to the class

information of the participants, and the other part were selected

for accumulating information contained in combination of voxels,

whose volume shows a covarying relationship between each other.

Finally, pattern classification is used to evaluate the voxel

selection results. Experimental results have demonstrated that this

method may identify the covariance patterns of age-related tissue

changes. The procedure of voxel selection and classification is

illustrated in Figure 1.

Results

Classification Results Using Selected Voxels
Classification was performed using just the first few voxels

selected by sparse representation. This is based on the hypothesis

Figure 1. Procedure to identify discriminative voxels by the sparse representation method and t-test filter. The sparse representation
method and a t-test were applied to the original GM volume map. There are 2 steps in the sparse representation method: first, filtering of the original
data by a t-test, where 20,000 voxels were retained; second, the sparse representation algorithm was performed on these voxels. Next, according to
the age-related classification accuracy, we fix the number of remaining voxels as discriminative patterns of aging. As a comparison, the t-test selects
the same amount of voxels as aging patterns for classification. The voxel selection and SVM training were both performed using a ten-fold cross
validation on the first group of MRI images. The first 1,000 voxels of the intersection of rearranged voxels in the ten folds were defined as the final
spatial patterns of aging. The final spatial patterns of aging according to sparse representation and the t-test were then applied on the second group
of MRI images and tested by the LOOCV.
doi:10.1371/journal.pone.0036147.g001
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that the most discriminative spatial patterns of aging are sparse.

Figure 2 shows the classification result using voxels selected by

sparse representation according to the ordering of the voxels: a

decreasing arrangement by weight as determined by sparse

representation. For a better understanding of the effects of the

two steps of the proposed method, the voxels arranged according

to the score of a t-test filter in the first step were also used for

classification. The result is displayed in Figure 2. The sparse

method has two advantages over a t-test; one advantage is its high

classification rate (98.4%), and the other advantage is the ability to

achieve this accuracy using as few voxels as possible (about 1000

voxels).

Figure 2 indicates that generalization rate (GR) of the

classification reaches its peak at 98.4% using only 1000 voxels

identified by the sparse representation method, while the

classification accuracy using the structural connection is 87.46%

[38]. This is a very high rate of accuracy compared with the state-

of-art technology. However, additional voxels can degrade the

performance of the classifier. In contrast, the GR of classification

based on a t-test reaches its peak when more voxels were needed.

Because the proposed method includes a t-test filter, the chosen

voxels are included in the voxels directly selected by a t-test when

selecting for the same amount of voxels. Thus, with sufficient

confidence, the second step of proposed method predominantly

contributes to higher classification accuracy.

We aimed to providing an overview of the weightings of the

entire brain, and thus, projected the t-test values of the first 20000

voxels and weightings of the sparse method onto the human brain

map. These results are shown in Figure 3. In particular, we

focused on the weightings of the brain regions in green circles.

These regions were weighted more by the sparse method and will

be further discussed in our study.

When used as a classifier, SVM will give each subject a score

according to its distance from the separating hyperplane. The

SVM scores were closely related to chronological age. The

Pearson correlation coefficient of the SVM score and chronolog-

ical age has been studied and found to be r = 0.9339 for sparse

representation + SVM and r = 0.9279 for t-test + SVM.

The final covariance patterns constructed by the first group of

MRI data were then applied to the second group of MRI images.

These classification results are shown in Figure 4. The graph on

the left is classification results of the spatial pattern selected by the

sparse representation (GR: 96.4%, SS: 95.8%, SC: 96.8%), while

the graph on the right represents the classification results

according to a t-test (GR: 91.1%, SS: 91.7%, SC: 90.6%).

Discriminative Spatial Patterns of Aging
Figure 5 shows the final spatial patterns of aging, which were

extracted by sparse representation with the goal of facilitating

analysis. The representative regions were defined from the spatial

patterns according to the cluster size. Their anatomical labels and

Montreal Neurological Institute (MNI) coordinates obtained by

the xJview MATLAB toolbox are summarized in Table 1. For a

comparison with the final covariance patterns, Figure 6 shows the

results of the statistical t-test between GM volume of the young

and the old.

By comparing Figure 5 with Figure 6, we can distinguish

between the brain regions selected by the second step of sparse

representation from those selected by a t-test filter. In addition to

the four clusters selected by a t-test, the other four clusters were

Figure 2. Classification results of the sparse representation and t-test filter (group 1). The voxels were ordered according to weight given
by sparse representation and score of two-sample t-test. The x-axis is the number of voxels used for the classification, and the y-axis is the
classification accuracy (GR).
doi:10.1371/journal.pone.0036147.g002
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Figure 3. Full map of the sparse weightings and t-test values of all the 20,000 voxels used in Figure 2. The sparse algorithm in a
recursive procedure selects 200 voxels until all of the 20,000 voxels are selected. According to the selection order, the voxels were given weightings
from 1.00, 0.99, 0.98, …, 0.01. The t-test score was generated by the same procedure. The voxel selection was implemented using the ten-fold cross-
validation strategy, where ten groups of voxel weightings were generated. The mean of the ten groups of weightings was defined as the final
weighting.
doi:10.1371/journal.pone.0036147.g003

Figure 4. Score of the SVM obtained in group 2 based on the spatial patterns of aging identified in group 1. The results displayed in
the left figure were obtained on the second group of MRI data by SVM. Voxels used for classification were the final spatial patterns of aging which
were generated on the first group of MRI data; the right results are SVM score using voxels obtained by two-sample t-test.
doi:10.1371/journal.pone.0036147.g004
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selected by sparse representation in the second step. These clusters

contain accumulating information regarding the covarying rela-

tionship of the voxels. Only these clusters exhibited increases in

classification accuracy, which can be seen in Figure 2 and Figure 4.

The locations of the clusters identified by the proposed method

and a t-test are displayed in Table 1. The voxels selected

considering the relationship between the volume in a single voxel

and age are concentrated in clusters confined to regions near the

CS, which include the precentral and postcentral gyri, middle

frontal gyrus and caudate nucleus. In contrast, the voxels selected

by the second step distributed in more regions across the entire

brain. In addition to the aforementioned brain regions, subcortical

brain regions including the posterior lobe of the cerebellum,

thalamus, and right inferior frontal gyrus were selected. These

regions led to the difference in classification accuracy between a t-

test and sparse representation as shown in Figure 2. This issue will

be addressed in further detail in the discussion section.

Subsequently, eight clusters were then selected from the entire

brain. The mean volume of each cluster of all the 290 subjects in

the first group of MRI images and the ages of the subjects are

plotted in Figure 7. A linear regression model was then used to fit

the mean volume and chronological age of all the subjects. In

addition, a hypothesis test on the regression coefficients in the

linear regression was performed. The coefficients are shown in

Figure 7, with significance of av10-8. From Figure 7 we observed

that the volume of the precentral and postcentral gyri, middle

frontal gyrus, and caudate nucleus are significantly reduced with a

coefficient of bƒ0:001. This indicates that these regions were

selected because of their direct relationship with the age. The

posterior lobe of the cerebellum, thalamus, and inferior frontal

gyrus did not reveal a significant volume decline, with a coefficient

of bj jƒ0:001. It is not necessary to confirm that these voxels were

not affected by aging. These regions were selected based on their

covarying relationship of voxels, which corresponded with the

second step of the sparse representation method. Thus, the sparse

representation method can successfully select for subtle and

covariance changes in the human brain.

For a better understanding of the importance of the correlation

of voxels selected by the sparse method, refer to Figure 8. One

Figure 5. Locations of the representative brain regions of informative patterns identified by the sparse representation method. The
first 1000 voxels of spatial patterns identified by sparse representation were projected on the original human brain map. The sparse representation
method selected human brain regions that included regions selected by a t-test filter, and were more widespread. The regions in the green circles
were only identified by sparse representation.
doi:10.1371/journal.pone.0036147.g005
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voxel from each cluster described above was selected to investigate

its discriminative ability just as Yamashita did in [40].

Discussion

In this study, sparse representation-based voxel selection and

classification were combined to extract the covariance patterns

related to normal aging. Based on a thorough understanding of the

sparse representation method, we analyzed our voxel selection

scheme and utilized the advantages of the sparse representation

method and overcame its disadvantages. According to the results

of this study, we re-evaluate the spatial patterns of normal aging.

In addition to the brain regions generally accepted as important

nodes of the sensorimotor system, other brain regions that could

be implicated in cognitive decline were also identified by the

second step of the proposed method, although these brain regions

did not show apparent volume reductions with aging. To our

knowledge, this is the first report that reveals the coupling between

the aging of sensorimotor and cognitive function using T1-

weighted structural images with MVPA.

Clusters that Covary with Age
The precentral and postcentral gyri, and the caudate were

identified by the first step of sparse representation for their volume

decline in single voxels. Most of the selected voxels were located in

these regions, in particular, within the areas near the CS, which

have also been referred to as aging sensitive brain regions in

previous studies [3,8,10].

For the t-test, most of the selected voxels (approximately 80%)

are concentrated in these areas which result in the most significant

volume reduction. In contrast, comparative fewer voxels (approx-

imately 70%) distributed in these areas for the proposed method,

which had selected a greater number of voxels in the precentral

gyrus, which indicates that the method weighted the precentral

gyrus more heavily than the postcentral gyrus. In healthy adults,

the thickness of the precentral sulcus is greater than that of the

postcentral sulcus, and the cortical thinning of the precentral

sulcus with age is more significant than that of the postcentral

sulcus [14,15,50]. These localizations are well accepted as

sensorimotor regions. In addition, our study provided further

support by confirming that these regions are very sensitive to

aging.

Fourteen percent of selected voxels for the t-test and eight

percent for the proposed method were focused in the caudate

nucleus. This confirmed another important brain region that has a

significant volume decline with age. The caudate nucleus has been

previously linked to an age-related decline and changes in motor

performance [18,51], which indicates that this region may be one

of the stable patterns of aging.

Sensorimotor-related brain regions, including the precentral,

postcentral gyri, and the caudate, have been shown to be affected

by aging in some studies focused on sensorimotor performance

and age-related brain alterations [9,52,53]. The left precentral and

postcentral gyri, right precentral and postcentral gyri, left middle

frontal gyrus, and caudate are critical for sensorimotor tasks. We

evaluated the developing trend of these clusters with the

individual’s age. Our results are shown in Figure 7. The results

of the hypothesis tests in the linear regression for these clusters can

be observed. In addition, the coefficients of the linear regression

for these clusters are shown in Figure 7 (bƒ0:001) with a

significance of av10{8. Thus, these clusters show a significant

volume reduction with age.

Clusters that Covary with Other Clusters
By comparing the spatial distributions selected by the proposed

method and t-test (Figure 5 and Figure 6), we conclude that the

cerebellum, thalamus and prefrontal cortex were detected by the

second step of the proposed method for the consideration of

information contained in covarying relationship of voxels in

different locations. The GM of the posterior lobe of the

cerebellum, inferior frontal gyrus, and thalamus did not display

a significant volume decline, as shown in Figure 7. The changes in

these clusters were so subtle that they were undetectable using

univariate methods. However, the new algorithm was able to

detect these changes when fewer voxels were considered. This

confirms the efficiency of the new sparse representation method.

Table 1. The locations of the voxels that were selected by the sparse representation and statistical t-test.

Cluster Voxels Hemisphere Brodmann Area MNI Coordinate

X Y Z

Clusters Selected by Sparse Representation

Precentral & Postcentral gyri 404 L 2/3/4/6/13/40/41 244 24 18

316 R 3/4/6/13/41 48 28 16

Middle frontal gyrus 20 L 6 230 24 58

Caudate 83 L&R 0 11 5

Posterior lobe of the cerebellum 12 L 236 240 240

11 R 40 240 240

Inferior frontal gyrus 12 R 11/25 12 34 224

Thalamus 19 L&R 212&14 24 5

Clusters Selected by Statistical t-test

Precentral & Postcentral gyri 449 L 2/3/4/6/13/40/41 246 29 21

344 R 3/4/6/13/22/41 50 28 24

Middle frontal gyrus 31 L 6 229 24 60

Caudate 137 L&R 0 12 4

doi:10.1371/journal.pone.0036147.t001
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The cerebellum is commonly affected by aging, although its

volume reduction is not as extensive as the cerebrum [16,25,54].

Inside the cerebellum, atrophy occurs more rapidly in some

regions compared with others. Consistent with the results of our

study, shrinkage has been shown to occur predominantly in the

posterior lobe [13,16,55–58]. The posterior lobe of cerebellum is

generally involved in motor control and coordination. Our results

support the idea that a loss of volume in the posterior lobe is

related to the lack of mobility observed in the elderly. Moreover,

a volume decline in the precentral and postcentral gyri, which

Figure 6. Locations of the representative brain regions of informative patterns identified by t-test filter. The first 1000 voxels of brain
regions identified by a t-test filter were projected on original brain map.
doi:10.1371/journal.pone.0036147.g006
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cover most sensorimotor brain regions, may be closely associated

with changes in the posterior lobe of the cerebellum [59]. The

interaction between these brain regions may be a physical

substrate that underlies the sensorimotor slowing that occurs with

aging.

Currently, the role of the thalamus in the aging process remains

controversial. Several studies have found that GM volume in the

thalamus declines with age [11,28], while other studies have

suggested that the volume actually increases with age [5]. We have

computed the average volume of voxels that correspond to the

selected spatial patterns and compared all the spatial patterns

young and old subjects. The volume of 90.3% voxels in the

identified spatial patterns decreased in the old cohorts comparing

with the young, while only 9.7% voxels increased, and the

decrease was predominately found in the subcortical structures,

particularly, the left thalamus.

There is no age-related study that suggests that the right inferior

frontal region might be a biomarker of aging in the healthy human

brain, although this region has been considered essential in

response inhibition [60]. Moreover a growing amount of evidence

indicates that this stopping behavior is markedly slowed during

adulthood [61]. This implies that the right inferior frontal region

contains significant aging information. Furthermore, this region

was also identified by the proposed method but not a t-test. Voxels

in this region were fewer, and the volume decline was not apparent

and undetectable using the t-test. Thus, this region may be selected

for its correlating covarying relationship with other brain regions.

The cerebellum, the thalamus and the right inferior frontal

gyrus have been reported as three important nodes of the cognitive

network in the human brain [62–64]. Regions of prefrontal cortex

and the connections between the sensorimotor cortex, thalamus

and cerebellum are believed to construct the cognitive circuitry

[62]. The precentral and postcentral gyri, right inferior frontal

gyrus, thalamus and cerebellum were all detected by the proposed

method. This result suggests that aging affects cognitive circuitry in

the human brain. A correlation between cognitive decline and

aging has already been established [65–67]; however, additional

studies are required to confirm the brain network responsible for

these phenomena. In this study, we detected specific brain regions

that might be involved in this network. Our results provide

supplementary evidence for the cognitive decline.

Couplings between sensorimotor and cognitive circuitry in the

human brain have been recognized in many studies [64,68–71].

The aging of these two circuits has also been suggested to be

interactive [66,72–74]. The basal ganglia (BG) which consists of

the caudate and putamen, globus pallidus, and substantial nigra,

is a critical cohesive functional unit in the human brain. The BG

is not only highly related to sensorimotor tasks of human brain,

but also involved in cognitive function [59,64,75–80]. The

cerebellum and thalamus are always included in BG-mediated

circuitry [59,62,75–77,79]. The critical nodes of the sensorimotor

Figure 7. Relationship between the mean volume of clusters and subject age (group 1). The red circles represent the mean volume of all
the voxels in one cluster for all of the subjects in the first group; the blue diamonds represent the mean volume of the entire brain (GM) for all of the
subjects in the first group. The red and blue lines are the results of the linear curve fitting corresponding to the red circles and blue diamonds. The
‘‘b’’ represents the coefficient of linear regression of the mean cluster volume. The hypothesis t-test of the coefficients was implemented at a
significance level of av10{8.
doi:10.1371/journal.pone.0036147.g007
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and cognitive circuitries are shown in Figure 9 [59,64,77–79].

The caudate, cerebellum and thalamus are shared by both the

sensorimotor and cognitive circuitry, whose changes may be the

substrates of the covarying relationship between sensorimotor

and cognitive decline. Our study provids further evidence for the

coupling between sensorimotor and cognitive function from the

aspect of structural neuroimaging. Univariate methods, such as

the t-test under GLM framework, can effectively identify the

brain regions whose volume reduced rapidly with aging.

Conversely, in the MVPA methods, sparse representation can

extract brain regions whose volume displays resilience against

aging by evaluating the accumulating information contained in

the covarying relationship of voxels. Our study complements

previous based aging researches based on functional connectivity

and facilitates the analysis based on functional network and

circuitry [6,81].

Consideration of the Voxel Selection Method
Our voxel selection consists of two steps: (1) a t-test filter under

the GLM framework that is fit to localize discriminative brain

regions and, (2) sparse representation algorithm that selects a

combination of distributed voxels for accumulation information

[42]. The first step of our approach involves the ability to bundle

discriminative voxels into clusters for the volume decline of single

voxels, and the second step selects a combination of clusters

containing information of covarying relationship among the

voxels. The resulting improvement in classification accuracy may

be achieved by the second step because of the volume decline of

brain regions and the covarying relationship between the aging

clusters across the entire brain.

The sparse representation algorithm can effectively solve the

over-fitting problem, but it presents the additional challenge of

over-pruning, which occurs when the representation algorithm

selects only several representative voxels from each discriminative

cluster. The representative voxels may be different when the

algorithm reruns on the same data. Because the basic brain

function units are voxel clusters, the voxels selected by sparse

representation cannot effectively reflect the stable distribution of

brain aging. Therefore, it is difficult to construct stable,

functionally related spatial patterns of aging in the human brain

Figure 8. Contribution of the correlation between a voxel in the precentral gyrus and voxels in the cerebellum, inferior frontal
gyrus and thalamus. The x-axis represents the gray value of a representative voxel in the precentral gyrus that corresponds with the 250 subjects
used for classification, and the y-axis represents the gray value of a representative voxel in the left cerebellum (top-left), right cerebellum (top-right),
right inferior frontal gyrus (down-left) and thalamus (down-right). The blue stars and red crosses represent the young cohort and old cohort samples
in the first group of MRI images, respectively. The three gray lines in each subplot are discriminant boundaries estimated by the SVM which
correspond with the x-axis, y-axis and combination of both. It is noteworthy that the voxel in the precentral gyrus is more discriminative (84.4%) than
the voxels in the clusters described above (the left cerebellum 82.0%, right cerebellum 72.0%, inferior frontal gyrus 77.6%, and thalamus 80.4%), but
the discrimination ability derived from combination of a voxel from the precentral gyrus and a voxel form the specific cluster is even higher (the left
cerebellum 87.6%, right cerebellum 86.8%, inferior frontal gyrus 89.2%, and thalamus 89.2%).
doi:10.1371/journal.pone.0036147.g008
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by directly using the voxels selected by the sparse representation

algorithm. To address this issue, a ten-fold cross validation was

employed, and the intersection of all ten groups of rearranged

voxels was reconsidered. In this intersection, the first 1000 voxels,

which were selected from a spread range, were defined as the final

spatial patterns of normal aging. Thus, It could be a more stable

biomarker of aging and correct the over-pruning problem.

The final spatial patterns of aging that were derived from the

intersection of the ten groups of voxels selected in the ten-fold cross

validation contain the aging information of all the MRI images in

the first group. To avoid using test data for classifier training and

test the generalizability of the spatial patterns [24], the final spatial

patterns of normal aging were applied to the second group of MRI

data. Using only the spatial pattern, 96.4% of the subjects were

correctly classified. The MRI images in the second group were

scanned with a different MRI machine which indicates that our

new method is not sensitive to equipment changes.

Using only 1,000 of the total 35,499 voxels, we can successfully

distinguish the young from the old. Thus, we confirmed the

hypothesis that the spatial patterns of aging in our study could be

sparse representation of aging for the entire brain. Moreover, the

correlation between the sensorimotor and cognitive networks is

also highlighted by this study.

The sparse representation method is a supervised method,

which can take either the discrete or continuous variable as the

label. One limitation of this study was that only the binary class

label (1 and 21) was adopted in the sparse representation-based

voxel selection. This limited the ability of the sparse method to

explore additional aging information. Next, we will attempt to take

the chronological age as the label of the sparse representation-

based method. Although this voxel selection method provides good

performance on data sets with different parameters for scanning, it

is important to evaluate this method with large size of samples.

Additionally, the brain function features derived from functional

MRI will be acquired to further validate the results of this current

study.

Materials and Methods

Ethics Statement
Approvals for public sharing were obtained from all the

subjects.

Participants
Two groups of MRI images were selected from two databases.

One group included MRI images of 290 subjects which were

downloaded from the open access series of imaging studies

(OASIS) website (http://www.oasis-brains.org). The initial data

set in OASIS consists of a cross-sectional collection of 416 subjects

aged 18 to 96 years [82]. One hundred suffered with AD and 26

not successfully segmented were excluded from our study. At last,

290 subjects were retained. 138 young healthy subjects between

the ages of 18 and 30 (22.563.0) and 112 old healthy individuals

between the ages of 50 and 91 (69.1611.7) were selected for

pattern classification. The young subjects were recruited from the

community of Washington University while the old subjects were

recruited from a longitudinal pool at Washington University

Alzheimer Disease Research Center (ADRC).

For the second group, 56 healthy subjects including 24 young

subjects (22.763.3 years old, 19–30 years) and 32 old subjects

(62.268.2 years old, 50–79 years) were selected from the website

of 1000 Functional Connectomes project (http://fcon_1000.

projects.nitrc.org/fcpClassic/FcpTable.html). There are 86 initial

data sets in this database. One not successfully segmented and

twenty nine aged between 30 and 60 years were excluded from this

study. Only 56 subjects were retained. All of the subjects were

recruited from International Consortium of Brain Mapping

(ICBM) dataset. All of the subjects had no history of neurological

or psychiatric disorders.

Details regarding both participant groups are shown in Table 2.

Imaging Protocol
In group 1, T1-weighted structural magnetization prepared

rapid gradient echo (MP-RAGE) images were obtained with the

following parameters: TR = 9.7 ms, TE = 4 ms, slice thick-

ness = 1.25 mm, slice number = 128, flip angle = 10u, and in-plane

resolution = 2566256 (1 mm61 mm). For each subject, 3–4 T1-

weighted structural images were obtained on a 1.5 T Vision

Figure 9. Brain regions extracted by the new method
distributed over the sensorimotor and cognitive circuitry in
the human brain. The red font brain regions are identified in our
study. The green arrows represent the sensorimotor functional circuitry,
while the brown arrows represent the cognitive circuitry. The black
dash arrow represents the newly found in [59]. BG: basal ganglia, GPi:
internal globus pallidus, GPe: external globus pallidus.
doi:10.1371/journal.pone.0036147.g009

Table 2. Demographic characteristics of the subjects.

Young adults Older adults

Mean (years) SD (years) Range (years)
Number of
participants Mean (years) SD (years) Range (years)

Number of
participants

Group 1 22.5 3.0 18–30 138 69.1 11.7 50–91 112

Group 2 22.7 3.3 19–30 24 62.2 8.2 50–79 32

doi:10.1371/journal.pone.0036147.t002
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scanner (Siemens, Erlangen, Germany) during a single image

session. In this study, one T1-weighted MRI image was randomly

selected for each subject.

In group 2, the T1-weighted structural MRI images were

acquired with the following parameters: TR = 22 ms, TE = 9.2 ms,

slice thickness = 1 mm, flip angle = 30u and in-plane resolu-

tion = 2566256. The images of the 56 subjects were obtained from

the Functional Connectomes project and the T1-weighted struc-

tural MRI images were used for this study. All images were collected

using a Siemens Sonata 1.5 T MRI scanner.

Data Preprocessing
Data preprocessing was performed using SPM8 (http://www.

fil.ion.ucl.ac.uk/spm/). First, the new segment procedure was

used to segment the MRI images into six partitions including

GM, WM, cerebrospinal fluid (CSF) and three other background

partitions based on a modified mixed model cluster analysis

technique. The new segment procedure is generally more robust

than using the ‘‘segment’’ button. Next, a template was

generated from the entire image dataset using the diffeomorphic

anatomical registration by exponentiated Lie algebra (DARTEL)

technique [83] which matches the GM and WM to each other.

Finally, GM images were spatially normalized to the template

that was created in the second step and then smoothed by an

isotropic Gaussian filter with an 8 mm full-width half-maximum

kernel.

Voxel Selection
The sparse representation method was introduced for voxel

selection [42]. The proposed method includes two steps: the t-

test filter and a sparse representation algorithm. To achieve

the cluster effect and fix the computational problem faced by

the second step, the number of selected voxels set for

classification cannot be set too large. Therefore, we filtered

the original data using a t-test and retained 20,000 voxels in

the first step. In the second step, the sparse representation was

computed on the retained voxels. The purpose of the first step

was to select voxels by considering the relationship between the

volume in a single voxel and age, while the second step aimed

at selecting bundles of voxels based on accumulating informa-

tion contained in the covarying relationship of voxels in

different locations [42].

The algorithm of sparse representation used in this study is

presented. The model of the sparse representation algorithm can

be described with the following equation:

y~Aw, ð1Þ

where, y[Rnis a given label vector for training. When the

algorithm is used for two-class pattern classification, every element

of y is either 1 or 21. A[Rn|m is a basis matrix in which each

column represents the corresponding voxels of different subjects,

and each row represents all of the voxels in the same subject.

w[Rm is an unknown weight vector. The object of sparse

representation algorithm is to find the weight vector w that satisfies

equation (1) and simultaneously is as sparse as possible.

Consider the following optimization problem:

min wk k0,

subject to Aw~y,
ð2Þ

The number of nonzeros of a vector is defined as 0-norm. 0-norm

of w is the sparsest solution of equation (1). However, it is difficult

to get the solution of problem (2). Thus, we consider an alternative

optimization problem:

min wk k1,

subject to Aw~y,
ð3Þ

The sum of the absolute value of a vector is defined as 1-norm.

The optimization problem in (3) is a linear programming problem

that can be easily solved. Although the solution to equation (3) is

often not the sparsest and is not the same as the solution to

equation (2), the two solutions can be viewed as equivalent under

some conditions. Because it is too difficult to achieve sufficient

conditions under which the two sparse solutions are equal, a new

method based on probability was adopted. If the two solutions can

be viewed as equal with a high probability (e.g., 0.95), then we can

use the solution to equation (3) instead of the solution to equation

(2). Another advantage of using solution to equation (3) instead of

that to equation (2) is that the 1-norm solution is insensitive to

noise. Therefore, 1-norm is a good measure of sparsity.

To solve the optimization problem presented by equation (3),

we converted it into another format (see below) and defined new

non-negative variables u and v, where u{v~w and u,v[Rm,

min
Xm

i~1

uizvið Þ,

subject to A,{A½ � uT ,vT
� �T

~y and u§0,v§0,

ð4Þ

Now, the problem has been converted into a typical non-negative

linear programming problem, and we can easily determine u,v
then w. The value of the weight vector w represents the weight of

the corresponding column of A. When the number of samples is

not sufficiently large, a single optimization procedure cannot

reflect the importance of each voxel, and several additional steps

are needed which are described in the Text S1.

Classification and Cross-Validation
The SVM was used to implement the age-related classification.

SVM belongs to a learning system that is based on advances in

statistical learning theory, and it seeks the separating hyperplane

with the maximal margin and minimizes the structural risk. This

technique works particularly well when the number of training

samples is small but the feature number is large [84]. In this study,

the toolbox called Spider for MATLAB, which implemented the

SVM, was used for classification. This toolbox is available for free

on the website for academic purpose (http://www.kyb.mpg.de/

bs/people/spider/). All of the programs used in our study were

implemented in MATLAB 7.8.0 (R2009a, The Mathworks,

Natick, Massachusetts, United States). Details regarding the

SVM used in our study are shown as:

kernel~0linear0,

C~1,

optimizer~0andre0,

ð5Þ

The classification accuracy can be measured by generalization rate

(GR), sensitivity (SS) and specificity (SC). Here, SS is defined as the

proportion of correctly predicted young subjects, while SC

represents the proportion of correctly predicted old subjects. The

proportion of all subjects that were correctly predicted is evaluated

by the GR. The Formula are shown below:
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GR~(TPzTN)=(TPzFNzTNzFP),

SS~TP=(TPzFN),

SC~TN=(TNzFP),

ð6Þ

where TP is the number of the young subjects correctly predicted;

FN is the number of the young classified as the old; TN is the

number of the old subjects correctly predicted; FP is the number of

the old classified as the young.

To solve the problem in the situation that data are scarce, M-

fold cross-validation uses part of the available data to learn the

model, and the rest to test it. We split the data into M roughly

equal-sized parts. For the mth part, we select voxels and learn the

model to the other M-1 parts of the data, and calculate the

prediction error of the learnt model when testing the mth part of

the data. We do this for m = 1, 2, …, M and rearrange the

voxels once for each m. Typical choice of M is 10. The case

M = N is known as leave-one-out cross-validation (LOOCV),

where N is the number of data points. In this study, M were 10

for group 1, while N for group 2. Because there were only 56

subjects in the second group, LOOCV was employed to confirm

the accuracy of the classifier.

For the first group of MRI images, ten-fold cross-validation was

implemented to confirm the results of the voxel selection methods

and the accuracy of the classifier. We have obtained one group of

rearranged voxels for each fold, and then ten groups of rearranged

voxels were generated.

The first thousands of voxels in the intersection among the ten

groups of rearranged voxels were chosen as the final aging spatial

patterns. To confirm the robustness of the sparse representation

method, we applied the spatial patterns of aging that were selected

from the first group of MRI images to the second group of MRI

images for classification.

Supporting Information
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