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Abstract

Multidrug-resistant Vibrio parahaemolyticus has become a significant public health concern.

The development of effective drugs and vaccines against Vibrio parahaemolyticus is the current

research priority. Thus, we aimed to find out effective drug and vaccine targets using a compre-

hensive genome-based analysis. A total of 4822 proteins were screened from V. parahaemoly-

ticus proteome. Among 16 novel cytoplasmic proteins, ‘VIBPA Type II secretion system protein

L’ and ‘VIBPA Putative fimbrial protein Z’ were subjected to molecular docking with 350 human

metabolites, which revealed that Eliglustat, Simvastatin and Hydroxocobalamin were the top

drug molecules considering free binding energy. On the contrary, ‘Sensor histidine protein

kinase UhpB’ and ‘Flagellar hook-associated protein of 25 novel membrane proteins were sub-

jected to T-cell and B-cell epitope prediction, antigenicity testing, transmembrane topology

screening, allergenicity and toxicity assessment, population coverage analysis and molecular

docking analysis to generate the most immunogenic epitopes. Three subunit vaccines were

constructed by the combination of highly antigenic epitopes along with suitable adjuvant,

PADRE sequence and linkers. The designed vaccine constructs (V1, V2, V3) were analyzed

by their physiochemical properties and molecular docking with MHC molecules- results sug-

gested that the V1 is superior. Besides, the binding affinity of human TLR-1/2 heterodimer and

construct V1 could be biologically significant in the development of the vaccine repertoire. The

vaccine-receptor complex exhibited deformability at a minimum level that also strengthened

our prediction. The optimized codons of the designed construct was cloned into pET28a(+) vec-

tor of E. coli strain K12. However, the predicted drug molecules and vaccine constructs could

be further studied using model animals to combat V. parahaemolyticus associated infections.
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Introduction

Vibrio parahaemolyticus, a highly reported pathogenic bacteria of aquatic environment, has

emerged as the leading cause of seafood-associated gastroenteritis and a significanthazardfor

global aquaculture [1–3]. The overgrowing population, with increased purchasing power

worldwide has enhanced the demand for and export potential of seafood, resulting in the

steady expansion of the aquaculture industry [4]. However, the sector has continuously been

challenged by aquatic animal health problems, which is a significant constraint to the develop-

ment of this sector [5]. Besides, Multiple drug resistance (MDR) has been recognized as an

essential global threat issue to food safety [6]. The continuous and inappropriate use of antibi-

otics in the aquaculture industry favors the development of a variety of resistant isolates and

the dissemination of resistance genes within the bacterial population [7]. V. parahaemolyticus
has been reported to show multidrug resistance during aquaculture production [8], which

raised the concern about public health and economic threat of this bacterium [9].

Though V. parahaemolyticus was first isolated in 1952, reports demonstrated the recent

outbreaks of V. parahaemolyticus are more severe [10,11]. On the recent outbreak in the city

of Osaka (Japan), acute gastroenteritis was reported in 272 individuals, 20 of whom died [12].

To date, V. parahaemolyticus has been responsible for 20–30% of food poisoning cases in

Japan and sea foodborne diseases in many Asian countries [13]. A total 802 outbreaks of food-

borne diseases have been reported in 13 of the coastal provinces of eastern China, causing

more than 17,000 individuals to become ill [14], where V. parahaemolyticus attributed the

most significant number (40.1%) of these cases [15,16]. The leading cause of human gastroen-

teritis associated with seafood consumption in the United States is V. parahaemolyticus [17].

Centers for Disease Control and Prevention (CDC) declared it as a significant foodborne bac-

terium compared to other Vibrio species, which was responsible for approximately 34,664

foodborne cases annually in the USA [18].

The food poisoning caused by V. parahaemolyticus usually occurs in summer and is pre-

dominantly associated with different kinds of seafood, including crab, shrimp, shellfish, lob-

ster, fish and oysters [19,20]. V. parahaemolyticus is usually found in a free-swimming state,

with its motility conferred by a single polar flagellum affixed to inert and animate surfaces

including zooplankton, fish, shellfish or any suspended matter underwater [21]. Among the

whole range of seafood, shellfish is regarded as a high-risk food because it is infested with large

populations of bacteria, including V. parahaemolyticus [22]. Illness is inevitable, once consum-

ers eat undercooked contaminated seafood [23]. The symptoms of the disease include diar-

rhea, vomiting, abdominal pain, nausea and low-grade fever. In most cases, the disease is self-

resolving. However, V. parahaemolyticus may cause a more debilitating and dysenteric form of

gastroenteritis [24]. Uncommonly, in immunocompromised patients, it may progress into a

life-threatening fulminant necrotizing fasciitis characterized by rapid necrosis of subcutaneous

tissue [25]. In rare cases, V. parahaemolyticus causes septicemia, which is also associated with a

high mortality rate [26]. Also, V. parahaemolyticus is one of the major pathogens of cultured

mud crabs and cause acute hepatopancreaticnecrosis disease (AHPND) in shrimp [27]. Usu-

ally, 99% of clinical V. parahaemolyticus isolates are known to be pathogenic, whereas the

majority of the environmental isolates are non-pathogenic [28]. Nonetheless, around 0–6% of

the environmental isolates are identified as pathogenic carrying virulence genes [3]. During

infection, V. parahaemolyticus uses the adhesion factors to bind to the fibronectin and phos-

phatidic acid on the host cell, thus releasing different effectors and toxins into the cytoplasm,

causing cytotoxicity and serious diseases [21]. Thermostable direct hemolysin (TDH) and

TDH-related hemolysin (TRH) are considered two major virulence factors of this pathogen

due to the invasiveness and roles in disease pathogenesis [3]. TDH, which is prevalent in 95%
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of clinical V. parahaemolyticus isolates, can lyse red blood cells when secreted [29]. Whole-

genome sequencing of V. parahaemolyticus confirmed that the pathogen possesses two sets of

type III secretion system (i.e. T3SS1 and T3SS2) genes [30], where T3SS1 is involved in cyto-

toxity and T3SS2 is responsible for enterotoxicity [31].

Many antibiotics are no longer effective in hospitals to treat V. Parahaemolyticus infections

[32,33]. First-generation antibiotics, including ampicillin are extensively used in aquaculture

resulting in reduced susceptibility andlow efficacy of ampicillin for Vibrio sp. treatment [34].

Literature also reported higher resistance to third-generation antibiotics such as cephalospo-

rin, cefotaxime, carbapenemsand ceftazidime by V. parahaemolyticus isolates [20,35] which

enhanced the necessity of searching safe and more effective drugs for combating infections

caused by V. parahaemolyticus in the future. However, the development of new antibiotics is

difficult and time-consuming. Recent progress in the field of computational biology and bioin-

formatics has generated various in silico analysis and drug designing approaches. Thus elimi-

nating the time and cost involved in the early trial phase before going into the drug

development phase [36]. Subtractive proteomics is one such in silico strategy that helps to facil-

itate the selection, processing, and development of strain-specific drugs against various patho-

gens [37]. It can be utilized to identify drug targets based on the determination of essential and

nonhomologous proteins within the pathogenic organism [38,39]. The term ‘Druggability’ is

used to describe a biological target (e.g. protein) with the potential to bind with high affinity to

a drug [40]. The concept is often utilized in drug discovery which reflects the ability of a drug-

gable target to be modulated by small drug-like molecules. Various novel drug targets have

already been successfully identified for S. typhi meningitides sero group B using the mentioned

approach [39].

Moreover, in silico docking studies between the identified drug targets and existing drugs

with slight modification may lead to the discovery of novel drugs for the treatment of infec-

tions [41,42]. As a result, a wide range of drug targets and lead compounds can be identified

before laboratory experimentation to save time and money. The study was designed to employ

a comprehensive genome-based analysis of Vibrio parahaemolyticus for identifying novel ther-

apeutic targets as well as suitable drugs and vaccine molecules through subtractive proteomics

and vaccinomics approaches.

Materials and methods

The whole proteome of V. parahemolyticus was analyzed according to subtractive proteomics

approach to recognize novel drug targets as well as vaccine candidates. The overall workflow

for subtractive proteomic analysis and vaccinomics approach has been illustrated in results

section.

Retrieval of complete proteome and identification of essential proteins

The whole proteome of V. parahemolyticusstrain was retrieved from NCBI Genome database.

Paralogous sequences were excluded from the proteome of V. parahemolyticus by using

CD-HIT [43]. With a cutoff score of 0.6, proteins with more than 60% identity were excluded.

Remaining proteins were subjected to BLASTp against Homo sapiens human Refseq proteome

in ‘Ensemble Genome Database 92’ using threshold expectation value (E- value) 10−3 as the

parameter. Proteins were assumed as homologous were excluded if any significant hit above

the threshold value 10−4 was found. The remaining non-homologous proteins were subjected

to the Database of Essential Genes (DEG) [44]. Proteins hit with expectation value�10–100,

identity� 25% were listed for metabolic pathway analysis considering as essential non-homol-

ogous proteins of V. parahemolyticus.
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Analysis of metabolic pathways

Kyoto Encyclopedia of Genes and Genomes (KEGG) which contains complete metabolic path-

ways present in living organisms [45]. Metabolic pathways of V. parahemolyticus were ana-

lyzed against the human metabolic pathways through the KEGG server. All metabolic

pathways present in the pathogen (V. parahemolyticus) and host (H. sapiens) were collected

from the KEGG PATHWAY database using three letters KEGG organism code ‘vpa’ and ‘has’

respectively. A comparison was made in order to recognize the unique metabolic pathways

only present in the V. parahemolyticus, while the remaining pathways of the pathogen were

grouped as a common one. Identified host non-homologous, essential proteins of V. parahe-
molyticus were subjected to BLASTp through the KAAS: An Automatic Genome Annotation

and Pathway Reconstruction Server at KEEG. Proteins present only in the unique metabolic

pathways of the pathogen were listed for further analysis.

Druggability analysis and identification of novel drug targets

A ‘druggable’ target needs to have the potentiality to bind to the drugs and drug-like molecules

with high affinity. Shortlisted unique proteins were screened through the database of Drug-

Bank 5.1.0 [46] using default parameters to identify both druggable proteins and novel thera-

peutic targets.

‘Anti-target’ analysis and prediction of subcellular localization

This analysis was performed to avoid any kind of cross-reactivity, and toxic effects due to

docking between the drugs administered for the pathogen and the host ‘anti-targets’.‘Anti-tar-

gets’ are gene products that show cross-reactivity with administered therapeutics. Novel drug

targets were subjected to BLASTp analysis in the NCBI blast program against these human

‘anti-targets’ setting an E-value <0.005, query length >30%, identity <25% as parameters.

Proteins were showing a<25% identity that was listed for subcellular localization analysis.

Besides, proteins functioning in cytoplasm can be used as putative drug targets, while surface

membrane proteins can be considered both as drug targets and vaccine candidates. PSORTb

v3.0.2 CELLO v.2.5), ngLOC servers were used to predict subcellular localization of shortlisted

pathogen-specific essential proteins.

Human microbiome non-homology analysis

Both membrane and cytoplasmic proteins were subjected to BLASTp through NCBI protein

blast server against the dataset present in the Human Microbiome Project server (https://www.

hmpdacc.org/hmp/) (BioProject-43021) [47] with a cutoff score 0.005. Membrane proteins

showing <45% similarity were selected for vaccine candidacy, whereas cytoplasmic proteins

showing <45% similarity were selected for protein-protein interaction analysis.

Analysis of Virulence Factors (VF’s) and Protein-Protein Interactions

studies (PPIs)

Virulence factors are responsible for modulating or degrading host defense mechanisms by

bacteria. Novel cytoplasmic proteins with the least similarity with the human microbiome

were subjected to BLASTp search against the database of protein sequences from the VFDB

core dataset [48] with default hit with cut-off bit score >100, and E-value was 0.0001. The pro-

tein-protein interactions studies (PPIs) of selected shortlisted proteins were predicted using

STRING v10.5 [49]. PPIs with a high confidence score (�90%) were considered to avoid false-

positive results. Only characterized proteins were subjected to BLASTp.
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Screening of drug molecules against novel cytoplasmic proteins

All the pharmaco-metabolites reported in the Human Metabolites Database (www.hmdb.ca)

were used for the screening of suitable drugs. Molecular docking was performed against pre-

dicted drug targets (novel cytoplasmic proteins) by using AutoDock Vina tools [50]. The size

of the grid box was set to 54 A˚ x 74 A˚ x 126 A˚ (x, y and z) and 65A˚ x 85 A˚ x 65 A˚ (x, y

and z) with 1 A˚ spacing between the grid points for two cytoplasmic therapeutic target pro-

teins (Q87TC9 and Q87165 respectively).

Screening of novel outer membrane proteins for vaccine construction

The VaxiJen v2.0 (http://www.ddg-pharmfac.net/vaxijen/) was used for the investigation of

protein immunogenicity to find the most potent antigenic outer membrane proteins [51]. Pro-

teins were prioritized based on their antigenic score (threshold value 0.4) and sequence simi-

larity with human microbiota.

T-cell epitope prediction, transmembrane topology screening and

antigenicity analysis

MHC-I (http://tools.iedb.org/mhci/) and MHC-II prediction tool (http://tools.iedb.org/mhcii/

) prediction tool of the Immune Epitope Database were used to predict the MHC-I binding

and MHC-II binding peptides, respectively. To predict the transmembrane helices in proteins

[52] and to determine epitope antigenicity [51], TMHMM (http://www.cbs.dtu.dk/services/

TMHMM/) and VaxiJen v2.0 server (http://www.ddg-pharmfac.net/vaxijen/) were utilized.

Population coverage, allergenicity, toxicity and conservancy analysis

Population coverage for each epitope was analyzed by the IEDB population coverage calcula-

tion tool (http://tools.iedb.org/population/) [53]. The most potent antigenic epitopes were

selected and allowed for determining the allergenicity patternvia four servers named Aller-

genFP [54], AllerTOP (http://www.ddg-pharmfac.net/AllerTop/) [55], Allermatch (http://

www.allermatch.org/allermatch.py/form) [56] and Allergen Online [57]. Moreover, the Tox-

inPred server predicted the toxicity level of the proposed epitopes (http://crdd.osdd.net/

raghava/toxinpred/) [58]. The conservancy level determines the efficacy of epitope candidates

to confer broad-spectrum immunity. For revealing the conservancy pattern, homologous

sequence sets of the selected antigenic proteins were retrieved from the NCBI database by

using the BLASTp tool. Further, the epitope conservancy analysis tool (http://tools.iedb.org/

conservancy/) at IEDB was selected for the analysis of the conservancy pattern.

Prediction of 3D structures for superior epitopes and analysis of molecular

docking

Top-ranked epitopes were subjected to the PEP-FOLD server to predict peptide structures

[59]. Depending on the available structures deposited in Protein Data Bank (PDB) database,

HLA-A�11:01 and HLA-DRB1�04:01 were selected for docking analysis with MHC class I and

class II binding epitopes respectively. MGLTools were used to visualize and analyze the molec-

ular structures of biological compounds [60]. The grid box was set to 28 A˚, 18 A˚, 20 A˚ (x, y

and z) with a default value of 1.0 A˚ spacing by Autodock Vina at 1.00- ˚A spacing. The

exhaustiveness parameter was kept at 8.00, and the number of outputs was set at 10 [60]. Out-

put PDBQT files were converted in PDB format using Open Babel. The docking interaction

was visualized with the PyMOL molecular graphics system (https://www.pymol.org/).

PLOS ONE Genome based novel drug and vaccine molecules of Vibrio parahaemolyticus

PLOS ONE | https://doi.org/10.1371/journal.pone.0237181 August 19, 2020 5 / 29

http://www.hmdb.ca/
http://www.ddg-pharmfac.net/vaxijen/
http://tools.iedb.org/mhci/
http://tools.iedb.org/mhcii/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.ddg-pharmfac.net/vaxijen/
http://tools.iedb.org/population/
http://www.ddg-pharmfac.net/AllerTop/
http://www.allermatch.org/allermatch.py/form
http://www.allermatch.org/allermatch.py/form
http://crdd.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/toxinpred/
http://tools.iedb.org/conservancy/
http://tools.iedb.org/conservancy/
https://www.pymol.org/
https://doi.org/10.1371/journal.pone.0237181


Identification of B-Cell epitope

B-cell epitopes were predicted for both proteins to find the potential antigens that would inter-

act with B lymphocytes and initiate the immune response. Several tools from IEDB i.e. Kolas-

kar and Tongaonkar antigenicity scale [61], Karplus and Schulz flexibility prediction [62],

Bepipred linear epitope prediction analysis [63], Emini surface accessibility prediction [64],

Parker hydrophilicity prediction [65] and Chou and Fasman beta-turn prediction [66] were

used to identify the B-cell epitopes antigenicity depending on six different algorithms.

Epitope cluster analysis and vaccine construction

Epitope cluster analysis tool from IEDB was used to identify the epitope clusters with overlap-

ping peptides for both proteins using the top CTL, HTL and BCL epitopes as input. The identi-

fied clusters and singletons were further utilized to design construct. Vaccine sequences

started with an adjuvant followed by the top CTL epitopes, top HTL epitopes and BCL epitopes

respectively for both proteins. Three vaccine constructs i.e. V1, V2 and V3, each associated

with different adjuvants including beta-defensin (a 45 mer peptide), L7/L12 ribosomal protein

and HABA protein (Mycobacterium tuberculosis, accession number: AGV15514.1) [67] were

constructed. PADRE sequence and different linkers, for instance, EAAAK, GGGS, GPGPG

and KK linkers, were also used to construct effective vaccine molecules.

Allergenicity, antigenicity and solubility prediction of different vaccine

constructs

The AlgPred v.2.0 [68] and AllerTOP v.2.0 [55] servers were utilized to predict the non-allergic

behavior of the vaccine constructs. For proposing the superior vaccine candidate, the VaxiJen

v2.0 server [51] was utilized. The probable antigenicity of the constructs was determined

through an alignment-independent algorithm. Protein-sol software [69] predicted the solubil-

ity score of the proposed vaccines.

Physicochemical characterization and secondary structure analysis

The ProtParam, a tool from Expasy’s server (http://expasy.org/cgi-bin/protpraram) [70,71]

was used to characterize the vaccine proteins functionally–including molecular weight, isoelec-

tric pH, aliphatic index, hydropathicity, instability index, GRAVY values and estimated half-

lifeand other physicochemical properties were investigated. The PSIPRED v3.3 [72] were used

to predict the alphahelix, betasheet and coil structure of the vaccine protein. The polar, nonpo-

lar and aromatic regions were also determined.

Tertiary structure prediction, refinement, validation and disulfide

engineering of vaccine construct

The I-TASER server [73] was employed for determining the 3D structure of designed vaccine

constructs based on the degree of similarity between the target protein and available template

structure from PDB. Refinement was performed using ModRefiner [73]. The refined protein

structure was validated through the Ramachandran plot assessment by the MolProbity soft-

ware [74]. Residues in the highly mobile region of the protein exhibit the potential to be

mutated with cysteine. Pairs of residues with propergeometry and the ability to form a disul-

fide bond were detected by the DbD2 server to perform disulfide engineering [75]. The value

of chi3 considered for the residue screening was between −87 to +97 while the energy consid-

ered was<2.5.
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Protein-protein docking and molecular dynamics simulation

The binding affinity of the vaccine constructs with different HLA alleles and human immune

receptors, ClusPro 2.0 [76], hdoc [77] and PatchDock server [78] were applied. Desirable com-

plexes were identified according to better electrostatic interaction and free binding energy fol-

lowing refinement via the FireDock server [79]. The iMODS server was used to explain the

collective motion of proteins via analysis of normal modes (NMA) in internal coordinates

[80]. Essential dynamics is a powerful tool and alternative to the costly atomistic simulation

that can be compared to the normal modes of proteins to determine their stability [81]. The

server predicted the direction and magnitude of the immanent motions of the complex in

terms of deformability, eigenvalues, B-factors and covariance. The structural dynamics of the

protein-protein complex was investigated [82].

Codon adaptation, in silico cloning and similarity analysis with human

proteins

A codon adaptation tool (JCAT) was used to adapt the codon usage to the well-characterized

prokaryotic organisms for accelerating the expression rate in it. Rho-independent transcrip-

tion termination, prokaryote ribosome binding site and cleavage sites of restriction enzyme

ApaI and BglI were avoided while using the server [83]. The optimized sequence of vaccine

protein V1 was reversed, followed by conjugation with ApaI and BglI restriction site at the N-

terminal and C-terminal sites, respectively. SnapGene [84] restriction cloning module was

used to insert the adapted sequence into the pET28a(+) vector between ApaI (1334) and BglI

(2452). At last, human sequence similarity analysis of the proposed vaccine with human pro-

teins was done by using NCBI protein-protein Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi),

and here blast was done against Homo sapiens (taxid: 9606) dataset.

Results

Various bioinformatics tools and databases were used to analyze the entire proteome of V.

parahemolyticus through subtractive proteomics and vaccinomics approach. The step by step

results (or workflow in Figs 1 and 2) from the complete computational analysis was presented

in Table 1.

Retrieval of complete proteome and identification of essential proteins

The whole proteome of V. parahemolyticus strain O3:K6 was extracted from NCBI database

(S1 File) containing 4822 proteins (Set 0). Paralogous protein sequences of the pathogen. A

total of 93 paralogous sequence above >60% similarity were identified through the CD-hit

server and removed, leaving 4729 non-paralogous protein sequences in Set 1 (S2 File). Among

these proteins, proteins with>100 residues (4123 proteins) (Set 2) were only considered (S3

File) for further analysis. Again, proteins showing significant similarity with human RefSeq

proteins (1143 proteins) were excluded from the list designated as Set 3 (S4 File). Analysis of

remaining proteins throughthe DEG server revealed only proteins that are essential (Set 4) for

the survival of the pathogen (S5 File).

Analysis of metabolic pathways

The KEGG server contains 131 metabolic pathways for V. parahaemolyticus (S6 File) and 325

pathways for humans (S7 File). Through manual comparison, 40 metabolic pathways were

found to be pathogen-specific and are provided in S8 File. Proteins involved in these unique

pathways can be selected as drug targets. Non-homologous essential proteins subjected to
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BLASTp in the KAAS server at KEGG revealed that 96 proteins among 1107 assigned both KO

(KEGG Orthology) and metabolic pathways that further deputed as Set 5 (S9 File).

Druggability analysis and identification of novel drug targets

Only 56 proteins showed similarity with the available drug targets, while the remaining 41

showed no hit. These 41 proteins (Set 6) were considered as novel drug targets which include

both cytoplasmic and membrane proteins (S10 File). Besides, the results of druggable proteins

are provided in S1 Table. Furthermore, the other 41 proteins were considered as novel thera-

peutic targets and subjected to human ‘anti-targets’ analysis.

‘Anti-target’ analysis and prediction of subcellular localization

A total of 210 ‘anti-targets’ reported in the literature were fetched from NCBI (S11 File). All

novel drug target proteins were successfully screened through BLASTp analysis, and no evi-

dence of similarity was seen. Hence, all these novel drug target proteins were listed for human

microbiome analysis considering non-homologous to host ‘anti-targets’ (S10 File). Moreover,

The results of subcellular localization analysis by four servers are provided in S11 File. The

result revealed that among 41 specific proteins involved in pathogen-specific pathways, 16

were cytoplasmic proteins assigned as Set 8 (S12 File, Table 2), while the remaining 25

sequences were membrane proteins.

Fig 1. Proteome exploration of Vibrio parahaemolyticus to identify novel drug targets.

https://doi.org/10.1371/journal.pone.0237181.g001

PLOS ONE Genome based novel drug and vaccine molecules of Vibrio parahaemolyticus

PLOS ONE | https://doi.org/10.1371/journal.pone.0237181 August 19, 2020 8 / 29

https://doi.org/10.1371/journal.pone.0237181.g001
https://doi.org/10.1371/journal.pone.0237181


Human microbiome non-homology analysis

Cytoplasmic proteins showing<45% similarity with reported human microbiome proteins were

selected for protein-protein interaction analysis, whereas membrane proteins were selected for

further vaccine candidacy. However, microbiome analysis revealed that a total of 9 proteins (Set

9) of the pathogen showed<45% similarity with human microflora (S2 Table, S13 File).

Analysis of virulence factors (VF’s) and protein-protein interactions

studies (PPIs)

From 9 cytoplasmic novel proteins, five uncharacterized proteins were removed and the

remaining four proteins were considered for VFDV analysis. The VFDB result showed that

two proteins (Set 10) i.e., VIBPA Type II secretion system protein L (Q87TC9) and VIBPA

Putative fimbrial protein Z (Q87I65) were associated with virulence of V. parahaemolyticus
(Table 3). These proteins were subjected to protein-protein interaction study. STRING v10.5

revealed that Type II secretion system protein L confers interactions with nine proteins (Fig

3A), while putative fimbrial protein Z exhibits interactions with three other proteins (Fig 3B).

These proteins are mainly responsible for protein transport, involved in biofilm formation and

bacterial secretion system, or act as regulatory proteins (e.g., transcription regulator, signal

transduction response regulator).

Screening of drug molecules against novel cytoplasmic proteins

A total of 335 unique metabolites were retrieved from Human Metabolites Database for docking

analysis against predicted therapeutic drug targets (novel cytoplasmic proteins). Docking scores

were analyzed to screen the top drug candidates with the lowest binding energy (S3 Table).

Fig 2. Flow chart summarizing the protocols over multi-epitope subunit vaccine development against V.

parahaemolyticus through reverse vaccinology approach.

https://doi.org/10.1371/journal.pone.0237181.g002
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Among top 10 metabolites (Table 4), Eliglustat (DB09039) was found superior in terms of free

binding energy for both protein targets, followed by Simvastatin (DB09039) and Hydroxocoba-

lamin (DB00200) for VIBPA Type II secretion system protein L (Q87TC9) and VIBPA Putative

Table 1. Subtractive proteomics analysis scheme.

Sl.

No.

Steps No. of

proteins

Protein sets

1 Total number of proteins 4822 Set 0 (S1

File)

2 Non-paralogous (>60% identical) in CD-Hit 4729 Set 1 (S2

File)

3 proteins with >100 amino acids 4123 Set 2 (S3

File)

4 Number of proteins nonhomologous to H. sapiens using BLASTp (E value

10−3)

3164 Set 3 (S4

File)

5 Essential proteins in DEG 15.2 server (E value�10−100, Bit score >100) 1107 Set 4 (S5

File)

6 Essential Proteins involved only in unique metabolic pathways (KAAS at

KEGG)

96 Set 5 (S9

File)

7 Essential proteins found to be novel in DrugBank 5.1.0 (using default

parameters)

41 Set 6 (S10

File)

8 Novel drug target proteins non-homologous to ‘anti-targets’ using BLASTp (E

value <0.005, Identity <25%, Query length >30%)

41 Set 7 (S11

File)

9 Essential cytoplasmic proteins using PSORTb, CELLO, ngLOC, PSLpred 16 Set 8 (S12

File)

10 Proteins showing <45% similarity with human microflora proteins 9 Set 9 (S13

File)

11 Identified virulence associated novel proteins by VFDB analysis 2 Set 10

(Table 4)

12 Essential membrane proteins using PSORTb, CELLO, ngLOC, PSLpred 25 Set 11 (S14

File)

13 Identified vaccine targets having less similarities with human microflora

proteins and antigenicity

2 Set 12

(Table 7)

https://doi.org/10.1371/journal.pone.0237181.t001

Table 2. Pathogen specific essential cytoplasmic proteins as novel therapeutic targets.

Sl. No Protein Id KO assignment Description Pathways

1 Q87L83 K09823 Fur family transcriptional regulator, zinc uptake regulator Quorum sensing

2 Q87GW9 K07674 Two-component system, narl family, nitrate/nitrite sensor histidine kinase narq Two-component system

3 Q79YW1 K02410 Flagellar motor switch protein flig Bacterial chemotaxis

4 Q87HD9 K11904 Type VI secretion system secreted protein vgrg Bacterial secretion system

5 Q87TC9 K02461 General secretion pathway protein L Bacterial secretion system

6 Q87NV3 K07780 Arac family transcriptional regulator required for anaerobic and stationary phase induction of genes Two-component system

7 Q87K78 K07718 Two-component system, sensor histidine kinase yesm Two-component system

8 Q87I65 K07688 Two-component system, narl family, response regulator, fimbrial Z protein, fimz Two-component system

9 Q87TD5 K02455 General secretion pathway protein F Biofilm formation

10 Q87MI1 K03567 Glycine cleavage system transcriptional repressor Biofilm formation

11 Q87HC5 K11892 Type VI secretion system protein impk Bacterial secretion system

12 Q87Q12 K02053 Putative spermidine/putrescine transport system permease protein Quorum sensing

13 Q87LE2 K03092 RNA polymerase sigma-54 factor Biofilm formation

14 Q87HC6 K11891 Type VI secretion system protein impl Biofilm formation

15 Q79YX4 K03408 Purine-binding chemotaxis protein chew Bacterial chemotaxis

16 Q87NG0 K11617 Two-component system, narl family, sensor histidine kinase lias Two-component system

https://doi.org/10.1371/journal.pone.0237181.t002
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fimbrial protein Z (Q87I65) respectively. ADME analysis was performed to get an insight into

how the predicted pharmaceuticals will interact with the body as a whole (Table 5).

Screening of novel outer membrane proteins for vaccine construction

From the 25 novel outer membrane proteins (S14 File) designated as Set 11, two were selected

based on the highest antigenicity score and human microbiome analysis to develop a novel

chimeric peptide vaccine against V. parahemolyticus (Table 6). The schematic diagram sum-

marizing the protocol over in silico vaccinomics strategy has been elucidated in Fig 1. Sensor

histidine protein kinase (Q87HJ8) and flagellar hook-associated protein (Q87JH9) possessed

better antigenicity (0.64 and 0.53 respectively) while showed less percentage similarity (<45%

and<41%, respectively) when compared with gut microbiome data (S4 Table).

T-cell epitope prediction, transmembrane topology screening and

antigenicity analysis

A plethora of CTL and HTL epitopes were identified for both proteins that can bind to the dif-

ferent large number of HLA-A and HLA-B alleles using MHC class-I and MHC class II bind-

ing predictions of IEDB (S15 File). Top epitopes (MHC-I and MHC-II binding peptides) for

both proteins having the capacity to elicit strong T-cell responses were selected as putative T-

cell epitope candidates according to their topology screening by TMHMM and antigenic scor-

ing (AS) by Vaxijen server (S16 File).

Population coverage, allergenicity, toxicity and conservancy analysis

Two different population coverages were calculated from CTL and HTL populations for MHC

class I and MHC class IIrestricted peptides, respectively (Fig 4). Epitopes, found to be non-

allergen for humans, were identified according to the allergenicity assessment via four servers.

However, epitopes predicted as a toxin was removed from the proposed list of epitopes. Several

Table 3. Predicted therapeutic targets (novel cytoplasmic proteins) showing virulent properties.

Novel drug targets Accession ID VFDB analysis Interacted proteins

VIBPA Type II secretion system protein L Q87TC9 5 hits 9

VIBPA Putative fimbrial protein Z Q87I65 4 hits 3

https://doi.org/10.1371/journal.pone.0237181.t003

Fig 3. Investigation of PPIs through STRING v10.5 server; (A) UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—2,6-diaminopimelate

ligase (murE), (B) Trigger factor (tig).

https://doi.org/10.1371/journal.pone.0237181.g003
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epitope candidates from both proteins were found to be highly conserved within different

strains of V. parahemolyticus with maximum conservancy level of 99% for histidine protein

kinase and 100% for flagellar hook-associated protein respectively (S5 Table). Top 3 epitopes

(CTL and HTL) for each protein were considered based on the above mentioned parameters

to design the final vaccine construct (Table 7).

Prediction of 3D structures for superior epitopes and analysis of molecular

docking

The epitopes, showing conservancy pattern at a biologically significant level, were only allowed

for further docking analysis. 3D structures were predicted for top epitopes (6 from Flagellar

hook-associated protein and six from sensor histidine protein kinase) to analyze their interac-

tions with different HLA alleles. The PEP-FOLD3 server modeled five 3D structures for each

epitope, and the best one was identified for docking study. The result showed that ‘AILLFP-

FAL’ epitope of Flagellar hook-associated protein was superior in terms of free binding energy

while interacted with HLA-A� 11:01 (−8.3 kcal/mol). Demonstrated energy was −9.1 kcal/mol

for epitope ‘GGRHNNLDL’ of Sensor histidine protein kinase (Table 8).

Identification of B-Cell epitope

B-cell epitopes of both proteins were generated using six different algorithms from IEDB (S1

and S2 Figs). The epitopes were further investigated to reveal their non-allergenicity pattern,

and the top one epitope from each prediction was selected for vaccine construction (S6 Table).

Table 4. Top 10 metabolites predicted as suitable drug candidates against VIBPA Type II secretion system protein L and VIBPA Putative fimbrial protein Z.

Novel Targets HMDB ID Binding

Energy

Name Drug Bank

ID

Drug Name Drug Group

VIBPA Type II secretion
system protein L (Q87TC9)

HMDB0004971 -10.6 Glucosylceramide (d18:1/16:0) DB09039 Eliglustat Approved

HMDB0004972 -10.5 Glucosylceramide (d18:1/18:0) DB09039 Eliglustat Approved

HMDB0004970 -10.3 Glucosylceramide (d18:1/9Z-18:1) DB09039 Eliglustat Approved

HMDB0004976 -10.3 Glucosylceramide (d18:1/26:1(17Z)) DB09039 Eliglustat Approved

HMDB0008646 -10.3 PC(22:4(7Z,10Z,13Z,16Z)/22:4

(7Z,10Z,13Z,16Z))

DB00641 Simvastatin Approved

HMDB0011300 -10.1 PC(P-18:1(11Z)/P-18:1(11Z) DB00334 Olanzipine Approved, Investigational

HMDB0008443 -9.7 PC(20:4(5Z,8Z,11Z,14Z)/20:4

(5Z,8Z,11Z,14Z))

DB00641 Simvastatin Approved

HMDB0008138 -9.6 PC(18:2(9Z,12Z)/18:2(9Z,12Z)) DB00641 Simvastatin Approved

HMDB0004973 -9.5 Glucosylceramide (d18:1/20:0) DB09039 Eliglustat Approved

HMDB0010348 -9.5 Dehydroepiandrosterone

3-glucuronide

DB01708 Prasterone Approved, Investigationa,

Nutraceutical

VIBPA Putative fimbrial
protein Z (Q87I65)

HMDB0004972 -9.6 Glucosylceramide (d18:1/18:0) DB09039 Eliglustat Approved

HMDB0002308 -9.5 Hydroxocobalamin DB00200 Hydroxocobalamin Approved

HMDB0004970 -9.3 Glucosylceramide (d18:1/9Z-18:1) DB09039 Eliglustat Approved

HMDB0004971 -9.3 Glucosylceramide (d18:1/16:0) DB09039 Eliglustat Approved

HMDB0002174 -9.1 Cobalamin DB14098 Cobalamin Experimental

HMDB0008646 -8.9 PC(22:4(7Z,10Z,13Z,16Z)/22:4

(7Z,10Z,13Z,16Z))

DB00641 Simvastatin Approved

HMDB0060546 -8.9 Norbuprenorphine DB01026 Ketoconazole Approved, Investigational

HMDB0041936 -8.7 Morphine-3-glucuronide DB00295 Morphine Approved, Investigational

HMDB0004974 -8.6 Glucosylceramide (d18:1/22:0) DB09039 Eliglustat Approved

HMDB0008443 -8.5 PC(20:4(5Z,8Z,11Z,14Z)/20:4

(5Z,8Z,11Z,14Z))

DB00641 Simvastatin Approved

https://doi.org/10.1371/journal.pone.0237181.t004
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Epitope cluster analysis and vaccine construction

The construction of vaccine protein was based on identifying larger cassettes containing multi-

ple epitopes. Epitope cluster analysis tool from IEDB predicted 21 epitope clusters among the

Table 5. ADME profiling of top drug candidates.

ADME analysis Top drug candidates

Eliglustat Simvastatin Hydroxocobalamin
Physicochemical

parameters
Formula C23H36N2O4 C25H38O5 C62H89CoN13O15P

Molecular weight 404.54 g/mol 418.57 g/mol 1346.36 g/mol

Molar Refractivity 120.69 118.47 352.74

TPSA 74.52 Å2 72.83 Å2 468.89 Å2

Lipophilicity Log Po/w (iLOGP) 4.07 3.74 0.00

Log Po/w (XLOGP3) 4.02 4.68 -3.48

Log Po/w (WLOGP) 3.57 4.59 -0.99

Log Po/w (MLOGP) 2.27 3.77 -3.84

Log Po/w (SILICOS-IT) 4.88 3.77 -4.08

Consensus Log Po/w 3.76 4.11 -2.48

Log Po/w (iLOGP) 4.07 3.74 0.00

Pharmacokinetics GI absorption High High Low

BBB permeant Yes No No

P-gp substrate No No Yes

CYP1A2 inhibitor No No No

CYP2C19 inhibitor No No No

CYP2C9 inhibitor No Yes No

CYP2D6 inhibitor Yes No No

CYP3A4 inhibitor No Yes No

Log Kp (skin permeation) -5.91 cm/s -5.53 cm/s -16.98 cm/s

Water Solubility Log S (SILICOS-IT) -5.05 -3.56 -7.11

Solubility 3.57e-03 mg/ml; 8.83e-06 mol/l 1.15e-01 mg/ml; 2.74e-04

mol/l

1.04e-04 mg/ml; 7.73e-08 mol/l

Class Moderately soluble Soluble Poorly soluble

Druglikeness Bioavailability Score 0.55 0.55 0.17

Lipinski Yes; 0 violation Yes; 0 violation No; 3 violations: MW>500,

NorO>10, NHorOH>5

Ghose Yes Yes No; 4 violations: MW>480,

WLOGP<-0.4, MR>130,

Veber No; 1 violation: Rotors>10 Yes No; 2 violations: Rotors>10,

TPSA>140

Medicinal Chemistry Synthetic accessibility http://www.

swissadme.ch/index.php

4.76 5.80 10.00

PAINS 0 alert 0 alert 0 alert

Brenk 2 alerts: imine_1, imine_2 1 alert: more_than_2_esters 1 alert: phosphor

Leadlikeness No; 3 violations: MW>350,

Rotors>7, XLOGP3>3.5

No; 2 violations: MW>350,

XLOGP3>3.5

No; 2 violations: MW>350,

Rotors>7

https://doi.org/10.1371/journal.pone.0237181.t005

Table 6. Novel vaccine targets proteins showing higher antigenicity.

Accession No. Protein name VaxiJen score Similarity with human microbiome (%)

Q87HJ8 Sensor histidine protein kinase UhpB 0.65 <45

Q87JH9 Flagellar hook-associated protein 0.53 <41

https://doi.org/10.1371/journal.pone.0237181.t006
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top epitopes (6 CTL, 6 HTL epitopes, and 12 BCL epitopes) proposed in Table 8 and S2 Table.

Each vaccine construct was occupied by a protein adjuvant, PADRE peptide sequence, T-cell

and B-cell epitopes with their respective linkers (S7 Table) Constructs V1, V2 and V3 were

370, 455 and 484 residues long, respectively. PADRE sequence was used to enhance the

potency and efficacy of the peptide vaccine.

Fig 4. Population coverage analysis of (A) VIPBA putative sensor histidine protein kinase UhpB, and (B) Flagellar

hook-associated protein.

https://doi.org/10.1371/journal.pone.0237181.g004

Table 7. Predicted final CTL and HTL epitopes of histidine protein kinase and flagellar hook-associated protein.

Protein MHC Epitope Start End Vaxijen Conservancy

Sensor histidine protein kinase UhpB MHC-I AILLFPFAL 36 44 2.993 99.00%

ILLFPFALR 37 45 2.9721 99.00%

HDDGVGFKV 448 456 2.363 99.00%

MHC-II ILLFPFALRLGIALH 37 51 2.1484 87.00%

AILLFPFALRLGIAL 36 50 1.9451 87.00%

LLFPFALRLGIALHT 38 52 1.8268 87.00%

Flagellar hook-associated protein MHC-I FNAQDEEGH 125 133 1.8425 98.00%

GGRHNNLDL 234 242 1.7855 99.00%

KPSPNFQAEV 203 212 1.4978 45.00%

MHC-II DSIESSFNAQDEEGH 199 133 1.304 88.00%

IGGRHNNLDLMDGAH 233 247 0.801 59.00%

KLSDDPMASIKLLNL 38 52 0.887 88.00%

https://doi.org/10.1371/journal.pone.0237181.t007
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Allergenicity, antigenicity and solubility prediction of different vaccine

constructs

Results revealed V1 as the most potent vaccine candidate with better antigenic nature (1.18)

and non-allergic behavior that can elicit a strong immune response (S7 Table). All three con-

structs showed solubility above the threshold value (0.45). Again, construct V1 was superior in

terms of solubility potential. The surface distribution of charge, hydrophobicity and stability

were calculated at 91 different combinations of pH and ionic strength (Fig 5).

Table 8. Binding energy of predicted epitopes with selected MHC class I and MHC class II molecules generated from molecular docking by AutoDock.

Protein Epitope MHC Class Binding Energy

Sensor histidine protein kinase FNAQDEEGH HLA-A�11:01 -8.6

GGRHNNLDL -9.1

KPSPNFQAEV -8.2

DSIESSFNAQDEEGH HLA-DRB1�04:01 -7.3

IGGRHNNLDLMDGAH -6.5

KLSDDPMASIKLLNL -6.3

Flagellar hook-associated protein AILLFPFAL HLA-A�11:01 -8.3

ILLFPFALR -8.1

HDDGVGFKV -8.1

ILLFPFALRLGIALH HLA-DRB1�04:01 -7.0

AILLFPFALRLGIAL -6.4

LLFPFALRLGIALHT -7.2

https://doi.org/10.1371/journal.pone.0237181.t008

Fig 5. Solubility prediction of vaccine constructs. (A) Solubility prediction of designed vaccine construct V1 using

via Protein-sol server, and (B) prediction of polar, nonpolar, hydrophobic and aromatic regions.

https://doi.org/10.1371/journal.pone.0237181.g005
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Physicochemical characterization and secondary structure analysis

The molecular weight of the designed construct V1 was 39.45 kDa. The theoretical pI 9.95

implied that the protein would have a net negative charge above this pI and vice versa. At 0.1%

absorption, the extinction coefficient was 26,930, while assuming all cysteine residues reduced.

The estimated half-life was predicted to be>10 h in E. coli in vivo, whereas 1 h within mam-

malian reticulocytes in vitro. Hydrophilic behavior and thermostability of the protein were

represented by the GRAVY value and aliphatic index that were −0.510 and 67.62, respectively.

Instability index (37.49) and various physicochemical features classified the protein as a stable

onewith the capacity to induce a robust immunogenic reaction in the body. The predicted sec-

ondary structure confirmed to have 35.6% alpha helix, 11.89% sheet and 52.43% coil region

(S3 Fig). Around 34.59% polar, 16.21% hydrophobic and 9.46% aromatic regions were identi-

fied in the structure (Fig 5).

Tertiary structure prediction, refinement, validation and disulfide

engineering of vaccine construct

I-TASSER predicted five models for each proposed vaccine candidates, which were ranked

based on cluster size. Ten best templates (with the highest Z-score) selected from the LOMETS

threading programswere used to predict the tertiary structures. Homology modeling was per-

formed by using 1kj6 from RCSB Protein Data Bank) as a best suited template for Vaccine pro-

tein V1. Results showed that model 1 had the highest C-Score of -2.11 while the estimated

TM-score and RMSD were 0.46±0.15 and 11.6±4.5Å (Fig 6). After refinement, 88.3% and

98.1% residues were in the favored and allowed region revealed by Ramachandran plot analy-

sis (Fig 6). The modeled tertiary structure of designed construct V2 and V3 have been shown

in S4 Fig. A total of 22 pairs of amino acid residues were identified with the potential to form

disulfide bonds by DbD2 server. However, only two pairs (i.e., ARG 82-Gly 85, Lys 347-Thr

350) were compatible with disulfide bond formation considering the energy, chi3 and B-factor

parameter (S5 Fig). All these residues were replaced with a cysteine residue.

Protein-protein docking and molecular dynamics simulation

Docking study was conducted between three vaccine constructs (i.e., V1, V2, V3) and different

HLA alleles. Construct V1 showed biologically significant results and found to be superior in

Fig 6. Tertiary structure prediction and validation of vaccine protein V1. (A) Tertiary structure of modeled construct V1, (B) Ramachandran plot

analysis of vaccine protein V1.

https://doi.org/10.1371/journal.pone.0237181.g006
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terms of free binding energy (S8 Table). Besides, the binding affinity of the predicted vaccine

and TLR-1/2 heterodimer complex was also analyzed. The 3D structure of human TLR-1/2

heterodimer was retrieved from the RCSB protein data bank. ClusPro generated thirty pro-

tein-ligand complexes (clusters) as output along with respective free binding energy. The low-

est energy was −1257.9 for cluster 1 (Fig 7). FireDock output refinement of the PatchDock

server showed the lowest global energy of −7.08 for solution 5. Normal mode analysis allowed

the demonstration of large scale mobility and the stability of proteins. The analysis was per-

formed based on the internal coordinates of the protein-protein complex. In the 3D model,

the direction of each residue was given by arrows, and the length of the line represented the

extent of mobility (Fig 8A). The eigenvalue found for the complex was 2.4784e−05 (Fig 8B).

The vaccine protein V1 and TLR1-2 heterodimers were oriented towards each other. The B-

factor values deduced from normal mode analysis was analogous to RMS (Fig 8C). Hinges in

the chain indicated the probable deformability of the complex measured by the contortion of

each residue (Fig 8D). The variance associated with each normal mode was inversely linked to

the eigenvalue. Covariance matrix explained the coupling between pairs of residues was corre-

lated, uncorrelated, or anti-correlated motions were represented via red, white and blue colors,

respectively (Fig 8E). The result also generated an elastic network model (Fig 8F) that identi-

fied the pairs of atoms connected via springs. Each dot in the diagram was indicated one spring

between the corresponding pair of atoms and colored based on the degree of stiffness.

Codon adaptation, in silico cloning and similarity analysis with human

proteins

E. coli strain K12 was selected as the host for the cloning purpose of the vaccine construct V1.

Vaccine protein V1 was transcribed reversely, where the Codon Adaptation Index (CAI) was

found 0.994, and the GC content of the optimized codons (50.55%) was also significant. The

construct did not hold restriction sites for ApaI and BglI, which ensured its safety for cloning

purposes. The optimized codons were incorporated into the pET28a(+) vector along with

ApaI and BglI restriction sites. A clone of 5634 base pair was obtained, including the 1118 bp

desired sequence and the rest belonging to the vector. The desired region was shown in red

Fig 7. Docked complex of vaccine construct V1 with human TLR 1/2 heterodimer. (A) Cartoon format, and (B) Ball structure.

https://doi.org/10.1371/journal.pone.0237181.g007
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color in between the pET28a(+) vector sequence (Fig 9). Sequence similarity analysis of the

proposed vaccine with human proteins revealed that there was no similarity between predicted

vaccine constructs and human proteins.

Discussion

Emergence of rapid antibiotic resistance [35,85], severe effects on human health [14,86], and

economic importance for substantially impairing the aquaculture production [4] have made it

necessary to identify effective drug targets and vaccine candidates against V. parahaemolyticus.
Different computational approaches are now being widely practiced to identify proteins those

are essential for the survival of the pathogen and not involved in the metabolic pathways of the

host, thereby choosing the proteins associated only in the metabolic pathways of the pathogen

is important [38,87]. Essential proteins are most promising for new antibacterial drug targets

since most antibiotics are designed to bind essential gene products. Here, subtractive genome

approaches (removal of paralogous proteins, identification of non-homologous proteins

against the host, identification of essential proteins and metabolic pathways analysis of the

pathogen), and vaccinomics strategy were employed for identifying novel drug and vaccine

molecules through the comprehensive proteome exploration of V. parahaemolyticus genome.

The complete proteome of V. parahaemolyticus (4822 proteins) was retrieved from the

NCBI database, and the homologous proteins were removed based on their identity with

human proteins. Proteins encoded by essential genes and unique to an organism can be con-

sidered as species-specific drug targets, as they play vital roles in its metabolism. The study

revealed 96 unique, essential proteins (Set 5) of V. parahaemolyticus, which can be considered

as suitable drug targets for combating V. parahaemolyticus infections. Among the unique pro-

teins, 55 proteins were druggable and can be targeted using existing drugs (92) that are already

approved and available in the market (S1 Table). In the case of a broad-spectrum drug, for

Fig 8. Molecular dynamics simulation of vaccine protein V1-TLR8 complex. Stability of the protein-protein

complex was investigated through (A) mobility, (B) B-factor, (C) deformability, (D) eigenvalue, (E) covariance and (F)

elastic network analysis.

https://doi.org/10.1371/journal.pone.0237181.g008
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avoiding mutational changes as well as the emergence of resistant bacteria, the DrugBank data-

bases were screened, which contains entries for 2556 approved small molecule drugs, 962

approved biotech drugs, 112 nutraceuticals and over 5125 experimental drugs. A total of 41

proteins of V. parahaemolyticus showed no similarity after passing through the DrugBank

database and listed for the prediction of novel drug targets and vaccine candidates (Set 6). To

avoid severe cross-reaction and toxic effects in human, identification of nonhomologous pro-

teins to essential human proteins (referred to as ‘anti-targets’) was a crucial step considered in

this study. However, the identified novel drug targets (41) showed no evidence of similarity

Fig 9. In silico restriction cloning of the gene sequence of construct V1 into pET28a(+) expression vector; (A) Restriction

digestion of the vector pET28a(+) and construct V1 with BglI and ApaI (B) Inserted desired fragment (V1 Construct)

between ApaI (1334) and BglI (2452) indicated in red color.

https://doi.org/10.1371/journal.pone.0237181.g009
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with the ‘anti-targets’. Although both cytoplasmic and membrane proteins serve the purpose

as therapeutic targets [86], membrane proteins are best suited for vaccine candidates [88,89].

Hence, in this study, membrane proteins (25) were used for vaccine construction, whereas

cytoplasmic proteins (16) were proposed as suitable drug targets. Targeting human micro-

biome non-homology proteins is suitable since drugs or vaccines designed and administered

for these targets will be less harmful to other commensal microbial strains. Among the novel

cytoplasmic proteins (16), only the proteins (9) conferring <45% similarity with human

microbiota were retained. The VFDB (virulence factor database) analysis studies confirmed

that ‘VIBPA Type II secretion system protein L (Q87TC9)’ and ‘VIBPA Putative fimbrial pro-

tein Z (Q87I65)’ were associated with virulence in the host (Set 10). The protein-protein inter-

action studies also strengthened the superiority of these two proteins as suitable drug targets

(Table 4).

Pharmacologically active metabolites can be conveniently used as leads during the lead

optimization phase of drug discovery [90–92]. Many drugs are converted to metabolites that

can retain the intrinsic affinity of the parent drug for the pharmacological target. The contribu-

tion of active drug metabolites efficacy is relative to the contribution of the parent drug, target

affinity, functional activity and plasma protein binding [93]. In this study, molecular docking

of 350 human metabolites against ‘VIBPA Type II secretion system protein L’ and ‘VIBPA

Putative fimbrial protein Z’ was conducted to screen superior drug molecules (S2 Table). The

study revealed that ‘Eliglustat (DB09039)’ was the top drug candidate for both protein targets

in terms of free binding energy (Table 4). Therefore, it can be suggested as a suitable drug to

treat infections caused by V. parahaemolyticus. Eliglustat was first approved in August 2014 by

FDA for the treatment of Gaucher’s disease [94]. The compound belongs to the class of

‘enzyme inhibitors’ which is believed to work by inhibition of glucosylceramide synthase

[95,96]. Eliglustat prevents the formation certain fatty substance in the body which may causes

liver, spleen, bone, and blood problems. Mistry et al. reported that oral substrate reduction

therapy by Eliglustat resulted in significant improvements in platelet count, liver volume,

hemoglobin level and spleen volume, when compared with untreated adults with Gaucher dis-

ease [97]. Hydroxocobalamin (vitamin B12), on the contrary, is often used as dietary supple-

ment to treat pernicious anemia, cyanide poisoning, toxic amblyopia and Leber’s optic

atrophy [98,99]. However, antibacterial activity of vitamin B12 is not new. There is also experi-

mental evidence of synergistic antimicrobial effects of vitamin B12 with other antibiotics

[100]. In the present study Hydroxocobalamin showed significantly higher binding affinity to

VIBPA Putative fimbrial protein Z (Table 4). Therefore, it can be used as supplement with

other drugs to combat V. Parahemolyticus associated infections. Simvastatin (belongs to the

group of medicines called statins) is another approved drug which is often used to treat

patients with high blood cholesterol. It is also prescribed against rheumatoid arthritis, type-1

or type-2 diabetes [101,102], and to prevent strokes and heart attacks [103,104].

Recently, the possibility of Simvastatin as a therapeutic option for COVID-19 was reported

due to its ability to block the key factors required for infectivity [105,106]. Usually, it is consid-

ered to be a very safe medicine and unusual to have side effects [107]. However, cautions should

be taken for the repurposed use of these drugs to minimize the risk of potential toxicity.

Moreover, drug profiling (Physicochemical parameters, Lipophilicity, Pharmacokinetics,

Water Solubility, Druglikeness, Medicinal Chemistry) of ‘Eliglustat (DB09039)’ along with

other top candidates, i.e., ‘Simvastatin (DB09039)’ and ‘Hydroxocobalamin (DB00200)’ were

also performed through ADME analysis (Table 5), which showed no undesirable effects that

could reduce their drug-likeness properties.

Several advantages help the researchers to select membrane proteins both as drug and vac-

cine candidates as their functions can be easily studied through computer-based approaches
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than wet-lab process [89,108]. In this study, two vaccine targets, ‘Sensor histidine protein

kinase UhpB (Q87HJ8)’ and ‘Flagellar hook-associated protein (Q87JH9)’ were selected after

screening the novel outer-membrane proteins (25) based on their antigenicity score and

human microbiome non-homology analysis (Table 6). Both the proteins further analyzed to

design a potent, highly immunogenic vaccine candidate against V. parahaemolyticus. Numer-

ous antigenic epitopes were generated which were investigated extensively for antigenicity,

allergenicity, toxicity, conservancy and other physiochemical properties using a number of

bioinformatics tools and software. The final vaccine constructs were designed with the help of

different adjuvants and amino acid linkers [84]. It has been reported that the PADRE sequence

reduces the polymorphism of HLA molecules in the population [108,109]. Linkers in vaccines

also enhanced the immunogenicity of the vaccines in previous studies [110,111]. Therefore, all

the important that could induce the immunogenicity of the designed vaccine constructs were

taken. Also, disulfide engineering was employed to enhance the stability of the designed vac-

cine. The purpose of the molecular docking analysis was to show the proposed epitopes could

interact with at least one MHC molecule at minimum binding energy. Therefore, it was done

to explore the binding affinity of promiscuous epitopes with different HLA alleles including

HLA-DRB1�03:01 (1A6A), (HLA-DRB5�01:01 (1H15), HLA-DRB3�01:01 (2Q6W),

HLA-DRB1�04:01 (2SEB), HLA-DRB1�01:01 (2FSE), and HLA-DRB3�02:02 (3C5J). The

OmpU, one of the major outer membrane porins of V. parahaemolyticus, is recognized by the

Toll-like receptor 1/2 (TLR-1/2) heterodimer in THP-1 monocytes [112]. So, a docking study

was also performed to analyze the affinity between the designed construct and human TLR-1/

2 heterodimer. The vaccine receptor complex showed deformability at a minimum level,

which also strengthened our prediction. Finally, the optimized codons of the designed con-

struct been cloned into the pET28a(+) vector of E. coli strain K12.

The idea of subtractive genomic analysis using various bioinformatics tools has brought a

revolution in the drug discovery process. The present study will help to develop novel thera-

peutics and preventive measures against V. parahaemolyticus, thereby help to reduce the mor-

tality and morbidity caused by it. However, further in vivo trials using model organisms are

highly recommended to validate our prediction.
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