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Patients with Type 2 Diabetes Mellitus (T2DM) suffer from a higher incidence and

severity of pulmonary infections. This is likely due to immune impairment and structural

abnormalities caused by T2DM-induced oxidative stress (OS) and chronic inflammation.

Modulation of the Renin Angiotensin System (RAS) through blockade of the actions

of angiotensin II (AII), or inducing the protective pathway, has the potential to reduce

these pathological pathways. The effects of Angiotensin 1–7 [A(1-7)] and NorLeu3-A(1-7)

[NorLeu], ligands of the protective RAS, on the innate immune response were

evaluated in the db/db mouse model of T2DM. Only NorLeu treatment reduced

the structural pathologies in the lung caused by T2DM. A decreased in bactericidal

activity and phagocytosis in diabetic animals was also observed; both A(1-7) and

NorLeu treatment restored these functions. Myeloid progenitor CFUs were reduced and

neutrophil/progenitor OS was increased in saline-treated db/db mice, and was reversed

by A(1-7) and NorLeu treatment. These results demonstrate the adverse effects of

diabetes on factors that contribute to pulmonary infections and the therapeutic potential

of protective RAS peptides. Overall, RAS-modification may be a viable therapeutic target

to treat diabetic complications that are not addressed by glucose lowering drugs.
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INTRODUCTION

T2DM is a worldwide epidemic. In the United States alone, 23.2 million people (7.5% of the
population) are currently diagnosed with T2DM. T2DM is now the seventh leading cause of death
(1). The collective impact of T2MD-associated complications results in both reduced quality of life
and increased economic burden (2).

In addition to the well-recognized complications and co-morbidities associated with T2DM,
diabetic patients also suffer from less-studied complications such as decreased lung function and
impaired immune function (3–7). Diabetic patients are more likely to suffer from infection and at
a greater risk of complications after infection (8–12). During the 2009 H1N1 Influenza pandemic,
diabetic patients had a higher rate of hospitalizations (13–15). Diabetes is also linked to higher
rates of Methicillin-resistant Staphylococcus aureus (MRSA) infection (7). Epidemiological data
links diabetes to higher incidence of a variety of cancers, including liver, pancreas and lymphoma;
perhaps due to immune suppression (1). Mouse models of hind paw infection show diminished
innate immunity at the site of infection and reduced circulating polymorphonuclear leukocytes
(PMN) function in diabetic mice (3). PMN counts can be affected by metabolic parameters such
as age, BMI, and systolic blood pressure (16). Increases in the frequency of all these ailments
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in diabetic patients and diabetic mouse models indicate there is
a decrease in the activity of the cells that are involved in innate
immunity. Dysregulation of PMNs is associated with several
diabetic complications, such as hypofibrinolysis, nephropathy
and cardiovascular events (17–19). Immune-suppression in
diabetic patients happens despite the availability of current
glucose control medications for T2DM, highlighting a need for
additional therapeutic intervention.

Traditionally, the Renin Angiotensin System (RAS) is known
for its role in blood pressure regulation. Both angiotensin II
(AII) and angiotensin (1-7) [A(1-7)] are bioactive peptides of
RAS; both of these peptides have now been associated with
physiological functions that reach beyond the regulation of
hypertension. Activation of the angiotensin type I (AT1) receptor
by AII results in a number of pathological processes including
vasoconstriction, increased pro-inflammatory response, elevated
levels of oxidative stress (OS), insulin resistance, hypertension
(HTN), and end organ failure (9–12, 20). A(1-7), acting primarily
through Mas receptor activation, causes vasodilation, decreased
OS and has anti-inflammatory effects (4, 6, 13). These actions
of the protective RAS may reduce co-morbidities related to
T2DM. The discovery of these protective effects by RAS-
modifying peptides has prompted therapeutic interest in this
system. NorLeu3-A(1-7) [NorLeu], a peptide analog of A(1-7),
has already shown efficacy in diabetic wound repair (21–25).

Studies reported herein were designed to further understand
the impact of T2DM and RAS modification on immune
parameters that are important in clearing respiratory infections,
using Staphylococcus aureus (S. aureus) as a pathogenic model
in db/db mice. The primary mode of S. aureus clearance in
this pneumonia model is through alveolar macrophages and
neutrophils (26, 27), both main players in pulmonary innate
immunity. As chronic inflammation and OS may contribute
to the potential immunosuppression in diabetics, A(1-7) and
NorLeu were used as novel treatments to correct diabetes-
induced immune dysfunction in the db/dbmodel.

MATERIALS AND METHODS

Animal Procedures
Male BKS.Cg-Dock7m+/+ Leprdb/J (db/db) mice and age-
matched non-diabetic heterozygous controls (htz) were
purchased from Jackson Laboratories (Bar Harbor, ME, USA).
Eight week old mice were randomized into three treatment
groups (n = 6–10/group). Animals were administered either
saline (htz and db/db), A(1-7) (0.5 mg/kg/day) (db/db), or
NorLeu (0.5 mg/kg/day) (db/db) subcutaneously, daily for 4, 8,
or 12 weeks. Dose finding studies previously performed indicated
0.5 mg/kg/day is optimal (28). Pharmaceutical grade A(1-7) and
NorLeu were purchased from Bachem (Torrance, CA, USA).
Mice were kept on a 12 h light/dark cycle and food and water
were available ad libitum. Body weight was assessed at necropsy.
Blood glucose level was measured using a Free Style Lite meter
(Abbott Laboratories, Abbott Park, IL) from a drop of blood
obtained from the saphenous vein. All animal studies have been
reviewed and approved by the University of Southern California
Institutional Animal Care and Use Committee (IACUC).

Micro-CT Scanning and Analysis
The Inveon preclinical CT scanner (Siemens, Knoxville, TN)
was used for data-acquisition in prone position under 2%
isoflurane inhalation anesthesia (tube voltage 80 kV, tube current
500 µA, 0.104mm effective pixel size, binning of 2 to reduce
noise) with and without respiratory gating (i.e., synchronization
of acquisition of micro-CT projections with a time-point
in the respiratory cycle of the individual mouse). Scanning
took 10 and 30min with and without respiratory gating,
respectively. Respiratory monitoring was performed using a
pressure transducer pad (System BioVetTM ©m2m Imaging Corp,
Newark, USA) placed under the animal’s chest. Images were
reconstructed and assessed at a constant window width/window
level (5000/2000). The acquired images were reconstructed
using the InveonTM Acquisition Workplace software (Siemens,
Knoxville, TN). A Feldkamp algorithm with a Shepp and
Logan filter was used to reconstruct the acquired images. The
images were output and stored in a dicom format. The CT
image data were analyzed using AMIRA (FEI, Visualization
Sciences Group, Houston, TX) to create volume renderings.
3-D segmentation of lung tissue and airway was performed
based on gray value threshold difference between tissue and
air. Volumes of different lung segments at both inhalation and
expiration were automatically quantified by AMIRA. A ratio of
inhalation and expiration volumes was used as indirect marker
for lung compliance.

S. aureus Survival Assay
S. aureus strain Newman was provided by Dr. Annie Wong-
Beringer’s laboratory (USC). After 6-weeks of treatment, blood
was collected from the tail-vein and placed in microvette heparin
coated tubes. A 1:10 bacterial solution was prepared, incubated
with agitation for 30min at 37◦C and then diluted into fresh
DMEM+5% fetal bovine serum (FBS) at 1:12. For each animal,
25µL of blood diluted into 162.5 µL S. aureus (6 × 106 CFUs)
preparation and incubated at 37◦C in a rotating platform for
30min. Surviving S. aureus titers were determined by plating
serial dilutions in duplicate on tryptic soy agar (TSA) plates with
5% sheep blood.

Neutrophil Activity Assays
Twenty microliters of blood were collected into a heparinized
tube from the mouse tail vein, the RBCs were lysed and
remaining cells were washed and suspended in DMEM+5%FBS.
Samples were placed on a 96-well flat bottom plate and 100 µL of
1 mg/mL pHrodo Red S. aureus BioParticles Conjugate (pHrodo)
in DMEM+5%FBS and 0.5µL of CellROXOS Reagents (Thermo
Fisher Scientific) were added. The S. aureus were added in
excess to capture maximal phagocytic capabilities. The plate
was read at 10min intervals for 110min at Ex 509/Em 533
(pHrodo) and Ex 640/Em 665 (CellROX) on a Synergy H1
Hybrid Multi-Mode Microplate Reader (BioTek, Winooski, VT).
These samples were also read on a LSR II flow cytometer
(BD Biosciences, San Jose, CA). Data were analyzed using
FlowJo V 10.0.7r2.
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Neutrophil Phagocytosis Assay
Heparinized blood was collected from the tail vein of treated
mice, and total WBCs were counted. Twenty microliters of whole
blood were diluted 1:5 with DMEM+5%FBS, 5 µL of 1 mg/mL
pHrodo was added and incubated at 37◦C for 90min. RBCs were
lysed, the sample was washed and then fixed with 10% buffered
formalin. Samples were read on a LSR II flow cytometer. Data
were analyzed using FlowJo V 10.0.7r2 to determine the total
concentration of PMNs and phagocytic PMNs in whole blood.

Plasma Collection
At the necropsy, mice were overdosed with ketamine/xylazine
and the blood was collected by cardiac puncture into EDTA-
coated tubes. Immediately after collection plasma was isolated
by centrifugation; plasma aliquots were stored at −80◦C for
later analysis.

Plasma Cytokine Measurements
Plasma collected at necropsy was also used to measure circulating
cytokine levels using the V-PLEX Proinflammatory Panel 1
Mouse Kit (Meso Scale Diagnostics; Rockville, MD).

Bone Marrow (BM) Collection and Cultures
Femurs from un-infected mice were collected after 4, 8, and 12
weeks of treatment and BM was harvested by flushing with PBS

containing 2%FBS/2x Pen/Strep. BM cells were washed, counted
and re-suspended in DMEM+5%FBS at 5× 106 cells/mL Mouse
MethoCultTM media (StemCell Technologies, Cambridge, MA),
900 µL, was added 24-well tissue culture plates, 20 µL of cells
mixed in and cultures incubated at 37◦C, 5% CO2 in air. After
12 days of culture, CFU-granulocyte, erythrocyte, macrophage
andmegakaryocyte (GEMM) and CFU- granulocyte macrophage
(GM) colonies were counted under phase contrast microscopy.

3-Nitrotyrosine (N-Tyr) Staining
BM cells were fixed with 4% paraformaldehyde, incubated with
permeabilizing solution (0.1% Triton-X in PBS) for 15min in
the dark at room temperature, and washed. BM cells in 100
µL of 2% FBS in PBS were stained with 1 µL L anti-N-
Tyrosine-FITC antibody (EMD Millipore Corp, Temecula, CA;
Clone 1A6) 30min at RT, washed, resuspended in 0.5mL of
1% paraformaldehyde and stored in the dark at 4◦C until flow
cytometric analysis. Percentage of PMNs, N-Tyr+ cells and N-
Tyr+ PMNs were calculated from this analysis.

Histological Analysis
At the necropsy lungs were rapidly excised and weighed. The
right lobe was formalin-fixed and paraffin-embedded, cut at 7µm
and stained with Hematoxylin and Eosin. Four to five images per

FIGURE 1 | Lung capacity is significantly reduced in diabetic mice. Diabetic mice were treated with saline, A(1-7) at 2 mg/kg/day, or NorLeu at 2 mg/kg/day for 8

weeks starting at 8 weeks of age. microCT-scans were used to visualize air volume in the lungs of treated mice during normal inhalation and exhalation and compared

to htz saline treated mice of the same age (A). Air volume at inhalation (B) and exhalation (C) was calculated based on 3D pixel density. A ratio of inhalation/exhalation

was calculated to estimate lung elasticity (D). Statistics was done using Prism 6 software ANOVA and compared to saline treated db/db mice; *p ≤ 0.05,

****p ≤ 0.0001.

Frontiers in Immunology | www.frontiersin.org 3 December 2019 | Volume 10 | Article 2885

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Soto et al. RAS in Diabetic Immunosuppression

slide were taken at 40x magnification, 10 pictures/slide, to count
alveolar macrophages.

In vitro Macrophage Function
Raw 264.7 cells were obtained from the ATCC (Manassas, VA).
The cells were preincubated for 48 hr at 37◦C and 5% CO2

under: a. Normal glucose (NG), in DMEM; b. Diabetic milieu
(DM) as previously described (29); c. DM + AII (100 nM); d.
DM + AII (Bachem) (100 nM) and A(1-7) (100 nM); e. DM
+ AII (100 nM) and AVE 0991 (MedChem Express, Princeton,
NJ) (10 nM); f. DM + AII (100 nM) and AVE 0991 (100 nM);
g. DM + AII (100 nM) and AVE 0991 (1000 nM). Next, the
cells were harvested, incubated for 1 h with pHrodo and fixed
with 4% formaldehyde solution. Mean fluorescence intensity
was determined by flow cytometry using a BDTM LSR II
flow cytometer.

Statistical Analysis
GraphPad Prism version 6.0c for Mac OS X (GraphPad Software,
San Diego, CA, USA) was used to analyze the data. One-way
ANOVA followed by Dunnett’s multiple comparisons test were
used to compare data. The level of statistical significance was set
at 5%. Data are expressed as mean value ± standard error of the
mean (SEM).

RESULTS

The Overall Diabetic Phenotype of db/db
Mice Is Not Altered by A(1-7) or NorLeu
Treatment for 8 Weeks
BKS.Cg-Dock7m+/+ Leprdb/J (db/db) mice develop very severe
diabetic phenotype due to overnutrition, closely resembling
human disease, which make it a useful tool for studying potential
therapeutics (30, 31). Mouse weights taken at necropsy show that
there is no significant weight reduction after treatment in db/db
mice (Supplemental Figure 1A). Plasma collected at necropsy
after 8 weeks of treatment was used to measure circulating
cytokines (TNF-α, IL-6, and IL-10) using a multiplex immune-
assay. While changes have been noted in these markers with long
term (16 weeks) A(1-7) treatment in this model, no significant
changes were detected in any of these groups with 8 weeks of
treatment (Supplemental Figure 1B) (29).

Diabetic Animals Show Reduced Lung
Size, Air Volume Capacity, and Air Volume
at Inhalation/Exhalation Ratios, Despite
Treatment
Micro-CT scans of mouse lungs can give insights to the global
environment of the lung. In 16-week-old control db/db and htz
mice, images of the lung were taken at inhalation and exhalation
(Figure 1A). Air volume in the lungs at each measurement was
quantified. Consistently, 16-week-old db/db animals had lower
% air volume during inhalation and exhalation (Figures 1B,C),
even when corrected for total body weight of the mouse. The
inhaled/exhaled air volume ratio can be used as a marker for lung
elasticity and is also significantly lower in the diabetic animals

treated with saline (Figure 1D). A(1-7) treatment—started at
8 weeks of age and continued for 8 weeks—had no effect on
this ratio. However, mice treated with NorLeu had a significant
improvement in inhalation/exhalation ratios. Although both
A(1-7) and NorLeu are thought to target the same receptor,
NorLeu has previously shown to have pronounced anti-fibrotic
effects beyond those observed after A(1-7) treatments (32).

Diabetic Mice Show Diminished Pathogen
Clearance in ex-vivo Neutralization Assays
of S. aureus While A(1-7) and
NorLeu-Treated Diabetic Mice Did Not
Bacteriocidal activity and PMN function were measured ex-vivo
using whole blood assayed for S. aureus neutralizing activity.
S. aureus CFUs were measured before inoculation and after a
30min incubation with whole blood to calculate the percentage
of surviving bacteria (Figure 2A). Blood from htz or A(1-7)-
treated or NorLeu-treated diabetic animals had significantly
lower bacteria levels than that from diabetic saline-treated mice.
This suggests the reduced innate immune responses seen in
diabetes is ameliorated by Mas agonist treatment.

PMN Function Is Impaired in db/db Mouse
Model of T2DM and Rescued With A(1-7) or
NorLeu Treatment
To assess PMN function directly, whole blood from htz and
db/db mice treated with saline, A(1-7) or NorLeu was incubated
with S. aureus labeled with a fluorescent tag activated by the
low pH in phagosomes (pHrodo) and read on fluorescent
plate reader to determine the kinetic profile of phagocytosis
(Figure 2B). Samples from the htz mice had the highest readout
of fluorescence throughout the 110min incubation, followed
by the db/db mice treated with A(1-7) or NorLeu. Saline-
treated db/db mice had the lowest emission curve; however,
none of the changes in this assay were significant. In the next
study, blood samples were collected, WBC were enumerated
and incubated with S. aureus-pHrodo for 90min, fixed and
analyzed by flow cytometry. PMNs were gated by forward and
side scatter and the % PMNs in total WBCs was measured
(Supplemental Figures 1C,D). A calculation was then done to
determine the number of total and phagocytic PMNs per mL of
blood (Figure 2C). PMNs in the blood of saline-treated db/db
mice were less phagocytic compared to the htz and A(1-7)- or
NorLeu-treated diabetic animals.

Immune Cell Activation Is Affected by T2D
and Mas Activation
Cellular generation of reactive oxygen species (ROS) was
measured in the whole blood in the absence and presence of S.
aureus-pHrodo using CellROX dye (Figure 2D). In the absence
of stimulation, blood from all three groups had a similar and
constant baseline of CellROX reactivity with the db/db A(1-7)
or NorLeu-treated mice showing the lowest emission level; no
significant difference between the study groups was observed.
With S. aureus-pHrodo stimulation, blood from all groups had an
increase in CellROX reactivity over their unstimulated baselines
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FIGURE 2 | PMNs from db/db mice favor degranulation in response to bacterial challenge and those from A(1-7) treated mice favor phagocytosis. Tail-vein blood was

collected from htz and db/db mice treated with saline or A(1-7) at 0.5 mg/kg/day. Whole blood was incubated with live S. aureus for 30min and the percentage of

surviving S. aureus-CFUs was calculated (A). Whole blood samples were also incubated with S. aureus-pHrodo; kinetics of phagocytosis were measured using a

plate reader with no significant changes between groups at any time period (B), and number of phagocytic PMNs after 90min (C) was measured using flow

cytometry. Blood samples were also incubated with CellROX in the absence and presence of S. aureus, the emission was measured with a plate reader for 90min

starting at 20min at 10min intervals (D) There were only significant differences between treatment groups with S. aureus where saline treated db/db mice were:

significantly higher than htz at 50, 60, 70, 100, and 110min (@); significantly higher than A(1-7) at 20, 30, 40, 50, 60, 70, 90, 100, and 110min (∧); and significantly

higher than NorLeu at 20, 30, 50, 60, 70, 90, 100, and 110min (t). Further analysis was done on samples incubated with CellROX and S. aureus for 90min and

quantified by flow cytometry (E). Schematic represents the different types of readouts from a plate reader compared to a flow cytometer in regards to CellROX assays

(F). Statistics was done using Prism 6 software ANOVA comparing all groups to saline treated db/db; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

and a constant increase in fluorescence throughout the 110min
incubation indicating persistent ROS generation. The blood from
saline-treated db/db mice had the greatest increase in CellROX
reactivity over baseline: significantly higher than htz at 50, 60,
70, 100, and 110min; significantly higher than A(1-7) at 20, 30,
40, 50, 60, 70, 90, 100, and 110min; and significantly higher than
NorLeu at 20, 30, 50, 60, 70, 90, 100, and 110min (Figure 2D).
For flow cytometric analysis, blood samples were stimulated with
S. aureus-pHrodo in the presence of CellROX for 90min, washed,

fixed and analyzed by flow cytometric analysis. PMNs were gated
as distinct populations by forward and side scatter. Cellular
activation in PMNs was measured by CellROX; activation was
similar in both htz and saline-treated db/db mice. However,
significantly higher activation was seen in A(1-7) and NorLeu-
treated db/dbmice (Figure 2E).

The differences seen between the plate reader and flow
cytometry measurements of CellROX point to functional PMN
changes. Samples from saline-treated db/db mice analyzed with
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FIGURE 3 | Neutrophil and monocyte progenitors are deficient in db/db mice and rescued by A(1-7) treatment. Neutrophils and monocytes have common progenitor

lineage. BM was collected from htz and db/db mice treated with saline and A(1-7) at 0.5 mg/kg/day for 4, 8, and 12 weeks. Cells were cultivated in MethoCultTM

media and both CFU-GEMMs (A) and CFU-GMs (B) were counted per well and multiplied by total number of WBCs in the BM of both femurs. BM cells were also

stained with anti-N-Tyr antibody conjugated to FITC and quantified by flow cytometry. This set of animals included htz controls and db/db mice treated with saline or

A(1-7) at 2 mg/kg/day. Cellular damage by OS was quantified in PMNs (C,D) and BMMCs (E,F) and expressed as percentage of cells positive for intracellular N-Tyr

staining. Statistics was done using Prism 6 software ANOVA and compared to saline treated db/db mice; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

the plate reader show the highest CellROX signal, but when
analyzed by flow cytometry they have the lowest amount of
CellROX signal. This suggests an increase in the production
of extracellular ROS through degranulation of PMNs instead
of internal pathogen degradation in saline-treated db/db mice
(Figure 2F). Increases in the degranulation response of PMNs to
bacterial challenge may partly explain the higher overall amount
of tissue damage frequently seen in infected tissues of diabetic
patients. Proper pathogen removal by phagocytosis as opposed
to degranulation will reduce the time to clear the infections and
reduce the amount of tissue damage (33).

Overall PMN Health May Be Affected Early
in Progenitor Development
PMNs have a high turnover in the blood and are continuously
sourced from the BM.Monocytes and neutrophils share common
progenitor cells known as CFU-GM and its earlier progenitor
CFU-GEMM. As the pathology of diabetes is believed to result
from cumulative damage, we measured the CFU-GM and CFU-
GEMM number in the BM was measured over time. Saline-
treated diabetic animals consistently had lower numbers of
both CFU-GEMM and CFU-GM, reaching significant difference
from both htz and db/db A(1-7)-treated animals at 12 weeks
of treatment (Figures 3A,B). OS was measured in the BM by
FITC-anti-N-Tyr staining and quantified by flow cytometry.
BM mononuclear cells (BMMCs) (Figures 3C,D) and PMNs
(Figures 3E,F) were gated out by forward and side scatter.
BMMCs have a lower SSC profile and mostly contain stem
cells (CD45−Sca-1+) and other progenitor cells that have not

yet started producing CD45 (Supplemental Figure 2); PMNs
are appear higher than BMMCs in SSC and consist mostly
Neutrophils (CD45+ Ly6G+Ly6Clo) and some Eosinophils
(CD45+ F4/80+Siglec-F+). In both BMMCs and PMNs, the
saline-treated diabetic animals had a significantly higher
percentage of N-Tyr+ cells; A(1-7) or NorLeu-treated diabetic
animals has levels similar to the htz group. This suggests an early
effect, at the progenitor level, of T2D on PMN and monocyte
health; possibly induced by increased OS. A(1-7) and NorLeu
treatment may have therapeutic effects very early in innate
immune cell development.

Immunity Through Macrophages Is Also
Impaired by Diabetic Conditions and
Rescued by Mas Activation
The two most common populations of macrophages in the
respiratory tract are AMs and interstitial macrophages (IMs).
Although there are molecular markers that are different between
these 2 subtypes of pulmonary macrophages, their localization is
the most consistent defining characteristic (34–36). In this study
AMs, characterized by alveolar localization and morphology,
were quantified in sections of lung tissue of non-infected htz and
diabetic mice treated with saline, A(1-7) or NorLeu (Figure 4A).
Saline-treated diabetic mice had significantly lower numbers of
AMs than htz mice and A(1-7) or NorLeu-treated db/db mice,
suggesting Mas activation protects AMs (Figure 4B). Because
of their location, AMs are the first line of defense against
many pathogens in the respiratory tract and, if depleted, can
account for the delayed pathogen clearance and increase in
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FIGURE 4 | Diabetes altered macrophages respond to Mas-agonists in vivo and in vitro. Pictures were taken of H&E stained lung sections of htz and diabetic

infection-free animals treated with saline or A(1-7) at 0.5 mg/kg/day. A representative picture from a htz mouse is shown with arrows pointing the AMs (A). AMs were

counted per image and an average per frame was calculated for each group (B). In vitro assays were done to quantify the effect or DM and RAS-modification on the

phagocytic capabilities of RAW-1 cells (C). Cells were incubated in normal media (NG), media supplemented with 20mM glucose, endothelin-1 and cortisol (DM), DM

media with AII every 24 h (DM+A-II), and DM+A-II supplemented every 24 h with a Mas agonist. After 48 h in treatment media cells were harvested and incubated with

S. aureus-pHrodo, results are shown as MFI for N = 5 per group; all groups were compared to (DM+AII). Statistics was done using Prism 6 software ANOVA;

*p ≤ 0.05, ***p ≤ 0.001, ****p ≤ 0.0001.

pulmonary infections that are seen in diabetic patients and db/db
infection model.

Diabetic Conditions Induced in vitro Affect
Macrophage Function and Protected by
Mas Activation
RAW-1 cells have long been used to test for in vitro efficacy
of novel therapeutics because of their superior consistency in
phagocytic assays (37). Here, RAW-1 cells were treated with
various media conditions for 48 h and then incubated with
S. aureus-pHrodo to determine their ability to phagocytose
pathogens (Figure 4C). Cell incubated with DM show little
decrease in phagocytic capabilities unless AII is included. A(1-
7) treatment did not rescue this phenotype, possibly because
of its short half-life in media supplemented with FBS. AVE
0991, a small molecule Mas agonist, treatment of RAW-1
cells incubated in DM+AII restored the ability of the RAW-
1 cells to phagocytose S. aureus. Mas activation protected
against suppression of phagocytosis in a cell involved in innate
immunity in cells exposed to this physiologically relevant diabetic
culture medium, further defining Mas as a therapeutic target for
diabetic immunosuppression.

DISCUSSION

Pulmonary infections are a common and significant threat to
patients with diabetes. A combination of an impaired immune
system and tissue damage increases the chance of a severe
complication (38, 39). Diminished innate immune function can
cause uncontrolled bacterial growth and lead to pneumonia or
death (40). Current therapies for T2DM focus on lowering blood
glucose, insulin sensitization and weight loss. These treatments
are widely used by diabetic patients and, inmany cases, effectively
lowerHbA1c levels; however, many of the diabetic co-morbidities
persist despite blood glucose normalization perhaps due to

continued increased OS leading to chronic inflammation (4, 6).
Beyond glycemic control, treatments for diabetic patients need to
also focus on the underlying cause of all complications tomitigate
the consequences.

Neutrophil degranulation and LPS-induced immune
activation have been shown to be negatively affected by
hyperglycemia. Leukocytes increase production of ROS in
diabetic patients, possibly due to the hyperglycemic environment
(41, 42). Although hyperglycemia, ROS and inflammation can
all affect cell function, existing compounds that decrease ROS
levels and inflammation can benefit the patient (4–7, 43). Part
of the underlying cellular pathological in T2DM is associated
with the chronic up-regulation of the pathological arm of the
RAS. AII is the main active peptide in this pathological arm and,
through binding to AT1, cellular functions are altered leading to
an increase in ROS and inflammation. In diabetic patients, AII is
known to be upregulated potentially leading to the tissue damage
seen in diabetes-related complications (9). Our studies here
show that diabetic milieu, including high glucose, cortisol and
endothelin 1, is not enough to reduce macrophage phagocytosis
in vitro, AII is required; further supporting its key role in the
diabetic environment that hinders proper immune function.
To decrease the burden of these co-morbidities on both the
patient and the health care system, the root cause of the immune
dysfunctions and therapies needs to be identified and addressed.

Previous studies as well as those presented here suggest that
diabetes impacts innate immunity by hindering the activity
of PMNs. Changes in phagocytic capabilities of the PMNs
correlated with changes in the ability of PMNs to kill bacteria.
Macrophage health is also affected by diabetic conditions.
Progenitors to both populations are not only lower in number
in diabetic animals, they also exhibit increased OS. All of these
pathological changes as a result of diabetes were not observed
in A(1-7) or NorLeu-treated db/db mice despite the absence
of glucose control. Evidence suggests that this is partly due
to reduced OS, a parameter not currently targeted by diabetic
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medications. Treatment with A(1-7) or NorLeu reduced OS and
can counteract the pathological effects of AII in various other
disease models and is known to have distinct actions according
to tissue and pathology (14, 15, 43, 44).

We also noted a shift in cellular response to pathogens in
saline-treated diabetic animals compared to the htz animals.
After inoculation with S. aureus, in the samples from saline-
treated db/db mice, ROS was increased in the extracellular
environment. Conversely, in htz and A(1-7) or NorLeu-treated
db/db mice, these mediators were increased in the intracellular
compartments. Since the phagocytic function of PMNs is
compromised in diabetes, it may be that the cells are trying to
clear pathogens by producing a ROS-rich environment at the
site of infection. A(1-7) and NorLeu-treated animals did not
share this phenotype, they primarily act through phagocytosis
to neutralize bacteria, despite their diabetic status. Focus on
extracellular ROS production may help explain the higher
amounts of tissue damage seen in T2DM patients since ROS
will damage surrounding tissues along with invading pathogens.
This neutrophil dysfunction may also be the reason for increased
severity of infections (45, 46) and delayed wound healing seen
in diabetic patients (47, 48). Our results are also consistent
with other findings that suggest that there is BM dysfunction
in diabetic patients (49). Although, A(1-7) has been shown to
decrease inflammation in previous studies (50), our observations
were seen in the absence of changes in circulating cytokines,
suggesting a direct impact on PMN activity directly impacting
tissue health. The exact molecular mechanism by which A(1-
7) acts seems to be dependent on the cell type and insult
to the system (50).However, previous studies suggest that
the anti-inflammatory actions of RAS-modification are likely
mediated by inhibition of NF-kB (51, 52) or MAPK (53)
signaling pathways.

Taken together, the data presented indicate that RAS-
modification is a viable therapeutic target for the treatment of
diabetic complications, specifically those affected by inadequate
innate immune function. Further, these studies show that despite
the short half-life of A(1-7) and NorLeu we can measure
changes in innate immunity with once daily dosing. A recent
pharmacoeconomic analysis of the effect of inhibitors of the
pathological of RAS on pulmonary infections supporting the
translatability of these results to diabetic patients. Using a de-
identified insurance claims data set it was shown that even
newly diagnosed T2DM is associated with higher incidence of
pulmonary infections and that RAS-modifying drugs can reduce
these outcomes (54). Future studies will explore mechanisms

by which Mas agonism improves immune function in diabetic

patients and the role of other immune cells in this paradigm.
Ideally, an orally available Mas agonist that replicates the actions
of A(1-7) can be developed as a therapeutic to help improve the
patient health in T2DM.
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