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Objective: Genetic studies on ankylosing spondylitis (AS) have identified more than 100
pathogenic genes. Building a bridge between these genes and biologically targeted
therapies is the current research hotspot.

Methods: We integrated single-cell assaying transposase-accessible chromatin
sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) to explore the
key genes and related mechanisms associated with AS pathogenesis.

Results:We identified 18 cell types in peripheral mononuclear cells from patients with AS
and normal controls and summarized the cell-type-specific abnormal genes by scRNA-
seq. Interestingly, we found that the pathogenic gene NFKB involved in AS progression
originated from CD8+ T cells. Moreover, we observed an abnormal tumor TNF pathway
mediated by abnormal expression of TNF, NFKB, FOS, JUN, and JUNB, and scATAC-
seq results confirmed the abnormal accessible binding sites of transcriptional factors
FOS, JUN, and JUNB. The final magnetic bead sorting and quantitative real-time PCR(RT-
qPCR) confirmed that NFKB, FOS, JUN, and JUNB in CD8+ T cells differed in the AS group.

Conclusions: Our results revealed a possible mechanism by which NFKB abnormally
regulates FOS, JUN, and JUNB and drives AS progression, providing a novel perspective
from a single cell point of view in AS.

Keywords: ankylosing spondylitis, single-cell RNA sequencing, single-cell assaying transposase accessible
chromatin sequencing, NFkB, TNF signaling pathway
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INTRODUCTION

Ankylosing spondylitis (AS) is an immune-mediated
spondyloarthropathy (1). AS is difficult to cure and requires
lifelong treatment, and causes a decline in the quality of life (2, 3).
AS genetics has made exciting progress by discovering more than
100 genetic variants that influence disease risk (4–6). However,
these genetic research results are still difficult to apply to the
targeted therapy of AS (7). The problem of how to translate
genetics into new biology and drug targets remains to be
resolved. The first step in solving this problem is to determine
the relevant cell type (s) in which causal genes exhibit their
function(s). Next, we need to determine how causal genes play a
role in the cell environment.

Single-cell high-throughput technology allows scientific
research to enter the single-cell era at the population level (8).
Single-cell RNA sequencing (scRNA-seq) allows researchers to
capture the transcription status of each cell (9), while assaying
transposase-accessible chromatin in single-cell sequencing
(scATAC-seq) can reveal biological processes through the
degree of chromatin openness (10). Combining scRNA-seq
with scATAC-seq allows researchers to identity pathogenic
genes and their associated cell types (8, 11). More importantly,
single-cell technology will allow us to study the cellular
background of the pathogenesis of disease more rigorously and
validate therapeutic targets functionally (12).

The human blood immune system plays a vital role in the
progression of autoimmune diseases. Peripheral blood
mononuclear cells (PBMCs) are composed of various immune
cells (13) that participate in the progression of various immune
activities and the occurrence of inflammatory reactions. AS is a
polygenic genetic disease caused by genetic and environmental
factors (14). Immune cells play an crucial role in pathogenesis
(15). Our study provides a high-resolution transcriptional and
chromatin accessibility map of AS causal genes by combining
scATAC-seq and scRNA-seq analysis, which vividly shows the
process of causal genes participating in AS and the detailed
functional interactions between immune cells. A study on the
scRNA-seq of AS’s PBMCs has been reported previously (16),
and previous research has focused on monocytes and natural
killer (NK) cells. Our study focused on how T cells participate in
the pathogenesis of AS. This will enrich the data of AS single-cell
research and provide another perspective for understanding the
pathogenesis of AS. Moreover, it will provide a more intuitive
and novel perspective for transforming AS genetic results into
drug-targeted therapy.
RESULTS

Cell−Type−Specific Clustering
by scRNA-Seq
To obtain single-cell transcriptional profiles of AS, we isolated
and re-clustered the mononuclear cells from the peripheral blood
of six AS patients with different disease courses and disease
severity. Single-cell transcriptional profiles of the NC group
Frontiers in Immunology | www.frontiersin.org 2
paired with AS were also obtained (Figure 1A). For the raw
sequence data, we used Cell Ranger software to obtain the gene
expression matrix and used Seurat software (11) for further
analysis. After quality filtering, 16,618 cells were considered to
be high-quality cells. Of these, 7,665 cells (46.12%) from the AS-
PBMC and 8,953 cells (53.88%) (Supplementary Table 1).
Unsupervised clustering analysis using the Seurat software
identified 18 distinct cell types from PBMCs in AS-PBMC and
NC-PBMC libraries after scRNA-seq analysis. These identified
cell clusters based on marker genes could be readily assigned to
known cell lineages. In detail, there were naïve CD8+T cells
(Cluster 0), NK-1 cells (Cluster 2, 6 and 17), Treg cells
(regulatory cells) (Cluster 3), naïve CD4+T cells (Cluster 4 and
15), MAIT T cells (Cluster 5), CD8+T cells (Cluster 7), memory
CD4+T cells (Cluster 8), monocytes (Cluster 9), CD4+T cells
(Cluster 1 and 10), memory B cells (Cluster 11 and 20), CD14+
monocytes (Cluster 12), naïve B cells (Cluster 13),
megakaryocyte progenitor (Cluster 14), macrophages (Cluster
16), NK-2 (Cluster 18), PDC (plasmacytoid dendritic cells)
(Cluster 19), monocyte-derived dendritic cells (Cluster 21), and
early progenitor/endothelial cells (Cluster 22), as shown in
Figure 1B. The mark used to identify the cell type is shown in
the figure with a heatmap. Of the mature blood cell types, we
identified CD8+T cells (expressing CD8+, CD8A+,and CD 8B+),
naïve CD8+ T cells (expressing CD8+, CD8A+, CD8B+, GZMK+,
and TNFSF8+), CD4+T cells (expressing CD4+), naïve CD4+T
cells (expressing CD4+ and SELL+), memory CD4+T cells
(expressing CD4+, and IL7R+), etc. (Figures 2A, B, and
Supplementary Table 2).

Interestingly, we found a difference in the cell type
frequencies between AS and NC, so we performed a statistical
analysis to compare cell frequencies. The percentage of different
cell types in AS-PBMC and NC-PBMC is shown in Figure 1C.
Cell clusters that were significantly over-represented in the AS-
PBMCs included naïve CD8+T cells, CD8+T cells, memory CD4
+T cells, and memory B cells. Among them, the difference in the
proportion of the AS group in CD8+T cells and naive CD8+ T
cells was particularly significant at 61% and 62%, respectively.
Cell clusters significantly over-represented in the NC-PBMCs
included MAIT T cells, CD4+T cells, mono DCs, naïve B cells,
macrophages, and NK-2. There was no significant difference in
the distribution of the remaining clusters between the two
groups. Therefore, scRNA-seq analysis uncovered the
heterogeneity of cell clusters in AS-PBMCs. In terms of cell
ratio, the overexpression of CD8+ T cells and naive CD8+ T cells
in AS may suggest that CD8+ T cells play an important role in
the development of AS.

Bioinformatics Analysis of AS-PBMC and
NC-PBMC Libraries Reveal the Gene
Regulatory Network by scRNA-Seq
To identify the key genes involved in the pathology of AS, we
identified differentially expressed genes (DEGs) in AS compared
with controls in each cell type. In our study, there were a total of
279 DEGs between different cell clusters in the AS and control
groups. Further Gene Ontology (GO) and Kyoto Encyclopedia of
November 2021 | Volume 12 | Article 760381
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Genes and Genomes (KEGG) analyses were performed for each
cell type, and the functional enrichment results showed that most
of these DEGs were involved in the pathophysiological processes
related to immunity and calcium metabolism (Figure 2C and
Supplementary Figures 1, 2).

The GO analysis indicated that DEGs in CD8+ T cells were
related to biological regulation, regulation of biological processes,
and immune responses, and enriched 30 pathways in the KEGG
pathway enrichment analysis. The enriched pathways include
antigen processing and presentation, TNF signaling pathway,
and so on. Previous studies have reported that these signaling
pathways (17) are related to immune diseases and are directly
related to AS.

To date, dozens of pathogenic genes associated with AS
development have been identified. We used the meta-analysis
method to identify pathogenic genes related to AS pathogenesis
(4, 5, 18, 19). We overlapped these pathogenic genes with the
DEGs identified in each cell type in our study. As a result, we
determined the cell types related to these pathogenic genes based
on our single-cell transcriptome data (Figure 3A). Associating
Frontiers in Immunology | www.frontiersin.org 3
disease-causing genes with specific cell types allows us to have a
more three-dimensional and comprehensive understanding of
how these genes participate in the occurrence and development
of AS.

Locate the Most Relevant Cell Type
and Cell-Type-Specific Genes
for AS by scRNA-Seq
As shown in Figure 3B, NFKB differentially expressed between
AS and NC had the most significant statistical significance in
CD8+ T cells. Many studies have shown that increased
expression of NFKB is closely related to the pathogenesis of AS
(20–22), but the detailed mechanism remains unclear. In this
study, the proportion of CD8+ T cells in AS was significantly
increased, consistent with previous studies showing that CD8+ T
cells play a role in the progression of AS (23–28).

Our results showed that NFKB in CD8+ T cells participates in
11 signal pathways (Figures 4A, B), including the TNF signaling
pathway, apoptosis signaling pathway, and hepatitis B signaling
pathway. Interestingly, abnormal TNF signaling in CD8+ T cells
C

B

A

FIGURE 1 | Cell-type-specific clustering and analysis of human PBMCs according to ScRNA-seq. (A) Workflow of single-cell RNA-seq and single-cell ATAC-seq of
the PBMC of the patients with AS and normal controls (NC); (B) UMAP plots showing 23 leukocytic clusters corresponding to 18 cell types according to known cell
marker genes through SCRNA-seq; (C) Cell abundance in each cell type across the AS-PBMC and NC-PBMC libraries.
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has been widely reported to play a vital role in AS pathogenesis
(29–32). We found a series of differentially expressed genes in a
mutually regulated signal chain in the TNF signal pathway
(Figure 3C and Supplementary Figure 3). This group of genes
is distributed in both the upstream and downstream of the signal
pathway, regulating and influencing each other. This signal chain
includes TNF, NFKB, FOS, JUN, and JUNB. Notably, FOS, JUN,
JUNB are also transcription factors.
Frontiers in Immunology | www.frontiersin.org 4
Labeling scATAC-Seq Clusters With
scRNA-Seq Information
For the analysis and verification of this regulatory network with
genes and transcription factors, scATAC-seq analysis is a
suitable method. Our group members have already recruited
nine patients with AS and 12 healthy volunteers to perform
scATAC-seq analysis in published articles (33). To integrate the
data of scRNA-seq and scATAC-seq for correlation analysis and
CB

A

FIGURE 2 | Cell type identification and functional analysis of differential genes between the AS-PBMC and NC-PBMC. (A) UMAP plots of canonical cell markers
used to identify clusters, color-coded for expression levels. (B) Heatmap to show the expression levels of the selected gene markers of each cell type. (C) Pathway
enrichment analysis (KEGG) of significantly differential gens between the AS-PBMC and NC-PBMC libraries (p < 0.05). Heatmap expression is the result of Z-score
column-wise normalization. The P-value is represented by the color. All P values are less than 0.05. The redder the color, the smaller the P value, indicating that the
enrichment was more notable. The white color represents that DEGs of this cell type is not enriched in this signaling pathway.
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obtain further detailed information, we re-analyzed the original
scATAC-seq data. After quality control, we identified the clusters
and predicted cell types based on scRNA-seq. As shown in
Figure 4C, we annotated 12 cell types according to the known
cell marker genes. These included the following cell types: CD8+
T cells, B cells, monocytes, CD4+Treg cells, memory CD4+T
cells, macrophages, naive B cells, NK-T cells, MAIT T cells, naive
CD4+ T cells, and NK cells (Figure 4D).

Similarly, we found that the proportions in each cluster are
different. Statistical tests revealed significant differences among
the cell types. AS-PBMCs account for a larger proportion of
Frontiers in Immunology | www.frontiersin.org 5
some cell types, including CD8+T cells, B cells, monocytes,
memory CD4+T cells, macrophages, naïve B cells, and NK
cells. In AS-PBMCs, CD8+T cells account for 78%. This is
consistent with the scRNA-seq analysis results. This further
confirmed the heterogeneity of CD8+T cells in the AS-
PBMCs (Figure 4E).

Single-Cell Chromatin Accessibility
of CD8+ T Cell
A total of 1152 cells were detected in the CD8+ T cell cluster, of
which 904 cells were derived from AS-PBMCs, and the
C

B

A

FIGURE 3 | Relationship between pathogenic genes and specific cell types. (A) Heatmap representing the AS causal genes expression levels in the specific cell
type. The scale bar displays fold change values; Fold change value “0” is given for genes which are not DE, statistical significance was taken at P values of less than
0.05 (P < 0.05). and a fold-change criterion (FC>1.2); (B) Violin-box plots for NFKB expression level by cell type, compared to respective controls. The results for AS
are shown in red, and those for NC are in green; ***p < 0.001. (C) Violin plots comparing the expression of selected genes (TNF, NFKB, JUN, JUNB, FOS) in CD8+T
cells across AS and NC. The results for AS are shown in red, and those for NC are shown in green.
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remaining 248 cells were derived from NC-PBMC. There were
843 differentially expressed peaks in the CD8+T cells
(Figure 5A). With transcription factor motif analysis using
ArchR, we found that JUN, JUNB, and FOS binding sites had
differential accessibility in CD8+ T cells in the AS group. The
differential accessibility of these TF binding sites was considered
as crucial for the TNF signaling pathway. These TNF-NFKB
Frontiers in Immunology | www.frontiersin.org 6
signaling motifs were more enriched in CD8+T cells than in
other cell types in the AS group (Figures 5B–D). This further
illustrates that TNF-NFKB-FOS, JUN, and JUNB in CD8+ T cells
may participate in AS through the TNF signaling pathway.

Yu (33) in our research team used a different clustering
method (the method can be seen at: https://support.
10xgenomics.com/single-cellatac/sofware/pipelines/latest/
C

E

D

BA

FIGURE 4 | Single-cell analysis of CD8+T cell. (A) GO term analysis for biological processes of differentially differential genes between the AS-PBMC and NC-PBMC
scRNA-seq libraries in CD8 +T cells (p < 0.05); (B) KEGG pathway analysis of differentially differential genes between the AS-PBMC and NC-PBMC scRNA-seq
libraries in CD8 +T cells (p <0.05). The red border indicates the TNF signaling pathway; (C) A UMAP plot showing 12clusters through SCATAC-seq; (D) A UMAP
plot showing 12 leukocytic clusters corresponding to 12 cell types according to known cell marker genes through SCATAC-seq; (E) Cell abundance in clusters
across the AS-PBMC and NC-PBMC libraries.
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algorithms/overview) to analyze the scATAC sequencing
library from 12 normal controls (NCs) and nine patients with
AS. Among the seven different functional cell types, including
NK cells, monocytes, memory CD4+ T cells, CD8+ T cells, B
cells, and DCs, it was found that CD8+ T cells play an essential
Frontiers in Immunology | www.frontiersin.org 7
role in AS pathogenesis. In the data processing and analysis
conducted by Dr. Yu, they found in the TF motif analysis that
these motifs in CD8+ T cells of AS are more highly enriched
than those in CD8+ T cells of NC. This again verifies the
experimental results.
C D

B

A

FIGURE 5 | Single-cell ATAC analysis of CD8+T cell. (A) The heatmap shows the peaks that are specific for each cell type. (B) Different TF motifs in each cluster are
specific for each cell type (p < 0.05); The red border indicates the motif associated with genes FOS, JUN, and JUNB; (C) CD8+T cell specific motif highly enriched in
the peak; (D) FOS, JUN, and JUNB with differential accessibility between the AS-PBMC and NC-PBMC libraries across CD8+T cell. P values shown in this figure
were calculated with ArchR through the difference analysis feature and adjusted using the Benjamini–Hochberg correction for multiple tests.
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Validation of Key DEGs by
Immunomagnetic Bead Sorting and
Quantitative Real-Time Polymerase
Chain Reaction (RT-qPCR)
CD8+T cells were purified by magnetic bead cell sorting. We
further checked the expression of five genes in CD8+T cells
(TNF, NFKB, FOS, JUN, and JUNB). Four genes were confirmed
to be upregulated in AS with statistically significant differences:
NFKB, FOS, JUN, and JUNB (Figure 6). In the subsequent RT-
qPCR analysis of TNF, there was no statistically significant
difference between the CD8+ T cells of NC and AS (P=0.648).
Frontiers in Immunology | www.frontiersin.org 8
DISCUSSION AND CONCLUSIONS
AS is an inflammatory disease characterized by affecting the
sacroiliac joints and axial skeleton (14). At present, the mining of
AS pathogenic genes cannot be substituted into the cellular
environment to understand the pathogenic process. This affects
the development of targeted drugs. Traditional bulk RNA-seq
detects the average expression of genes frommultiple cells, which
naturally masks the signal of cell heterogeneity, especially for
some signals from rare cell subpopulations due to neutralization
(34). Meanwhile, scRNA-seq can detect such differences and
improve the resolution of gene expression. Thus, we used
FIGURE 6 | Relative expression of genes in CD8+ T cells involved in the TNF signaling pathway.
November 2021 | Volume 12 | Article 760381
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scRNA-seq coupled with meta-analysis to detect differential
expression of specific cell subsets in PBMCs, and infer specific
cell types corresponding to AS-causing genes by clustering
expression profiles. However, there are two limitations of this
approach that should be considered. First, some of the included
genes have not passed the functional verification, and more
functional experiments in the future are needed for verification.
Second, although these genes are pathogenic genes of AS, they are
not all directly involved in pathological processes in the PBMCs of
patients with AS. Therefore, the included genes need a larger sample
to vertify the universality and specificity.

AS is an autoimmune disease involving many types of immune
cells (35). Research on CD8+T cells is believed to mediate their
pathogenicity through several different mechanisms. Cytotoxic T
lymphocytes induce direct lysis of target cells. In addition, CD8
effector T cells secrete inflammatory cytokines, including TNF-a,
IFN-g, and IL-17. Furthermore, CD8+T cells support a chronic
immune response in patients with AS (36). We observed abnormal
expression of TNF, NFKB, FOS, JUN, and JUNB in CD8+ T cells,
and these genes were enriched in the TNF signaling pathway. The
abnormal TNF signaling pathway in CD8+T cells plays a role in the
pathogenesis of AS (37). The clinical application of anti-TNF
therapy has changed the treatment of chronic inflammatory
diseases, such as AS. However, not all patients are sensitive to
TNF inhibitors (TNFi) (38). TNFi is recommended as the first
biological treatment for AS and non-radiographic axial
spondyloarthritis (2). The reasons for the failure of TNFi therapy
need to be explained from a biological perspective.

Our scRNA-seq analysis and scATAC-seq analysis provide a
rich data source for discovering TNF, NFKB, FOS, JUN, and
JUNB genes that might play a role in CD8+ T cells in the TNF
signaling pathway. The final magnetic bead sorting and RT-
qPCR confirmed that NFKB, FOS, JUN, and JUNB in CD8+ T
cells differed in the AS group. Since TNF acts as an external
ligand in the TNF signaling pathway, we speculate that there may
be increased secretion of TNF from other cells for binding to the
TNFR receptor in CD8+ T cells, followed by the activation of the
TNF signaling pathway. NFKB, an important factor for inducing
the expression of many proteins, has been identified as a
promoter and enhancer of many genes. These genes expresses
cytokines, acute-phase response proteins, and cell adhesion
molecules, which enhance the immune response (39). As the
innate immune response center coordinator, NFKB is involved in
the occurrence and progression of many autoimmune diseases.
In this study,NFKB was specifically upregulated in the PBMCs of
the AS group. The corresponding upstream genes, TNF,
encoding cytokines and downstream transcription factors FOS,
JUN, and JUNB were also upregulated. Notably, ‘prop. test’ other
than ‘scProportion Test’was used for comparing cell type ratios.
The method of scProportion Test just appeared since 2021
(https://github.com/rpolicastro/scProportionTest) (40, 41). This
R library facilitates the analysis of the difference between the
proportions of cells in clusters between two scRNA-seq samples.
A permutation test is used to calculate the p-value for each
cluster, and a confidence interval for the magnitude difference is
returned via bootstrapping. There is also a function to generate a
Frontiers in Immunology | www.frontiersin.org 9
point range plot to display the results.Although prop. test focuses
more on obtaining the confidence interval of the probability
parameter, this method was the most suitable and most
recognized method for discrete data of cell ratio comparison
before 2021 (42–44).

Moreover, our scATAC-seq data confirmed the abnormal
accessibility of FOS, JUN, and JUNB, which is consistent with a
previous report (33). Interestingly, TNF, NFKB, FOS, JUN, and
JUNB can construct a signaling pathway with upstream and
downstream regulation. Notably, the FOS gene family encodes
leucine zipper proteins, which can dimerize with the Jun family
proteins to form a transcription factor complex AP-1 (45). AP-1
has been shown to be involved in inflammation and immune
responses (46). AP-1 directly participates in the pathogenesis of
AS downstream of the signaling pathway. Therefore, we can
speculate that NFKB can trigger abnormal TNF signaling
pathways by regulating FOS, JUN, and JUNB, thereby
promoting the development of AS. Our results emphasize that
NFKB acts as a regulator of the immune response process and
participates in the pathogenesis of AS. Our findings provide new
insights into the biology of the action of TNF blockers from an
etiological point of view. They can further provide relevant signal
transduction pathways for new biological therapies. Notably, AS
mainly affects the axial joints of the human body. Our research
on PBMCs in patients with AS may not display the exact
pathophysiological changes in the axial joints. Since AS is an
autoimmune disease, and the immune cells circulate in the body
through blood, research on PBMCs contributes to the
identification of markers for diagnosis and targeted therapy.
For example, a recent study (47) on PBMC of AS patients has
mentioned that granulocyte macrophage-colony stimulating
factor (GM-CSF) could be detected in plasma from 14/46
(30%) AS patients compared to 3/18 (17%) healthy controls,
and GM-CSF neutralization can be a potential novel therapeutic
approach for the treatment of AS.

In conclusion, we associate AS pathogenic genes with specific
cell types at single-cell high resolution. This provides a new
perspective for subsequent research on AS pathogenesis.
Furthermore, we suggest that NFKB regulating FOS, JUN, and
JUNB, and causing an abnormal TNF signaling pathway, may be
an important factor in the progression of AS. Therefore, the
development of specific inhibitors of these mutually regulated
genes and their protein products may lead to novel therapeutics
and create a new basis for the biological treatment of AS.
MATERIALS AND METHODS

Study Design
This study was approved by the Ethics Committee of Jinan
University and was conducted according to the principles of the
Declaration of Helsinki. All participants provided informed
consent and signed a consent form. Blood samples were
obtained from patients fulfilling the AS diagnosis according to
the modified New York criteria (48). AS disease activity was
assessed using the AS Disease Activity Score and C-reactive
November 2021 | Volume 12 | Article 760381
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protein (ASDAS-CRP) (49). The exclusion criteria included AS
along with other immune diseases, arthritis or systemic lupus
erythematosus; AIDS or other immunodeficiencies; using high-dose
(>1 mg/kg/day) glucocorticoids and other immunosuppressants;
and pregnancy. The blood samples of scRNA-seq from AS subjects
(n = 6, male/female = 6/0, mean age 27 ± 6 years) and healthy
controls (n = 6, male/female = 6/0, mean age 24 ± 3 years) were
recruited from outpatient clinics or medical staff at Shenzhen
People’s Hospital in 2019 (Shenzhen, China). The AS and NC
scATAC-seq samples were obtained from nine outpatients in the
rheumatology clinic and 12 healthy age- and sex-matched
volunteers in Shenzhen People’s Hospital in 2019. The
characteristics of the enrolled patients with AS and NCs are
shown in Supplementary Table 3.

Library Construction of
Single-Cell Libraries
After PBMC isolation, we used 10X Genomics (50) to establish
single-cell sequencing libraries. After the library was established,
a Bioanalyzer (Agilent) was used for quality control. The KAPA
Library Quantification Kit (Roche) was used to quantify the
high-quality library and submit it for sequencing. Libraries for
single-cell sequencing experiments were performed using the
HiSeq4000. The raw sequencing data were checked and initially
processed using Cell Ranger software (version 3.1.0).

ScRNA-Seq Data Processing
Raw sequencing data were processed with the Cell Ranger
pipeline (version 3.1.0) and mapped to the hg38 reference
genome to generate matrices of gene counts by cell barcodes,
as previously described. In brief, FASTQ files were aligned to the
hg38 genome reference, and transcriptomes with Cell Ranger
counts that used an aligner called STAR with default settings,
and aligned reads were filtered for valid cell barcodes and UMI to
generate filtered gene-barcode matrices. Then, unique molecular
identifier (UMI) count matrices were imported into R (version
4.0.2) and processed with the R package Seurat (version 3.2.0)
(11). We quantified the proportions of UMIs mapped to the
mitochondrial genome, and the data were filtered to include
genes detected in >5 cells, cells with 200–3000 detected genes,
and UMI with 1000–15000 and <10% mitochondrial genes.
Ultimately, we obtained 7,665 and 8,953 cells for further analysis.

For single-cell data analysis, ‘FindIntegrationAnchors’ and
‘IntegrateDatafunction’ were used to integrate two sample
datasets and obtain the log-normalized expression value. Then,
the ‘Scale Data’ function was used to scale the whole expression
data. To identify the variable genes, the ‘FindVariableFeatures’
function was used. Principal component analysis (PCA) of the
genes from these selected cells was conducted. The principal
components (PCs) used to partition the cells were selected using
JackStraw (1,000 replicates). The first 15 PCs were used to perform
UMAP analysis using the ‘RunUMAP’ and ‘FindNeighbors’
functions. Finally, we used the function ‘FindClusters’ that
implements the SNN (shared nearest neighbor) modularity
optimization-based clustering algorithm on 15 PCA components
with resolution 0.5 - 1.5, leading to 10-24 clusters, and a resolution
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of 1.2 was chosen for further analysis. The ‘FindAllMarkers’
function was used with the likelihood-ratio test for single-cell
gene expression to identify marker genes. We performed DEG
analysis by comparing each cluster between two groups of samples
using the Wilcoxon rank-sum test, and genes with 1.2-fold
changes and P values less than 0.05 were designated as significant
signatures. We use ‘prop. test’ in R/4.0.2 when comparing cell
type ratios. Bonferronis correction was used to correct the
p-value calculated by prop.test to reduce false positives. Statistical
significance was set at P <0.05. The basic metrics of scRNA-seq
are listed in Supplementary Table 1, and information related
to integrated quality control of scRNA-seq was shown in
Supplementary Figure 4.

ScATAC-Seq Data Processing
The original data of scATAC were obtained from previous
experimental results of our research group (33). Sequencing
data are available under the accession number GSE157595. We
performed single-cell chromatin accessibility analysis integrated
with scRNA-seq data using ArchR (51). The process was the
same as that of scRNA-seq. In simple terms, after obtaining the
original sequencing data, we used Cell Ranger ATAC (version
1.2.0) to compare with the Grch38 genome to generate sample-
specific peak results. Furthermore, we used the ArchR software
package in R software for further analysis and imported the
filtered fragments. To obtain better data quality, we filtered the
data using a minTSS of 4, minFrags of 1,000, and maxFrags of
100,000. In the end, we obtained 1,822 cells from NC-PBMCs
and 4,977 cells from AS-PBMCs. The average TSS scores of the
two samples were 12 and 15, respectively. For scATAC-seq data
dimensionality reduction, we chose the default dimensionality
reduction method ‘addIterativeLSI’ in the ArchR software
package and finally counted 30 dim for dimensionality
reduction. The software used Seurat’s method for clustering
and finally determined that the clustering resolution was 1.5, and
11 cell clusters were obtained. To perform cell-type annotation
more accurately, we used the ‘addGeneIntegrationMatrixfunction’
in the ArchR software package to assist annotation in predicting
clustering of scATAC-seq data; then, we identified MonoDC cells
based on atac data, which could not be identified when atac data
were individually identified. Finally, we obtained 12 clusters from
the ATAC data. For the difference analysis in the scATAC-seq data,
we used the default method in the ArchR software, and used 1.2-
Fold and p value <0.05. Two different peaks were selected for motif
enrichment analysis. One is the difference peak between the AS and
NC groups. The other is the cell-specific peak (marked peak) for
motif enrichment analysis. ScATAC-seq data processing included
genome alignment, peak analysis, clustering, and TF motif analysis.
For more analysis results of ScATAC data, please refer to the ArchR
official site (https://www.archrproject.com/bookdown/getting-
started-with-archr.html).

Locate Cell-Type-Specific Causal Genes
for AS by scRNA-Seq
We used a meta-analysis to identify genes related to the
pathogenesis of AS. This overlaps with the DEG obtained in
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this study to obtain cell-type-specific AS-causing genes. We
entered search terms in the following databases PubMed,
Cochrane Library, Embase, Web of Science, SpringerLink,
CNKI, Embase, Cochrane and clinical trial [“ankylosing
spondylitis” or “spondylitis, ankylosing”(MeSH) or “autoimmune”]
and [“genes” or “Differentially expressed gene” (MeSH)] (the last
search was updated on October 30, 2020) to identify relevant
studies. The inclusion criteria were as follows: (a) case-control
study; (b) study providing gene expression data; (c) study with
ankylosing spondylitis patients diagnosed based on the modified
New York criteria; and (d) further evidence that these DEGs
are indeed involved in immune-related physiological and
pathological processes. Two researchers evaluated the included
study independently, and the third was assigned to evaluate the
study with a large difference in scores. Quality assessment was
performed using the Newcastle-Ottawa Scale (NOS). Three
quality appraisal items were used in this meta-analysis, with
scores ranging from 0 to 9. Scores–0-3, 3-6, and 6-9 were defined
as low, moderate, and high quality, respectively. The final
data collection was confirmed by a check between the two
researchers. The odds ratios (ORs) and 95% confidence
intervals (95% CIs) were calculated using Review Manager
Version 5.1.6 (provided by the Cochrane Collaboration,
available at: https://www.cochrane.org/) and STATA Version
12.0 (Stata Corp, College Station, TX, USA). Between-study
variations and heterogeneities were estimated using the
Cochran Q-statistic (52); P ≤ 0.05, was considered to represent
statistically significant heterogeneity. Whenever a significant Q-
test (P ≤ 0.05) indicated heterogeneity, a random-effects model
was generated for meta-analysis. The CI was 95%. As a result, we
conducted a meta-analysis of all 11 cohorts to assess the AS-
related gene expression signatures. A total of 96 AS patients and
67 NCs were included in the sequencing data for differential gene
expression meta-analyses. In this study, we used the INMEX
(integrative meta-analysis of expression data) program (https://
www.networkanalyst.ca/) (53) to carry out the meta-analysis.
Meta-analysis showed that 107 DEGs in AS were statistically
significant and involved in the pathophysiological process of
AS. We overlapped these genes with the DEGs in our study.
Associating AS-causing genes with specific cell types allows
us to have a more three-dimensional and comprehensive
understanding of how these genes participate in the occurrence
and development of AS.

Construction of the AS Casual Gene-
Related Regulatory Network
Integration of scATAC-Seq and scRNA-Seq data used co-
clustering-based unsupervised transfer learning. According to
the related literature on AS pathogenic principles and the results
of GO and KEGG analysis of the differentially expressed genes of
each cluster, the disease-specific cell subgroups were selected,
and the candidate target genes were selected from the
differentially expressed pathogenic genes. Follow-up combined
with the results of scATAC to further map out how the selected
target genes participate in the pathogenesis of the AS
regulatory network.
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Validation of key DEGs Using
Immunomagnetic Bead
Sorting and RT-qPCR
To further verify the DEGs in our study, we recruited three AS
patients (male, mean age 24 ± 6 years, ASDAS-CRP>2.5) and
three healthy volunteers matched by age and sex in the
Department of Rheumatology, Shenzhen People’s Hospital, in
June 2021. CD8+ T cells were positively selected by magnetic
bead sorting with positive selection magnetic cell sorting
(MACS) immunobeads (Miltenyi Biotec Inc., Bergisch
Gladbach, Germany). RNA was extracted from CD8+ T cells
using RNAiso Plus (TAKARA, 9109), chloroform, and
isopropanol. Total RNA was reverse-transcribed into cDNA
using PrimeScript RT Master Mix (Takara, RR036A). Key
genes in our study, including TNF, NFKB, FOS, JUN, and
JUNB, were chosen for validation of results by RT-qPCR.

The primer sequences for the genes were as follows: NFKB
forward, TGCAGCAGACCAAGGAGATG, NFKB reverse, C
CAGTCACACATCCAGCTGTC; TNF forward, GACTGGAGTTGGA
CGACGTTC, TNF reverse, GAAGAGGACCTGGGAGTAGATG; JUN
forward, GAGAGCGGACCTTATGGCTAC, JUN reverse, GTGAGGAG
GTCCGAGTTCTTG; FOS forward, GGAGGGAGCTGACTGATACAC,
FOS reverse, AGCTGCCAGGATGACTCTAG; JUNB
forward, CCCTGGACGATCTGCACAAG, JUNB reverse,
GAGTAGCTGCTGAGGTTGGTG.

Statistical Analysis
All statistical tests were performed using R/4.0.2. Data are
presented as the mean ± SD of two independent experiments.
Means were compared using Welch’s t-test or unpaired t-test. A
P value < 0.05 was considered statistically significant.
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