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ABSTRACT The effectiveness of outer hair cells (OHCs) in amplifying the motion of the organ of Corti, and thereby contributing
to the sensitivity of mammalian hearing, depends on the mechanical power output of these cells. Electromechanical coupling in
OHCs, which enables these cells to convert electrical energy into mechanical energy, has been analyzed in detail using isolated
cells using primarily static membrane models. The mechanical output of OHCs was previously evaluated by developing a kinetic
theory based on a simplified one-dimensional model for OHCs. Here, a kinetic description of OHCs is extended by using the
membrane model, which was used for analyzing in vitro experiments. This theory predicts, for systems without inertial load,
that elastic load enhances positive shift of voltage dependence of the membrane capacitance because of turgor pressure.
The effect of turgor pressure increases with increasing elastic load. For systems with inertia, the magnitude of mechanical power
output could be �5% higher than the value predicted by the one-dimensional model at the optimal turgor pressure.
SIGNIFICANCE This work is an attempt to develop a physical model to clarify the mechanism of outer hair cells in
performing their role as an amplifier in mammalian hearing. Specifically, this work extends a static model of these cells into
a dynamic one to evaluate mechanical power production, which is essential for the function of these cells. It clarifies the
assumptions essential for an earlier phenomenological theory, a one-dimensional model. In addition, it describes the effect
of turgor pressure on mechanical power generation.
INTRODUCTION

Outer hair cell (OHC) motility, often referred to as electro-
motility, is essential for the sensitivity, frequency selectivity,
and dynamic range of the mammalian ear (1). This motility
is piezoelectric (2–5), based on a membrane protein
SLC26A5 (prestin) (6), and it is driven by the receptor po-
tential generated by the sensory hair bundle of each cell.
Even though the biological role of this motility has been
confirmed by replacing it with its nonfunctional mutants
(7), the mechanism with which OHC motility plays this
role has not been fully clarified.

This problem involves two factors. One is the speed of
conformational transitions of prestin, the motile molecule,
and the other is the magnitude of the receptor potential,
which drives the motile mechanism.

First, prestin’s conformational transitions, which are eli-
cited by voltage changes, accompany charge transfers.
This charge movement contributes to the membrane current,
together with the regular capacitive current of the plasma
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membrane. Because the conformational transitions depend
on the operating point, the resulting capacitance is voltage
dependent. For this reason, it is often referred to as nonlinear
capacitance. The frequency dependence of nonlinear capac-
itance gives rather low characteristic frequencies �15 kHz
(8) and 3 kHz (9).

Conformational transitions are also monitored as the cur-
rent noise spectrum (10). Sealed patches formed on OHCs
show a characteristic frequency of 35 kHz, higher than
�15 kHz for nonlinear capacitance (11). This discrepancy
suggests different modes of motion. These observations
indicate that those characteristic frequencies likely reflect
the mechanical relaxation processes rather than the intrinsic
transition rates of the motile molecules.

This interpretation is reinforced by cell displacements eli-
cited by voltage waveforms applied through a suction pipette.
In one mode of experiments, the frequency range observed
was 8.8–6 kHz or lower (9,12). In quasi-isometric conditions,
however, the response extends up to 80 kHz (12).

Second, the intrinsic electric circuit of the cell attenuates
the receptor potential at auditory frequencies. For the mem-
brane potential to change, an electric current needs to charge
up or down the capacitor, which is formed by the plasma
membrane. This factor increasingly attenuates the receptor
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FIGURE 1 The membrane model and mechanical load. (A) An OHC (red

rectangle) is subjected to mechanical load, consisting of viscous h (left),

elastic K (middle), and inertial m (top) components. The stiffness of the

cell is k. In its lateral membrane, the cell has a membrane protein, which

undergoes conformational transitions between two states. (B) The mem-

brane model of OHC is shown. The cell body of an OHC is approximated

by a cylinder of radius r and length L. Motile elements (upper right), which

undergo area changes az in the axial direction and ac in the circumferential

direction, are uniformly embedded in the cylindrical plasma membrane at

density n. The conformational transitions involve transfer of electric

displacement q across the membrane. To see this figure in color, go online.

TABLE 1 Parameters of the Membrane Model

Notation Definition Value Used References

d1 axial modulus 0.046 N/m (35)

d circumferential modulus 0.068 N/m (35)
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potential with increasing stimulation frequency, with the
roll-off frequency lower than the operational frequency (13).

Various hypotheses have been proposed to address the
issue of this voltage attenuation (14–18). Mechanical load
on OHCs is a possible mechanism for reducing the mem-
brane capacitance (19–23). Specifically, elastic load reduces
nonlinear capacitance (20), and inertial load can eliminate
the total membrane capacitance near resonance (21).
Thus, attenuation of the receptor potential can be avoided
near resonance frequency.

The compatibility ofOHCelectromotilitywith their biolog-
ical role could be tested by comparing the optimal power pro-
duction of the cell with power dissipation in the cochlea
(24,25). Such an examinationwas attempted by using a simple
model, which describes the mechanical property of the cell
only by the length and the axial stiffness (one-dimensional
(1D)model ofOHCs for brevity) (20) and assuming the energy
loss due to the shear in the space between the tectorial mem-
brane and the reticular lamina, which is essential for stimu-
lating hair cells. This study showed that electromotility is
compatible with their biological role up to 10 kHz (21).

This work develops a kinetic theory based on the mem-
brane model (26) and examines the physical basis of a
more phenomenological treatment (20). It also predicts the
effect of turgor pressure, which could play a modulatory
role. Besides power production, the amplifier gain of
OHCs is discussed. This approach could facilitate extension
to a more complex theory, in which the motile element has
more than two states to account for anion sensitivity and
slower relaxation processes (27–30).
2

g cross modulus 0.046 N/m (35)

az axial area change �4.5 nm2 (31)

ac circumferential area change 0.75 nm2 (31)

q mobile charge �0.8 e (2)

n density of motile element 9 � 1015/m2 (31)

r radius 5 mm (35)

L0 cell length 25 mm

C0 structural capacitance 10 pF a

h drag coefficient 160 nNs/m (21)

Notation Meaning Definition

k axial modulus d1 þ d2/4 � g

k axial stiffness 2prk/L0
K elastic load 2prKe/L0
g operating point parameter bhCið1 � hCiÞ
ur resonance frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk þ KÞ=mp
b

uh damping roll-off (k þ K)/h b

u reduced frequency u/ur

a1 unitary length change A/(4prk)

The definitions of other parameters are a ¼ �(az þ 2ac), A ¼ �(2d1 � g)

az þ (d2 � 2g)ac, 4¼ d1d2 � g2, bK ¼ K/(kþ K), a2 ¼ 1þ gn(A2bK þ 4a2),

and z¼ gNq2/C0. Of these parameters, bK , a, and z are dimensionless. i0br is
the ac component of transducer current. The parameter values of the motile

element reflect that the extended state E is taken as the reference. e, the

electronic charge.
aThe experimentally obtained regular capacitance of an OHC is close to es-

timates based on the geometrical surface area with the standard value �1

mF/cm2 for specific capacitance.
bAngular frequency.
METHODS

The system

Here, we consider a system in which an OHC has a mechanical load con-

sisting of viscous, elastic, and inertial components (Fig. 1; Table 1). This

model system provides an OHC with the simplest possible environment

so that its performance can be examined. The biological role of this cell

could be inferred from this examination.

Let us assume that the lateral wall is uniform and that the cell maintains

its characteristic cylindrical shape. The latter assumption could be justified

for low frequencies, where inertial force is not significant compared with

elastic force within the cell. The limit of the validity is examined later in

Results and Discussion, after experimental values for material properties

are provided.

In addition, we consider movement of this cell in response to small fast

changes in the membrane potential, from an equilibrium condition, ignoring

metabolic processes that maintained the physiological condition. Changes

in pressure, if present, are assumed gradual and therefore have only a modu-

latory role. The volume of the cell is assumed constant during voltage

changes.

Electrical connectivity

Here, we initially assume that the membrane potential of the cell is

controlled by an extracellular electrode and an intracellular electrode

with low impedance to facilitate the evaluation of the membrane capaci-

tance. Later on, for evaluating the power output of an OHC, the mechano-

transducers at the hair bundle will be incorporated. The receptor potential
that drives the motile element in the OHCs depends on the membrane

capacitance as well as the current source.

Static properties of OHCs

First, consider an OHC in equilibrium. The shape of an OHC is approxi-

mated by an elastic cylinder of radius r and length L (Fig. 1 B). Small dis-

placements of the cell can be described by constitutive equations (31),
Biophysical Journal 120, 122–132, January 5, 2021 123
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d1εz
0 þ gεc

0 ¼ fz þ 1

2
rP (1a)

and

gεz
0 þ d2εc

0 ¼ rP; (1b)

where the first equation is force balance in the axial direction and the sec-

ond force balance in the circumferential direction. The quantities 3z
0 and 3c

0

are respectively small elastic strains of the membrane in the axial direction

and the circumferential direction. The quantities d1, d2, and g are elastic

moduli of the membrane in the axial direction, circumferential direction,

and cross moduli, respectively; P is the internal pressure, and fz is the axial

tension due to an external force Fz, which can be expressed as 2prfz. These

elastic moduli assume orthotropy (32,33).

Axial stiffness

The material stiffness k in the axial direction and the axial elastic modulus k

of the cell are expressed as

k ¼ 2pr

L0

k; (2)

where L0 is the resting length of the cell. The axial modulus k is obtained

as k¼ fz/ 3z
0 under constant volume condition 3v

0 ¼ 3z
0 þ 2 3c

0 ¼ const., elim-

inating 3c
0 and rP from the constitutive equations (Eq. 1). It can be ex-

pressed as (see Appendix A)

k ¼ d1 � gþ d2=4 (3)

This axial stiffness of the cell is material stiffness without a motile

element, which would reduce the stiffness in a manner similar to ‘‘gating

compliance’’ (31,34).

Motile element

Here, we assume that each motile element undergoes transition between

two states, compact (C) and extended (E). In the following, the fraction

of the state is expressed in italics.

EðextendedÞ # CðcompactÞ

Unlike conventional description of molecular transitions, we do not as-

sume that transitions between these states take place in accordance with

‘‘intrinsic’’ transition rates. Instead, we assume that transitions between

these states are determined by the mechanical constraints in a manner

similar to piezoelectricity.

To incorporate the motile element, let us assume that the total strain in the

axial direction 3z and the one in the circumferential direction 3c consist of

elastic components ( 3z
0 and 3c

0) and the contribution of motile elements.

Each motile element undergoes electrical displacement q and mechanical

displacements az and ac (see Fig. 1 B) during the transition from state E

to state C. If the motile elements are uniformly distributed in the lateral

membrane at density n, the total strains in the two directions are then

respectively expressed by (31)

εz ¼ εz
0 þ aznC (4a)

and

εc ¼ εc
0 þ acnC (4b)

The constitutive equations are then rewritten by
124 Biophysical Journal 120, 122–132, January 5, 2021
d1εz þ gεc � ðazd1 þ acgÞnC ¼ fz þ 1

2
rP (5a)

and

gεz þ d2εc � ðazgþ acd2ÞnC ¼ rP (5b)

Notice that the internal pressure P now consists of two components,

dependent on the activity of the motile element and independent of it.

The latter is referred to as turgor pressure.

In the presence of external elastic load K, axial tension fz can be ex-

pressed by

fz ¼ � Keεz; (6)

where Ke ¼ KL0/(2pr). Equations 5 and 6 lead to

εz ¼ � AnC� mεv

2ðkþ KeÞ ; (7)

where A ¼ �(2d1 � g)az þ 2mac and m ¼ d2/2 � g (see Appendix A). The

quantity 3v is the volume strain, which can be expressed as 3z þ 2 3c for the

cylindrical cell for small strains.

Because the displacement of the cell of our interest is in the auditory fre-

quency range, we assume the cell volume is constant. For this reason, we

can regard 3v as a parameter representative of turgor pressure, which does

not depend on the activities of the motile elements and can only change

slowly responding to metabolic activity or osmotic pressure.

The axial displacement Z (¼ L0 3z) of the cell and the total charge of the

motile elements Q, respectively, can be expressed using C, the fraction of

state C, by

Z ¼ � pr

k þ K
ðAnC�mεvÞ (8a)

and

Q ¼ � qNC; (8b)

where N is the total number of motile elements, i.e., N ¼ 2prL0n.

Boltzmann distribution

The fraction of state C in equilibrium should be given by a Boltzmann

function

CN ¼ exp½�bDG�=ð1þ exp½�bDG�Þ; (9)

with

DG ¼ � qðV �V0Þ � azfz � ðaz = 2þ acÞrP; (10)

where DG is the energy difference (of state C from state E), V the mem-

brane potential, and b ¼ 1/kBT with Boltzmann’s constant kB and the tem-

perature T. The voltage V0 determines the operating point. By substituting fz
and rP, we obtain (see Appendix A)

DG ¼�qðV�V0Þþ 1

4k

��
A2 bK þ4a2

�
nC��

mAbK þ4a
�
εv

�
;

(11)

where shorthand notations are
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a ¼ � ðaz þ 2acÞ; (12a)

bK ¼ K =ðkþK Þ ¼ K=ðkþKÞ; (12b)
e e

and

4 ¼ d1d2 � g2 (12c)

The volume 3v is due to turgor pressure Pt. At the extreme hyperpolar-

ization, when the motile element is in the extended state (i.e., C ¼ 0),

Pt ¼ 3v4/(2kr).
Equation of motion

If C ¼ CN, i.e., the distribution of motor states is in equilibrium, the cell

does not move. Suppose the membrane potential V changes abruptly; the

cell exerts force kprAn(CN � C) because a change DC in C gives rise to

length change prAnDC of the cell because of the cylindrical geometry if

3v is kept constant. Here, k is the material stiffness of the cell defined by

Eq. 3. With mechanical load including mass m and drag coefficient h

(see Fig. 1 A), the equation of motion can be expressed as

m
d2Z

dt2
þ h

dZ

dt
¼ prkAnðCN �CÞ; (13)

where CN is the value of C, which satisfies Boltzmann distribution, for the

given condition at time t. With the aid of Eq. 8a, this equation can be

rewritten in the form

m
d2C

dt2
þ h

dC

dt
¼ ðkþKÞðCN �CÞ; (14)

which is intuitive, considering that z is proportional to C. This equation de-

termines the rates of transitions between the two states becauseC is the only

variable, given C þ E ¼ 1.

This is the same equation derived for the one-dimensional model (20),

except that the variable C in this membrane model depends on a larger num-

ber of factors, including turgor pressure. The property of the OHC as ex-

pressed by the equation cannot be rendered as a simple combination,

either series or parallel, of an elastic element and a displacement element.

In the absence of the inertia term, Eq. 14 has a typical relaxation equation

for a stochastic process. One may question the inertia term in an equation

that describes a stochastic process. It will be shown later that this equation

with the inertia term is consistent with the equation of piezoelectric reso-

nance provided that the deviation from equilibrium is small (see Results

and Discussion).

Small harmonic perturbation

Because one of the main functions of OHCs is to amplify small signals, the

response of OHCs to small harmonic stimulation is of special interest. As-

sume that the voltage consists of two parts, a constant term hVi and small

sinusoidal component with angular frequency u (¼ 2pf) and amplitude v:

VðtÞ ¼ hVi þ v exp½iut�

Then, C and CN should also have two corresponding components

CðtÞ ¼ hCi þ c exp½iut� (15)

and

CNðtÞ ¼ hCNi þ cN exp½iut�; (16)
and the first-order terms of the equation of motion turn into�� ðu=urÞ2 þ iu =uh þ 1
�
c ¼ cN; (17)

with u2
r ¼ (k þ K)/m and uh ¼ (k þ K)/h, and

cN ¼ g
h
qvþ nc

2k

�
A2 bK þ4a2

�i
; (18)

with g ¼ bhCið1 � hCiÞ. Thus, quantity c obeys the equation�� ðu=urÞ2 þ iu
�
uh þa2

�
c ¼ gqv; (19)

with a2 ¼ 1 þ gn(A2bK þ 4a2)/(2k).

In response to voltage changes, axial displacement Z likewise consists of

two components:

ZðtÞ ¼ hZi þ z exp½iut� (20a)

and

z ¼ � pr

k þ K
Anc (20b)

The second equation is derived from Eq. 8a for constant volume strain 3v.

Nonlinear capacitance

If we express corresponding changes in a similar manner, the charge vari-

able can be expressed as Q ¼ nqhCi þ Nqcexp[iut], and nonlinear capac-

itance Cnl is given by

Cnl ¼ Re½Nqc = v�;

¼ Re

"
gNq2

a2 � u2 þ iu=uh

#
; (21)

where Re[.]represents the real part because capacitance is charge transfer

synchronous to voltage changes (20). Here, shorthand notations are intro-

duced: u ¼ u=ur; uh ¼ uh=ur . Nonlinear capacitance can turn negative

near resonance frequency and is capable of nullifying the membrane capac-

itance, as in the case of the 1D model (21) (see Fig. 4 A).
Comparison with one-dimensional model

How do the predictions of the membrane model differ from 1D models? In

the following, the 1D model (20,21) is briefly restated to facilitate the

comparison.

One-dimensional model

A 1D model has a single parameter k for the cell’s elasticity and a single

parameter a1 for mechanical changes of the motile elements. For length

changes z and charge transfer Q, the equation that corresponds to Eq. 8a

can be written down (20) as

Z ¼ �a1kNC

k þ K
(22a)

and

Q ¼ � qNC; (22b)
Biophysical Journal 120, 122–132, January 5, 2021 125
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where C represents the fraction of the compact state, as in the membrane

model. The comparison of Eqs. 8a and 22a suggests a1 corresponds to A.

The free energy difference DG1 for the 1D model can be expressed by

(20,21)

DG1 ¼ qðV�V1Þ þ a21Nk
bKC (23)

This energy difference DG1 determines CN ¼ exp[�bDG1]/(1 þ exp

[�bDG1]) and contributes to the factor g1 ¼ bhCið1�hCiÞ in the equation

of motion. This g1 does not depend on turgor pressure—unlike g, its mem-

brane model counterpart—because DG1 does not have a term that depends

on turgor pressure.

The equation for c for the 1D model is�� u2 þ iu =uh þa2
1

�
c ¼ g1qv; (24)

with a2
1 ¼ 1þ g1Na

2
1kbK , which is independent of turgor pressure.

Nonlinear capacitance

Similar to the derivation of Eq. 21, nonlinear capacitance is given by Re

[Nqc/v]. Now that c given by Eq. 24, nonlinear capacitance C1nl of the

1D model is expressed by

C1nl ¼ Re

"
g1Nq

2

a2
1 � u2 þ iu=uh

#
(25)

which can take negative values near resonance frequency (21).
Correspondence between the two models

The charge transfer q is identical in the two models. The density n of the

membrane model is related to N by n ¼ N/(2prL0). The relationship be-

tween the mechanical factors can be obtained by comparing Eq. 22a with

Eq. 8a. These two equations, together with Eq. 2, lead to the expression

of unitary length change a1

a1 ¼ A

4prk
(26)

Power output and amplifier gain

The analysis above shows that the membrane model and the 1D model

lead to similar equations for c. The relation between z and c is the same

for both cases because a1kN/(k þ K) ¼ An/(k þ Ke). The difference be-

tween the two models originates only from g and a2, which, respectively,

differ from their counterparts g1 and a2
1 (Table 2). For this reason, the

expression for the 1D model will be used in the following with separate

definitions for g and a2 for the membrane model and their counterparts

g1 and a2
1 for the 1D model.
TABLE 2 Correspondence of Parameters in the Membrane

Model and in the 1D Model

1D Model Membrane Model

a1 A/(4prk)

k 2prk/L0
N 2prL0n

DG1 DG

a2
1 ¼ 1þ g1Na

2
1k

bK a2 ¼ 1 þ gnðA2 bK þ 4a2Þ/(2k)
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Power output

Under physiological conditions, energy output from an OHC depends on

the receptor potential v, which is generated by the transducer current eli-

cited by a relative change br in the hair bundle resistance. This potential de-

pends on the intrinsic circuit property of the cell as well as charge

movement due to changes in c, which can be expressed by (20)

v ¼ �i0br þ iuNqc

sþ iuC0

; (27)

where i0 is the steady state current, s the conductance of the basolateral

membrane, and C0 the structural membrane capacitance of the hair cell.

The combination of Eqs. 19 and 27 can be written down in the form"
�
�
u

ur

	2

þ iu

�
1

uh

þ gNq2

sþ iuC0

	
þa2

#
c ¼ gi0qbr

sþ iuC0

(28)

For relatively high frequency, at which ionic currents are overwhelmed

by displacement current uC0, we obtain

c ¼ gi0qbr
iuC0

� 1

�u2 þ iu
�
uh þ a2 þ z

; (29)

with z ¼ gNq2/C0.

Now, recall that axial displacement z is related to c with Eq. 20b. Energy

output from an OHC has two components. One is elastic energy, (1/2)kz2

per half cycle, which is recovered at the end of a cycle. The other is dissi-

pative energy, (1/2)hujzj2 per half cycle, which results in power output W,

which is given by

WðuÞ ¼ hu2

2p



 z

2

¼ h

2p

�
k

k þ K

	2
1

C2
0



 ga1Nqi0br
�u2 þ iu

�
uh þ a2 þ z



2 (30)

Here, the factor k/(k þ K) is due to impedance matching. The factors a2

and z introduce turgor pressure dependence. C0, the structural membrane

capacitance, should increase with increasing turgor pressure. This issue

will be examined later in Results and Discussion.

Power generation W(u)for the membrane model is closely related to its

counterpart W1(u)for the 1D model (20,21). The only difference is from

the expressions of free energy in the Boltzmann function, resulting in

choosing the set g and a2 for the membrane model or g1 and a2
1 for the

1D model. Although the membrane model is sensitive to turgor pressure,

the 1D model is not.

Amplifier gain

The power gain G of an amplifier is the ratio of output power W(u) against

input power Win(u), where Wout is already expressed by Eq. 30 for a given

value of br , the relative change in the apical membrane resistance due to hair

bundle stimulation.

A relative change br in resistance can be associated with a displacement x

of hair bundle tip with br ¼ bgx, where bg is the sensitivity of the hair bundle.

Because the tips of hair bundles are embedded in the tectorial membrane,

the shear between the reticular lamina and the tectorial membrane can

also be represented by x. If we can assume that the shear of the subtectorial

space x is proportional to the displacement z of the displacement of OHC
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cell body, we can put x¼ lz, where l is a constant. These relationships lead

to x ¼ br=ðlbgÞ and
WinðuÞ ¼ hu2

2p





 brlbg




 2 (31)

Here, we note that the drag coefficient h consists of two components. One

is associated with the movement around the cell that is needed to stimulate

the cell. Another is associated with the movement of the hair bundle, for

which gating of the transducer channel makes the dominant contribution

to drag (36). The drag coefficient h is the same for W(u)and Win(u) for a

given mode of the movement.

The power gain G(u) can then be expressed by

GðuÞ ¼ 2pðlbgÞ2
hu2

� WðuÞbr2 (32a)

1
�

k
	2�

lbg 	2 
 ga Nqi 

¼
u2

r k þ K uC0


 1 0

�u2 þ iu
�
uh þ a2 þ z


2
(32b)

Equation 32b shows that power gain G(u) is a product of two factors.

One part depends on the reduced frequency u (¼ u/ur). The other depends

on the mechanical resonance frequency ur. For a given value of ur, the con-

dition G(u)¼ 1 may not be satisfied if the mechanical resonance frequency

ur is too high.

The limiting frequency u‘, which satisfies Gðu‘Þ ¼ 1, is of special inter-

est because it shows the frequency range in which OHCs can be effective. It

has been shown for the 1D model that the frequency u‘ is somewhat higher

than the corresponding resonance frequency ur;‘ (21).

Amplifier gain at a given location can be related to the limiting frequency

u‘. Let the mechanical resonance frequency at location 2 be ur2. Then, the

amplifier gain G(u2) at that location can be expressed by Eq. 32b, with ur

replaced by ur2 and u as u2/ur2 instead of u‘=ur;‘.

Then, we have G(u2) ¼ ður;‘ =ur2Þ2 if h2/ur2 ¼ h‘/ur, where u2 is the

best frequency at location 2. h2 and h‘ are, respectively, the drag coeffi-

cients of location 2 and at the location of the limiting frequency. If location

2 is more apical, ur2 < ur;‘, the drag coefficient should satisfy h2 % h‘
because the subtectorial gap, which makes a significant contribution to

the drag coefficient, is wider for a more apical location. This condition

makes the resonance peak sharper at the location. For this reason, the ampli-

fier gain at best frequency u2 satisfies G(u2) > ður;‘=ur2Þ2.
Inertia-free condition

In the absence of the inertia term, the power output turns into
FIGURE 2 Nonlinear capacitance at low frequency. The volume strain 3v is

0 (dotted, black), 0.01 (dashed, blue), and 0.1 (red). (C) Contour plot of peak vo

strain 3v, which represents static turgor pressure. Voltage shifts are color coded (

letters in the plot. To see this figure in color, go online.
WðuÞ ¼ hk2

2pðk þ KÞ2C2
0

� ðga1Nqi0brÞ2
ðu=uhÞ2 þ ða2 þ zÞ2; (33)

which is a monotonically decreasing function of the frequency u. As Eq.

32a indicates, the power gain G(u)is a steeply decreasing function of the

frequency (1/u2 at low frequencies and 1/u4 at high frequencies).

Near resonance

For the system with inertia, the power output has a peak

WðmaxÞ z
gzða1Ni0brÞ2u4

h

a2 þ z
� hk2

2pðk þ KÞ2C0

; (34)

at u2 ¼ a2 þ z� 1=ð2u2
hÞ. Because a2 > 1, such a peak exists if uh < 1.

However, power production W is a decreasing function of the frequency u

for overdamped systems, in which uh is large.

These equations for power production are essentially the same as those

for the 1D model that has been studied earlier (20,21). The difference is

in the definition of a2 and z even though these factors are similar.
RESULTS AND DISCUSSION

Numerical examination

The membrane model and the 1D model lead to parallel ex-
pressions for mechanical and electrical displacements,
which in turn lead to nonlinear capacitance and power
output. The difference in the two stems from the difference
in DG and DG1. Because the results of the 1D model have
been elaborated (21), our focus is whether or not the mem-
brane model leads to different results, using a set of param-
eter values that have been experimentally determined.

Nonlinear capacitance and factor g

The operating point factor g, which contributes to a2 and z,
is affected by both turgor pressure and external elastic load
through DG (see Eq. 10). This sensitivity is reflected in
nonlinear capacitance in the low frequency limit (Fig. 2).

Increasing external elastic load broadens the voltage depen-
dence aswell as shifts the peak in the positive direction (Fig. 2,
A and B). An increase in turgor pressure, represented by 3v,
0 for (A) and 0.10 for (B). Traces represent elastic load bK (¼ K/(k þ K)):

ltage shift is shown. The abscissa represents bK . The ordinate axis is volume

blue: negative, red: positive), and the values (in mV) are shown in boldface
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shifts the peak voltage of nonlinear capacitance in the positive
direction. This effect of turgor pressure is consistent with
earlier studies, both theoretical (2,31) and experimental
(2,37,38). In addition, turgor pressure increases the sensitivity
of nonlinear capacitance on the elastic load in both shifting the
peak as well as broadening of the dependence (Fig. 2 B). A
contour plot of peak voltage shift summarizes the dependence
on both turgor pressure and elastic load.

Power output

The power output of an OHC has been described using the
1D model (20,21). Here, we focus on the issue as to how
the predictions of the membrane model compare with those
of the 1D model for the given set of the parameters.

Inertia-free condition. Under the inertia-free condition,
power output is a monotonic decreasing function of fre-
quency as described by Eq. 33. The zero-frequency asymp-
totes are gm/(a

2
m þ zm) for the membrane model and g1/

(a2
1 þ z1) for the 1D model. The ratio of these zero-fre-

quency asymptotes is plotted in Fig. 3 A.
For high frequencies, the power output declines propor-

tionally to (1/u)2. The coefficients are proportional to g2.
The ratio of the coefficient for the membrane model to
that for the 1D model is plotted in Fig. 3 B.

These ratios are very close to unity near K ¼ k (blue
traces) and deviate significantly for larger elastic load at
both ends of the membrane potentials. However, these devi-
ations are not significant near the resting level of the mem-
brane potential (Fig. 3).

The analysis based on the 1D model indicates that the
optimal elastic load K to for counteracting viscous drag is
K z k for physiological operating point near �50 mV (20).

The comparison shows that the power output of the mem-
brane model is similar to that of the 1D model in the phys-
iological membrane potential range. Outside of this voltage
range, the membrane model predicts smaller power output
than the 1D model. This smaller output is also dependent
on the elastic load.
Near resonance

For the 1D model, nonlinear capacitance is negative near
resonance frequency (21) and can make the total membrane
128 Biophysical Journal 120, 122–132, January 5, 2021
capacitance negative (blue dashed traces in Fig. 4 A). The
frequency of maximal power output (blue dashed traces in
Fig. 4 B) is close to the frequency of zero capacitance in
such cases (blue traces in Fig. 4 C).

The membrane model predicts a similar relationship be-
tween the membrane capacitance and power output (red
traces in Fig. 4, A–C are for 3v ¼ 0.065). Power output pre-
dicted by the membrane model is slightly smaller than that
of the 1D model for small load. However, the membrane
model predicts larger power output for large load K
(Fig. 4 D).

The difference between the two stems from the functional
forms of DG (Eq. 10) and DG1 (Eq. 23). The second term in
DG has factors that do not exist in DG1. These factors shift
the transition point even when bK is small.

The ratio W/W1 of power output predicted by the mem-
brane model to that of the 1D model depends on both turgor
pressure and the elastic load (Fig. 4, E and F). The ratio is
larger than unity for 3v z 0.05. For both small and large
values of 3v, the ratio decreases with larger load (Fig. 4 E).

For every fixed value of the elastic load, the power output
ratio has a broad maximum (Fig. 4 F). The dependence on
turgor pressure increases as elastic load increases. The ratio
W/W1 is unity or higher in the range 0.04 < 3v < 0.07. It is
larger for larger loads (up to 1.07 for bK ¼ 0.8). The ratio is
lower as load increases outside of this optimal range.
Performance of OHCs

For the 1D model, estimated power output of an OHC is be-
tween 0.1 and 10 fW near resonance frequency (21). The
effectiveness of OHCs under in vivo conditions was esti-
mated by evaluating a limiting frequency at which the power
output of the OHC was equal to the viscous loss, assuming
that the major contribution is from the gap between the tec-
torial membrane and the reticular lamina (25,39,40). This
frequency is constrained by two factors, resonance fre-
quency and impedance matching; higher resonance fre-
quency requires stiffer elastic load, which leads to poorer
impedance matching for power transfer. This evaluation
led to the limit of �10 kHz if OHC is directly associated
with the motion of the basilar membrane (21). To support
higher frequencies, OHCs need to be associated to smaller
FIGURE 3 Ratio of coefficients for power output

of this membrane model to those of the 1D model.

(A) The ratio of power output of the membrane

model to that of the 1Dmodel at the zero-frequency

asymptote is shown. (B) The ratio at high fre-

quencies is shown. Traces correspond to bK ¼ 1/

11 (dotted), 1/5 (short dashes), 1/3 (medium

dashes), 1/2 (long dashes), and 2/3 (full line). To

see this figure in color, go online.
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elastic load and smaller mass, requiring multiple modes of
motion in the organ of Corti (21). The slightly larger
(�5%) power output predicted by the membrane model
leads to a slightly higher limiting frequency.
The role of turgor pressure

The predicted dependence of power output of OHC on
turgor pressure (Fig. 4 D) raises a number of interesting
questions. What is the range of turgor pressure in vivo?
How much turgor pressure can change? Can it function as
a control parameter of the cochlear function?

Power output has a plateau with respect to 3v at about 3v¼
0.05 (Fig. 4 F), which corresponds to a static axial strain of
3z¼�0.018 under load-free conditions. This strain is�36%
of the maximal amplitude of electromotility (5% of the cell
length). The corresponding turgor pressure is 0.14 kPa. It is
probable that the physiological turgor pressure could be
lower than this value, as is often the case for biological func-
tions. Such an operating condition allows gain control by the
parameters.

However, turgor pressure is not a simple control param-
eter of power output because changes in turgor pressure
accompany shifts of the operating voltage (see, e.g.,
Fig. 2), even though its effect on the maximal power output
could be as large as 50% for large elastic load (Fig. 4 F).
Validity of the cylindrical model

It was assumed in the beginning that the cylindrical shape of
the cell is maintained as the cell is driven by changes in the
membrane potential and undergoes deformation. The conser-
vation of the cylindrical shape of the cell during motion of the
OHC requires that the elastic force of the membrane exceeds
the inertial force of the internal fluid. Let x be the amplitude
of the end-to-end displacement of a cylindrical cell of radius r
and length L. This condition can be expressed by

2prk
x

L
[ rpr2xu2x; (35)

where k is the elastic modulus of the cell (in the axial direc-
tion), r the density of the internal fluid, and u the angular
frequency. The inequality can be expressed by defining a
frequency ubal, at which these two factors are balanced, as

u � ubalh

ffiffiffiffiffiffiffiffiffiffi
2k

rrxL

s
(36)

This expression is intuitive in that a smaller displacement,
a decrease in cellular dimension, and an increase in the
elastic modulus favor the elastic force over the inertial force.

The experimentally obtained value for 2prk is 510 nN per
unit strain, and it is reasonable to use the density of water
(103 kg/m3) for the density r. The radius r is 5 mm and
the length L 10 mm for a basal cell. If we assume the ampli-
tude x is 1 nm, an approximate magnitude under in vivo con-
dition, the limit can be expressed by the linear frequency

fbal ¼ 4 � 106Hz (37)

�40 times higher than �100 kHz for high frequency mam-
mals such as bats and dolphins. The condition is even more
favorable for more apical cells because fbal decreases with
regard to the square root of 1/L, whereas the best frequency
decreases much more steeply.

This means we can reasonably assume that relative mo-
tion of the internal fluid against the plasma membrane can
be ignored and that the main mode of cell deformation is
elongation and contraction while keeping the cylindrical
shape.
The inertia term

The derivation of the equation of motion (Eq. 17) may not
appear legitimate in that it introduces the inertia term to a
stochastic equation. However, it turns out to be consistent
with a standard expression for the admittance of a piezoelec-
tric system.

The standard expression for the admittance Ype of a piezo-
electric resonator can be (41)

YpeðuÞ ¼ iuC0 þ 1

Rþ i
�
uLp � 1

��
uCp

��; (38)

using an equivalent electric circuit with inductance Lp and
resistance R. That implies the correspondence to mechanical
resonance system u2

r ¼ 1/(CpLp) and uh ¼ 1/(RCp), leading
to

YpeðuÞ ¼ iuC0 þ iCp

iu
�
uh þ 1� ðu=urÞ2

(39)

Equation 39 is equivalent to Eq. 19 because Ynl ¼ iuNqc,
and the zero-frequency limit indicates Cp ¼ gnq2 and a¼ 1,
which corresponds to K ¼ 0 because the external spring
does not exist for the piezoelectric element.

This comparison also illustrates a limit of validity for the
equation of motion (Eq. 14). Although Eq. 39 for standard
piezoelectricity does not depend on the operating point,
Eq. 19 for OHC does through the linearization near the
equilibrium condition though the operating point factor g
(¼ bhCið1 � hCiÞÞ. The equation of motion Eq. 14 is valid
only within a small range of the membrane potential, in
which linearization can be justified.
Turgor pressure dependence of C0

Even though the ratio W/W1 evaluated is independent of C0,
turgor pressure dependence of C0 is important for power
Biophysical Journal 120, 122–132, January 5, 2021 129



FIGURE 4 The membrane capacitance and the

power output of an OHC. (A) The membrane

capacitance is plotted against the reduced fre-

quency u/ur. The set of plots is generated by

increasing the external elastic load K. The values

of K correspond to 0.1k, 0.5k, k, and 2k (from the

left to right). Solid red: membrane model. Dashed

blue: 1D model. (B) Power output function is

plotted against frequency. The set of plots are

generated by increasing K in a manner similar to

(A). (C) Frequency of maximal power output

against the frequency of zero membrane capaci-

tance is shown. The value of K corresponds to,

from left to right, 0.1k, 0.25k, 0.5k, k, and 2k.

The broken black line indicates equal frequency.

(D) Power output based on the membrane model

(W: solid red circles) and on the 1D model (W1:

open blue circles) is plotted against bK (¼ K/(k þ
K)). W0 ¼ h(a1Nqi0br)2/(2p C2

0). (E and F) Ratio

of power output of the membrane model to that

of the 1D model is shown. (E) Dependence on

the elastic load bK is given. The numbers in the

ascending order correspond to 3v ¼ 0 (labeled 0,

black), 0.03 (3, black), 0.05 (5, red), 0.08 (8,

blue), and 0.1 (9, blue). (F) Dependence on the vol-

ume strain 3v is shown. bK ¼ 0.1 (solid black cir-

cles), 0.5 (solid red squares), 0.67 (open green

upside-down triangles), and 0.8 (open blue trian-

gles). In (A)–(D), 3v ¼ 0.065. The drag factor uh/

ur is assumed to be 5 at bK ¼ 0. To see this figure

in color, go online.

Iwasa
production W. To my knowledge, experimental data are un-
available, presumably because of the technical difficulty in
subtracting voltage-dependent nonlinear components from
the total membrane capacitance.

The cylindrical model (Fig. 1 B) predicts, for our set of
values for elastic moduli, the ratio 3s/ 3v of surface strain to
volume strain is�0.5 (see Appendix D in the SupportingMa-
terials and Methods). If we assume that membrane thickness
decreases with an area increase so that the membrane volume
is held constant, the relative increase of C0 is twice the area
increase. It is similar to the increase of 3v. Thus, for a small
change of volume strain D 3v, the resulting change DW in po-
wer production can be expressed as DW/W z �2D 3v.

It is likely that OHCs have some turgor pressure to main-
tain their shape as well as their efficiency in power produc-
tion. If we could assume that the resting value of 3v is 0.05,
power output at 3v ¼ 0.1 is 10% lower and at 3v ¼ 0 is 10%
higher than the standard value as evaluated in an earlier
section.
Drag coefficient

Drag is critical for power balance. It has three sources. One
is the shear between the tectorial membrane and the reticular
130 Biophysical Journal 120, 122–132, January 5, 2021
lamina (21,39,42). Another is the rest of the organ of Corti
and the interior of the tectorial membrane because of their
deformability (43). This treatment ignores this component
because it is hard to evaluate. The third source is gating of
the transducer channel in the hair bundle (36). The issue
of drag within an OHC and at its outside surface is discussed
in Appendices B and C in the Supporting Materials and
Methods.

The drag coefficient due to the shear between the tecto-
rial membrane and the reticular lamina is 160 nNs/m per
OHC (21). The drag coefficient of the frog hair bundle is
340 nNs/m for gating of nearly all channels in the bundle
(36). It would be reasonable to assume that for low stim-
ulation intensity, the contribution of channel gating to the
drag coefficient is less than 20 nNs/m, smaller than the
gap drag, even though experimental values are unavailable
for an OHC hair bundle.
CONCLUSIONS

The membrane model predicts nonlinear capacitance, cell
displacement, and power output of OHCs relevant to in vivo
conditions. In addition, these predictions are testable by
in vitro experiments.
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Nonlinear capacitance is sensitive to both turgor pressure
and external elastic load. An increased elastic load reduces
the peak height and broadens the voltage dependence of
nonlinear capacitance. The peak voltage shifts in the posi-
tive direction with increasing turgor pressure and elastic
load. That is intuitive because increasing internal pressure
positively shifts the capacitance peak.

Power output depends on turgor pressure. The optimal
power output is expected at 3v �0.06. Under this condition,
for bK R 0.5, the maximal power output is at least 5% higher
than the estimate based on the 1D model. However, power
output is lower outside of the optimal range of turgor pres-
sure, particularly with larger elastic load.

The membrane model confirms the main predictions of
the 1D model; a single mode of vibration of the organ of
Corti can be supported up to �10 kHz but, to cover the
entire auditory range, cannot be supported without multiple
modes of motion in the cochlear partition (21). This predic-
tion appears consistent with recent observations with optical
techniques in that the organ of Corti shows multiple modes
of motion (44–46).
APPENDIX A: DERIVATIONS OF eZ AND DG

The constitutive equations are given by Eq. 5:

d1εz þ gεc � ðazd1 þ acgÞnC ¼ fz þ 1

2
rP;

gεz þ d2εc � ðazgþ acd2ÞnC ¼ rP:

For a cylindrical cell of length L and radius r, the cell volume is given by

V ¼ pr2L. For small length strains, 3z in the axial direction and 3c in the

circumferential direction, the volume strain 3v can be expressed by

εv ¼ εz þ 2εc (A1)

By eliminating the circumferential strain 3c from these equations, we

obtain

ð2d1 � gÞεz þ gεv � 2ðazd1 þ acgÞnC ¼ 2fz þ rP (A2a)

and�
g� d2

2

	
εz þ d2

2
εv � ðazgþ acd2ÞnC ¼ rP (A2b)

By eliminating rP from Eq. A2, an expression for 3z can be obtained.

Then, by replacing 3z in Eq. A2b with this expression, we obtain an expres-

sion for rP. They are

2kεz ¼ � AnCþ mεv þ 2fz (A3a)

and

2krP ¼ � 4anCþ 4εv � 2mfz (A3b)

with shorthand notations
A ¼ �naz þ 2mac;m ¼ d2=2� g;
a ¼ �ðaz þ 2acÞ; n ¼ 2d1 � g; and
4 ¼ d1d2 � g2; k ¼ d1 þ d2

�
4� g:

(A4)

Notice here that the parameters A and a are defined such that they are

positive. In the absence of the motile elements in the membrane, Eq. A3a

is reduced to fz ¼ �k 3z. This implies that k is the axial elastic modulus.

See Eqs. 2 and 3.

In the presence of external elastic load, fz ¼ �Ke 3z. Then, Eq. A3a turns

into

2ðkþKeÞεz ¼ � AnCþ mεv; (A5)

where bK ¼ Ke/(k þ Ke). By substituting fz in Eq. A3b with �Ke 3z using

Eq. A6, we obtain

2krP ¼ � �
mAbK þ4a

�
nCþ �

m2 bK þ4
�
εv (A6)

Notice that Eq. A6 is the same as Eq. 7 in the main text.

With the aid of Eq. A6, the axial stress fz can be expressed as

fz ¼ 1

2
bKðAnC�mεvÞ (A7)

The free energy DG of state C referenced from state E is given by

DG ¼ � qðV�V0Þ � azfz � ðac þ az = 2ÞrP (A8)

where qV0 is a constant term. Because q < 0 and ac þ az/2 < 0, both

depolarization and increased turgor pressure lead to a decrease of state C.

By substituting rP and fz in Eq. A8 with Eqs. A6 and A7, respectively,

we obtain

DG ¼ � qðV�V0Þ þ 1

4k

�
� �

A2 bK þ4a2
�
nC� �

mAbK þ4a
�
εv

�
; (A9)

which is Eq. 11 in the main text.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2020.11.017.
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