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Abstract

Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition
mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread
parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia
coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant
enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors,
significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal
structure of the bovine a-thrombin?boophilin complex, refined at 2.35 Å resolution reveals a non-canonical binding mode
to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active
site of the proteinase, with the guanidinium group of R17 anchored in the S1 pocket, while the C-terminal Kunitz domain is
negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously
characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules.
Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in
its complex with thrombin. The N-terminal boophilin domain rotates 9u and is displaced by 6 Å, while the C-terminal
domain rotates almost 6u accompanied by a 3 Å displacement. The reactive-site loop of the N-terminal Kunitz domain of
boophilin with its P1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without
sterical restraints. This finding explains the formation of a ternary thrombin?boophilin?trypsin complex, and suggests a
mechanism for prothrombinase inhibition in vivo.

Citation: Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R, et al (2008) Isolation, Cloning and Structural Characterisation of Boophilin, a
Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick. PLoS ONE 3(2): e1624. doi:10.1371/journal.pone.0001624

Editor: Bostjan Kobe, University of Queensland, Australia

Received November 25, 2007; Accepted January 20, 2008; Published February 20, 2008

Copyright: � 2008 Macedo-Ribeiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work had the financial support of grants POCTI/MGI/38108/2001 (S.M.-R.) and POCTI/BME/45559/2002 (P.J.B.P.) from Fundação para a Ciência e a
Tecnologia (Portugal), and of Plan Nacional SAF2004-00543 from Ministerio de Educación y Ciencia (P.F.-P.). The funding bodies had no role in study design, data
collection and analysis, decision to publish or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

*E-mail: PFuentes@csic-iccc.org (PF); ppereira@ibmc.up.pt (PP)

¤ Current address: Instituto de Biologia Molecular de Barcelona, Parc Cientı́fic de Barcelona, Barcelona, Spain

Introduction

Kunitz-type domains are common structural and functional

elements found in extracellular proteins [1], which are usually

associated with inhibition of trypsin-like serine proteinases [2].

Kunitz domains appear not only in single-domain proteins such as

the paradigmatic member of the family, bovine pancreatic trypsin

inhibitor (BPTI) [3], but also in multiple tandem repeats (e.g., the

three consecutive domains that build up the major inhibitor of the

coagulation cascade, tissue factor pathway inhibitor/TFPI) [4].

The crystal structure of the trypsin?BPTI complex [5] and

ensuing structural analysis of other proteinase?Kunitz inhibitor

pairs [6–10] provided major insights into the mechanism of serine

proteinase inhibition, as well as into our current understanding of

peptide bond cleavage by serine proteinases. In these enzyme?in-

hibitor complexes, the Kunitz domain inserts a protruding,

disulfide-stabilised loop-the reactive-site loop-into the active-site

cleft of its cognate proteinase. Essential elements of this binding

mode, nowadays termed canonical, are that (i) the reactive-site

loop adopts a substrate-like conformation by forming a short b-

strand that aligns anti-parallel to proteinase residues S214–G216,

with (ii) its P1 K/R residue occupying the S1 specificity pocket of

the enzyme [11] (The chymotrypsin(ogen)-based numbering

system is used throughout this work, as well as the Schechter

and Berger nomenclature, in which substrate/inhibitor residues

are denoted Pn, ..., P1, P19, ..., Pm9, from N- to C-terminal, where

P1-P19 is the scissile peptide bond. The corresponding proteinase

subsites that accommodate these residues are accordingly termed

Sn, ..., S1, S19, ..., Sm9.).

Hematophagous animals interfere with several mechanisms that

support homeostasis in their preys. In particular, these parasites

strictly require inhibition of blood clot formation to allow

successful feeding and digestion. Thrombin (E.C. 3.4.21.5), as

the ultimate proteinase of the coagulation cascade [12], represents
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an attractive and perhaps obligatory target for these animals. The

proteinase possesses two characteristic surface areas enriched in

basic residues located far from the catalytic centre, termed anion-

binding exosites. Exosites I and II allow high affinity interactions

with various macromolecular substrates and receptors. For

instance, exosite I mediates selective binding of fibrinogen and

protease activated receptors (PARs), as well as the endothelial

receptor, thrombomodulin, while exosite II recognises glycosami-

noglycans such as heparin and the platelet receptor GP Ib-IX-V

(for a recent review on the role of thrombin exosites, see ref. [13]).

Previously solved crystal structures of thrombin in complex with

unrelated inhibitors derived from insects (e.g., rhodniin [14] and

triabin [15]) or leeches [16,17] have shown that exosites are also

critical for inhibitor binding.

In spite of the large number of serine proteinases targeted by

Kunitz domains, they were long considered ineffective as

thrombin inhibitors. In fact, BPTI inhibits thrombin with a Ki

value of ,100 mM, ten orders of magnitude worse than trypsin

[18,19]. The crystal structure of human a-thrombin revealed a

major reason for this observation: the reactive-site loop of a

canonically binding Kunitz inhibitor would severely clash with the

narrow active-site cleft of the proteinase, in particular with the

unique insertion Y60A–W60D [20]. Another factor that disfavours

binding of Kunitz inhibitors to thrombin is the presence of a

glutamate at position 192, a position commonly occupied by a Gln

residue. Accordingly, both the deletion of the triplet P60B–W60D

and the single E192RQ mutation notably enhance thrombin

affinity for BPTI and TFPI [21,22].

The crystal structure of the (E192Q)thrombin?BPTI complex

revealed large displacements of the insertion 60-loop, of up to 8 Å

for the Ca atom of W60D [23]. This finding raised the following

speculation about the role of thrombomodulin: binding to exosite I

of the proteinase could induce repositioning of active site residues

and surrounding loops, to allow processing of a substrate that is

not cleaved by free thrombin, the anticoagulant protein C.

Although the crystal structure of the thrombin?thrombomodulin

complex did not reveal noticeable differences in the active site

region of bound thrombin, when compared to other reported

structures [24], it still remains theoretically possible that stronger

exosite-binders could allosterically elicit large distortions at the

catalytic centre.

The only thrombin inhibitor from the Kunitz family structurally

characterised to date, ornithodorin from the soft tick Ornithodorus

moubata, is comprised of two highly distorted Kunitz modules, none

of which would be able to bind a serine proteinase according to the

canonical mechanism [25]. Instead, ornithodorin docks with its C-

terminal domain into the basic exosite I of thrombin, and utilises

its N-terminal residues to bind across the active-site cleft. This N-

terminal peptide adopts a parallel conformation with regard to b-

strand S214–G216; the resulting non-substrate-like binding mode

is thus similar to that of leech-derived inhibitors hirudin [16] and

haemadin [17]. A non-canonical binding mode was also described

for tick anticoagulant peptide (TAP), an O. moubata factor Xa (FXa)

inhibitor [26].

The cattle tick Boophilus microplus (Acari: Ixodidae; recently re-

classified as Rhipicephalus microplus) is one of the most widely

distributed parasites of farm animals, causing an important

economic impact both due to blood and milk losses and leather

damage, and because it is a vector of major protozoan pathogens

[27]. Proteinase inhibitors have long been recognised in eggs and

larvae of B. microplus, and target trypsin, chymotrypsin, elastase, and

plasma kallikrein [28–33]. Interestingly, some inhibitors were shown

to prolong the activated partial thromboplastin time (APTT) for

bovine blood. At most partial sequence data has been reported for

these inhibitors, and their potential effect on blood coagulation

remains to be clarified. More recently, the antimicrobial single-

domain inhibitor, ixodidin, was isolated from the hemocytes of B.

microplus and shown to target both elastase and chymotrypsin [34],

while genomic analysis revealed the presence of additional Kunitz-

type inhibitors that are similar e.g. to TFPI [35,36].

Here we report the isolation, preliminary functional character-

isation, cDNA cloning, and heterologous expression of a novel

thrombin inhibitor from B. microplus, which we have termed

boophilin. In contrast to all previously discovered natural

thrombin inhibitors, boophilin potently inhibits additional tryp-

sin-like serine proteinases, including trypsin and plasmin. Besides,

and in line with these functional observations, its amino acid

sequence is more closely related to canonical Kunitz inhibitors

such as BPTI than to ornithodorin. These findings, in turn,

suggested that boophilin could employ the energy liberated upon

occupancy of exosite I to ‘‘loosen’’ thrombin’s 60-loop, thus

allowing insertion of its reactive-site loop in a canonical manner,

and provoked a structural investigation of its mechanism of

thrombin inhibition. However, the crystal structure of the bovine

thrombin?boophilin complex, refined at 2.35 Å resolution, reveals

a non-canonical, ornithodorin-like binding mode; the reactive-site

loop of the N-terminal domain remains thus freely accessible to a

second trypsin-like proteinase. Surprisingly, all elements involved

in thrombin–inhibitor interactions occupy different relative

positions when compared to the corresponding regions in the

thrombin?ornithodorin complex.

Results
Isolation of a thrombin inhibitor present in engorged B.
microplus ticks

Approximately 150 g of engorged ticks were used for inhibitor

purification. A single peak containing thrombin inhibitory activity

was detected on ion-exchange chromatography, and further

purified by affinity chromatography on a thrombin-Sepharose

column. This two-step purification protocol yielded about 50 mg of

an essentially pure protein, as judged by PAGE analysis, which we

have termed boophilin. This inhibitor displays an apparent

molecular mass (Mr) of ,23 kDa (Supplementary Figure S1), as

estimated by SDS-PAGE under reducing conditions, which almost

doubles the value determined by mass spectrometry (13.9 kDa;

Supplementary Figure S1). The anomalous migration in SDS-

polyacrylamide gels appears to be related to the acidic character of

the protein (calculated pI 4.1; see below), which could interfere

with SDS binding. We also note that the unreduced protein

migrates faster than reduced boophilin, suggesting the presence of

a disulfide-knotted domain(s).

Boophilin was shown to double the thrombin clotting time of

human plasma at an effective concentration of about 0.1 mM

(mean of four determinations). Boophilin also showed a significant

effect on the prothrombin time (effective concentration 0.4 mM;

mean of four determinations), as well as a weaker effect on the

activated partial thromboplastin time (effective concentration

1.7 mM, mean of two determinations). Assuming that the purified

inhibitor binds bovine thrombin with tight-binding kinetics, we

determined an apparent Ki of 1.8 nM. Further, we could show

formation of a stable 1:1 thrombin?boophilin complex in solution

(Figure 1A). A free active site was required for complex formation,

as no stable proteinase?inhibitor complex could be detected upon

incubation with PPACK-inhibited thrombin (data not shown).

These findings were confirmed by surface plasmon resonance

experiments (Biacore); boophilin showed high affinity for free

human a-thrombin, but bound only weakly to PPACK-thrombin

or prethrombin-2 (not shown).

Boophilin 3D-Structure
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Boophilin inhibits other serine proteinases in addition to
thrombin

In striking contrast to other characterised thrombin inhibitors,

boophilin could block the amidolytic activity of other trypsin-like

serine proteinases, most notably trypsin and plasmin (Table 1). We

examined trypsin inhibition in more detail and determined that

boophilin inhibits this serine proteinase according to a slow-

binding mechanism, with a second order rate constant k2/Ki of

(3.0860.60)6105 M21s21 (mean of four determinations). In

addition, we corroborated formation of a stable 1:1 trypsin?boo-

philin complex in solution (Figure 1B). By contrast, the activity of

other trypsin-like serine proteinases, and in particular of FXa, was

only marginally affected (Table 1).

Boophilin is comprised of two Kunitz-type domains
Edman degradation of affinity-purified boophilin failed to reveal

a signal for any amino acid residue, suggesting that the N-terminus

of the inhibitor was blocked. However, sequences of internal

boophilin regions could be obtained form chemically or enzymat-

ically generated peptides. Comparison of these sequences against

the Swiss-Prot database revealed strong similarities to Kunitz-type

proteinase inhibitors from different species, in particular to the

prototypic member of the family, BPTI (Supplementary Table S1;

see also below). In light of the molecular mass determined with

MALDI-MS (matrix-assisted laser desorption/ionisation mass

spectrometry), this partial sequence data strongly suggested that

boophilin comprised two Kunitz-type domains (Mr<6,500 Da)

connected by a short linker.

To continue structural and functional characterisation of

boophilin, we decided to clone and express the recombinant

inhibitor. For this purpose, we constructed a cDNA library of

unfed B. microplus containing 1.86106 independent clones, with

inserts ranging from 0.5 to 4.0 kb in size. Degenerate oligonucle-

otides Lys-C11Fwd and Lys-C15Rev were designed (Supplementary

Table S2), exploiting the presence of a triplet of aromatic residues

between the second and third cysteine residue in each of the two

boophilin Kunitz-type domains. These primers were used to

amplify a single ,300-bp cDNA fragment by PCR on randomly

primed cDNA derived from poly(A)+ RNA of engorged ticks. The

size of this PCR product is in good agreement with the figure

expected for a DNA fragment coding for the sequenced boophilin

fragment (see above). A band of the same size was observed when

performing PCR reactions on the cDNA library phage stock,

confirming boophilin expression in unfed animals as well.

Screening of the cDNA library with the labelled amplified

fragment allowed identification of six independent positive clones,

which were isolated and sequenced. These independent cloning

events confirmed the presence of two boophilin variants (in the

following termed G2 and H2), as suggested by the protein

sequencing results. The complete nucleotide and deduced amino

acid sequence of variant G2 is presented in Figure 2. The DNA

sequences of the two cloned boophilin variants differ at twelve

independent positions. All of these differences arise from point

mutations and result in six amino acid exchanges in the encoded

proteins: two at positions 3 and 4 of the propeptide, and four in the

mature protein. However, these substitutions are conservative

(D66RE in the N-terminal Kunitz domain, S78RN and G82RS

in the linker region, and R110RQ in the C-terminal domain), and

are thus not expected to interfere with the inhibitory potential of

boophilin. Rather, they could reflect the adaptation to different

Figure 1. Boophilin forms stable stoichiometric complexes with free thrombin and trypsin. (A) Five-hundred nanograms of free human a-
thrombin were incubated with increasing amounts of the purified inhibitor (from <140 ng, lane 2, to <2.1 mg, lane 9), and samples were resolved in
a 10% polyacrylamide gel. Lanes 1 and 10 contain 500 ng thrombin and 2.1 mg boophilin, respectively. Notice formation of a single species
corresponding to the 1:1 thrombin?boophilin complex (Thrombin?Boo). (B) Detection of equimolar trypsin?boophilin complex. Five-hundred
nanograms bovine trypsin were mixed with increasing amounts of purified boophilin (from <100 ng, lane 2, to 1.2 mg, lane 9), and samples were
separated in a 10% polyacrylamide gel. Lanes 1 and 10 contain 500 ng trypsin and 1.2 mg boophilin, respectively; cationic trypsin does not migrate
into the gel. The stoichiometric trypsin?boophilin complex is marked (Tryp?Boo).
doi:10.1371/journal.pone.0001624.g001

Boophilin 3D-Structure
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preys or the response to immunological pressure, as observed in

other blood-feeding animals.

The sequences of mature boophilin and of another related,

recently reported thrombin inhibitor, amblin [37], are compared

to the previously characterised ornithodorin and to BPTI in

Figure 3. It is immediately apparent that both boophilin domains

are much more closely related to BPTI and other canonical

Kunitz modules than to ornithodorin. Twenty-six residues of the

N-terminal and 22 residues of its C-terminal domain are identical

to BPTI, whereas the corresponding domains in boophilin and

ornithodorin share only 12 or 13 identical residues. Furthermore,

cysteine residue spacing is exactly conserved in boophilin and

BPTI. Most relevant for serine proteinase inhibition, the sequence

of the reactive-site loop in the N-terminal domain (G28-I-C-

KQA-L-I-P35; K31 corresponds to the P1 residue) closely matches

the corresponding G12-P-C-KQA-R-I-I19 sequence in BPTI and

other Kunitz inhibitors, and the secondary binding loop (F49–

C54) is even better conserved. These sequence similarities between

boophilin and BPTI contrast with the multiple insertions and

deletions found in ornithodorin (Figure 3), which altogether hinder

its binding to serine proteinases according to the canonical

mechanism [25].

Recombinant expression of boophilin and further
functional characterisation

A cDNA fragment coding for the full-length mature protein

(residues Q16 to M142, variant H2) was amplified by PCR and

subcloned into the pRBI-DsbC expression vector, as a fusion

construct with the OmpA periplasmic signal sequence (oligonu-

cleotides used for subcloning are given in Supplementary Table

S2). Escherichia coli DH5a cells were transformed with the

expression construct and used for heterologous expression of

recombinant boophilin, which was found to be correctly processed

and active in the periplasmic space of the bacteria (not shown).

The recombinant product was purified to homogeneity by anion-

exchange chromatography on Q-Sepharose FF and ResourceQ

columns, and authenticity was verified by N-terminal sequencing.

To confirm production of a correctly folded inhibitor we have

verified the inhibitory effect of recombinant boophilin on blood

coagulation (concentrations needed for doubling clotting times in the

absence of the inhibitor: thrombin time, 0.045 mM; prothrombin

time, 0.160 mM; APTT, 0.880 mM), as well as its ability to inhibit

thrombin (Ki = 3.4 nM). Next, we verified the inhibition of two other

trypsin-like serine proteinases (trypsin and plasmin), as well as a

partial effect on plasma kallikrein (80% inhibition at 2.36 mM, still

32% inhibition at 0.47 mM; compare Table 1). Finally, we have

detected a weak inhibitory effect on FVIIa (57% inhibition at

2.36 mM). In contrast, other serine proteinases (FXa, FXIIa, uPA,

sc-tPA, and tryptase) were not inhibited by boophilin. The second-

order inhibition constants against trypsin and plasmin, determined

using recombinant boophilin, are (3.8460.73)6105 M21s21 (mean

of three determinations) and (2.5960.22)6105 M21s21 (mean of

four determinations), respectively, and thus similar to the values

reported for BPTI [18,38]. All inhibitory properties of recombinant

boophilin are similar to those observed for the inhibitor isolated from

natural sources. Small differences observed are likely to be accounted

for by the presence of a mixture of boophilin isoforms, in the native

material.

By contrast, the isolated C-terminal boophilin domain, serendip-

itously obtained by cleavage of the A83–D84 peptide bond in the

interdomain linker of recombinant boophilin by an endogenous

proteinase of E. coli, showed essentially no effect on either thrombin

time, prothrombin time or partial thromboplastin time at a

concentration of 1 mM. Only at a rather high protein concentration

of 20 mM, a marginal increase (30%) in thrombin time was observed.

In addition, none of the serine proteinases tested was significantly

inhibited by the isolated boophilin domain (Table 1). Clearly,

presence of an alanine residue at the P1 position in the C-terminal

boophilin domain (Figure 3) strongly disfavours its canonical binding

to trypsin-like serine proteinases. Altogether, our results suggested

that boophilin N-terminal domain inhibited a subset of trypsin-like

serine proteinases according to the canonical mechanism, with

residue K31 occupying the S1 pocket of the bound enzyme.

Thrombin-bound boophilin retains the capability to
interact with other serine proteinases

The functional evidence presented above, combined with

structural information for thrombin?ornithodorin [25] and thrombi-

n(E192Q)?BPTI complexes [23], immediately suggested two possible

modes for boophilin binding to cognate thrombin (Figure 4A). In

both cases, the highly acidic boophilin C-terminal domain (11

aspartate/glutamate residues outbalance four basic residues) would

interact with thrombin’s positively charged exosite I. However, the

two models differ with regard to the region of the N-terminal domain

that blocks the active site of the proteinase. Binding in a canonical

manner, i.e. via reactive-site loop requires major rearrangements of

loops surrounding the active centre, and in particular of the 60-loop.

By contrast, in the ornithodorin-like conformation only the N-

terminal peptide of the inhibitor interacts with thrombin active site,

which is essentially unmodified compared to the free enzyme.

Preliminary modelling experiments indicated that both conforma-

tions could be plausibly adopted in the binary thrombin?boophilin

complex, given the considerable length of the interdomain linker.

To discriminate between these opposite binding modes, we

reasoned that the reactive-site loop of the bound inhibitor would

only be exposed in the ornithodorin-like conformation to allow

Table 1. Inhibition profile of boophilin

Enzyme
Inhibition of amidolytic activity (%) by

nBoophilin rBoophilin
rBoophilin
(C-term)

Trypsin 97 98 80

Factor Xa 10 0 0

Factor XIIa n.d. 0 0

Plasma kallikrein 66 80 0

Factor VIIa n.d. 57 0

Plasmin 87 95 25

u-PA 16 0 17

sc-tPA n.d. 4 2

Tryptase n.d. 8 8

Inhibitor samples were incubated with the nine serine proteinases listed, and
the residual activity was measured after adding proteinase-specific
chromogenic substrates, as follows: Pefachrome tPA (final substrate
concentration 0.18 and 0.54 mM, respectively) to trypsin (final enzyme
concentration 90 ng/ml) or sc-tPA (1.9 mg/ml); Chromozym X (0.36 mM) to FXa
(0.11 U/ml); Pefachrome FXIIa (0.18 mM) to FXIIa (1.8 mg/ml); Chromozym PK
(0.36 mM) to plasma kallikrein (0.52 mg/ml); Chromozym tPA (0.73 mM) to FVIIa
(2.2 mg/ml); Chromozym PL (0.18 mM) to plasmin (91 mg/ml); Pefachrome uPA
(0.18 mM) to u-PA (154 U/ml); and Chromozym TH (0.18 mM) to tryptase
(0.11 mg/ml). Reactions were allowed to proceed for 2–6 min, and the effect of
boophilin was estimated by setting the activity obtained without inhibitor as
100%. n.d., not determined. The concentrations used for boophilin samples
were: native (n) inhibitor, 3.53 mM; recombinant (r) inhibitor (full-length),
2.36 mM; recombinant inhibitor (C-terminal domain), 15.2 mM.
doi:10.1371/journal.pone.0001624.t001

Boophilin 3D-Structure
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Figure 2. Complete nucleotide sequence of the cDNA encoding for boophilin variant G2 and predicted amino acid sequence. The
coding region is shaded in light green, the start codon in dark green, the stop codon in red, the polyadenylation signal in orange, and the short
poly(A) tail in yellow. The deduced amino acid sequence of pro-boophilin is shown in red below the nucleotide sequence, in one-letter code. An
orange line indicates the fragment amplified by PCR. The in-frame stop codon that precedes the start codon for pro-boophilin is shaded blue. The
deduced amino acid sequence of boophilin (142 residues) would correspond to a polypeptide with a higher molecular mass than that experimentally
determined by MALDI-MS. However, if one considers the presence of a 15-residue pro-peptide, the resulting mature inhibitor would have a
theoretical mass of 13,950 Da, in reasonable agreement with the experimentally determined value of 13,964 Da. (Notice that no putative N-
glycosylation sites are present in the boophilin sequence). Further, the mature protein starts with a glutamine residue that could spontaneously
cyclise to pyrrolidone carboxylic acid (5-oxo-proline). This modification would explain the blocked N-terminus observed in native boophilin, and has
previously been reported in other Kunitz inhibitors such as an BPTI variant from bovine lung [74]. Open triangles indicate the positions where discrete
differences exist in the amino acid sequences of the two boophilin variants.
doi:10.1371/journal.pone.0001624.g002

Boophilin 3D-Structure
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targeting of a second serine proteinase. This possibility was

analysed using trypsin as a probe. Indeed, we could demonstrate

formation of a ternary thrombin?boophilin?trypsin complex in

solution (Figure 4B), in agreement with a non-canonical binding

mode. We conclude that the N-terminal boophilin domain can

simultaneously engage thrombin through its N-terminal peptide,

and a second trypsin-like serine proteinase in a canonical manner.

Thrombin structure is not altered in its complex with
boophilin

To verify the non-canonical mechanism of thrombin inhibition

by boophilin, we decided to solve the three-dimensional structure

of the equimolar bovine thrombin?boophilin complex. The

complex crystallises as a dimer in the asymmetric unit (depicted

in Figure 5). This non-crystallographic dimer is maintained by a

small number of water-mediated polar interactions, mostly

connecting opposite thrombin molecules. The small size of buried

surface (,400 Å2), as well as the character of the residues involved

in dimer formation and the overall nature of their interactions are

clearly compatible with a crystallisation-induced contact, but not

with a physiologic dimer. Furthermore, boophilin behaves as a

monomer in gel filtration chromatography (data not shown). The

two complexes are virtually identical (r.m.s.d. of 0.58 Å for 419

equivalent Ca positions), thus only complex A (thrombin chains A

and B and boophilin chain E) will be described.

By contrast to the major rearrangements of loops surrounding

the active site centre observed in the (E192Q)thrombin?BPTI

complex, the structure of thrombin is virtually unaltered upon

boophilin binding. In comparison to the unliganded molecule (e.g.,

free a-thrombin from PDB entry 1MKX) 279 Ca atoms of the

proteinase can be aligned with a r.m.s.d. of only 0.59 Å.

The two boophilin domains possess a canonical Kunitz
fold

As implied form the sequence conservation (Figure 3), boophilin

consists of two canonical Kunitz domains that are connected by a

10-residue linker. The N-terminal Kunitz module is most closely

related to the second TFPI domain [6] (r.m.s.d. of 0.57 Å for 56

equivalent Ca atoms). In particular, it is noteworthy that the

reactive site loops of both molecules overlap perfectly (Figure 6A).

Ornithodorin, on the other hand, with its non-canonical cysteine

spacing, deviates significantly from boophilin (r.m.s.d. of 1.75 Å

for only 29 equivalent Ca atoms), with major differences clustering

at the secondary structure elements and the reactive site loop.

From a structural point of view, the C-terminal domain of

boophilin is closest to the Kunitz module found in amyloid

precursor protein-APP [39] (r.m.s.d. of 0.48 Å for 53 equivalent

Ca atoms; Figure 6B), but there is nevertheless a reasonable

structural fit with the C-terminal domain of ornithodorin (r.m.s.d.

of 1.40 Å for 44 equivalent Ca atoms), with conservation of all

secondary structure elements. Once again, the largest deviations

between both structures are in the vicinity of the reactive site loop,

which in boophilin strictly follows the canonical path.

The solvent-exposed surface of boophilin is rather negatively

charged, especially at the C-terminal domain, which is similar to that

of ornithodorin (Supplementary Figure S2). Upon closer inspection,

however, we noticed that the N-terminal domain of boophilin

displays a more balanced distribution of opposite charges, in contrast

to the net negative potential of the first ornithodorin module, both at

the solvent-exposed and the proteinase-contacting surfaces (Supple-

mentary Figure S2). As for the C-terminal Kunitz module, there is a

comparable distribution of negative charges at the solvent-exposed

surface for both inhibitors (Supplementary Figure S2).

Figure 3. The two boophilin domains are more closely related to canonical Kunitz modules than to ornithodorin. Comparison of the
amino acid sequence of mature boophilin with three other two-domain inhibitors, ornithodorin, amblin, and bikunin; the unique C-terminal
extension in amblin has been omitted for clarity. Also included in the alignment are the sequences of BPTI and of the closest related human Kunitz
modules structurally characterised so far (two copies, one aligned with each Kunitz module of boophilin): The second and third TFPI domains (1TFX
[6] and 1IRH [75], respectively), the single Kunitz domain of APP (1AAP) [39], and the C-terminal Kunitz domain of type VI collagen (2KNT) [76].
Numbers refer to the full-length sequence of boophilin. Residues conserved throughout are white with red shading; residues identical to boophilin
are white with blue shading; conservatively replaced residues are shaded green. The four major antigenic determinants in boophilin are boxed. The
secondary structure elements of boophilin are shown below the alignment; b-strands are represented as arrows and a-helices as cylinders. The P1

residues within the reactive-site loops are indicated with black arrowheads; open arrowheads point to boophilin/ornithodorin residues involved in
important contacts with thrombin exosite I. Notice that several exosite-interacting residues are conserved or conservatively replaced in boophilin,
while they are mostly non-conservatively replaced in amblin (e.g., E130RK, L137RK).
doi:10.1371/journal.pone.0001624.g003
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Significantly different arrangements of boophilin and
ornithodorin in their complexes with thrombin

The inter-domain linker is three residues longer in boophilin

than in ornithodorin. Nevertheless, it runs closer to the proteinase

surface in thrombin bound to the former inhibitor (Figure 7A).

This linker peptide fits tighter to thrombin’s surface features and

engages in new interactions with thrombin not seen in the

thrombin?ornithodorin complex, further contributing to inhibitor

binding. The most relevant of these are hydrophobic/aromatic

contacts of BF80 with TF34, as well as a water-mediated hydrogen

bond between the carboxylate of BE81 and the main chain

nitrogen of TY76 (Figure 7B). (We use superscripts ‘‘B’’ and ‘‘T’’

before residue names to denote boophilin and thrombin residues,

respectively).

Unexpectedly, the two Kunitz domains of boophilin not only

diverge largely in three-dimensional structure from ornithodorin,

but also occupy significantly different positions relative to the

proteinase moiety, when compared to the thrombin?ornithodorin

complex (Figure 7A). In particular, the N-terminal boophilin

moiety rotates about nine degrees and is shifted <6 Å to the ‘‘left’’

in the standard orientation depicted in this figure. As for the C-

terminal module, it is in boophilin rotated by approximately six

degrees and translated by <3 Å ‘‘upwards’’. These differences in

quaternary arrangement of Kunitz modules relative to the serine

proteinase moiety result in large differences when compared to the

thrombin?ornithodorin complex, as we discuss below.

Water-mediated interactions dominate at the interface
between thrombin exosite I and boophilin

The C-terminal domain of boophilin engages in both

hydrophobic and electrostatic interactions with thrombin’s exosite

I. In contrast to the thrombin?ornithodorin complex, however,

where direct interactions between side chains of the proteinase and

the inhibitor dominate at this interface, in the boophilin complex

the equivalent residues are mostly involved in water-mediated

interactions (Figure 7B). In addition, the guanidinium group of
TR77A donates hydrogen bonds to the hydroxyl group of BY129

and the carbonyl oxygen of BD126. Further direct hydrogen bonds

are formed between the carboxylate of BE134 and the hydroxyl

group of TY76. These polar contacts are strengthened by

hydrophobic interactions between the side chains of BL137 and

a pocket formed by proteinase residues TL65, TR67 and TI82, as

well as between BV138 and TY76.

We note that the exosite I-contacting face of boophilin,

although displaying an overall negative electrostatic potential,

harbours a smaller cluster of acidic residues than ornithodorin,

Figure 4. Thrombin-bound boophilin retains the ability to interact with other serine proteinases. (A) Schematic representation of two
hypothetical thrombin?boophilin complexes. In the upper, BPTI-like mechanism, binding of the C-terminal boophilin domain to exosite I promotes
extensive rearrangements of loops surrounding the active site to allow insertion of the N-terminal domain in a canonical manner. In the alternative,
ornithodorin-like mechanism, exosite engagement is not associated with important modifications of the thrombin active site region, which is
occupied by the N-terminal peptide of the inhibitor in a parallel manner. (B) Demonstration of thrombin?boophilin?trypsin ternary complex formation
via native gel electrophoresis. One mg human a-thrombin?boophilin complex was incubated with increasing amounts of bovine trypsin (from
<300 ng, lane 3, to <6 mg, lane 9), and samples were resolved in an 8% polyacrylamide gel. Lanes 1 and 2 contain 1 mg thrombin and 1 mg
thrombin?boophilin complex, respectively; the newly formed species corresponds to the ternary complex.
doi:10.1371/journal.pone.0001624.g004
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which are located closer to the interdomain linker. Unexpectedly,

none of the three salt bridges between glutamates in ornithodorin

and the proteinase moiety are observed in the complex with

boophilin, even though these acidic residues are conserved or

conservatively replaced. Likewise, of the five residues involved in

hydrophobic contacts in ornithodorin, one (I117) has no equivalent

in boophilin, while the structural equivalents of two others (BY129

for F103 and BE133 for V107) have an increased polar character and

are no longer involved in van-der-Waals interactions (Figure 7B).

Although the total buried area upon thrombin complexation by

boophilin is equivalent to that of the thrombin?ornithodorin complex

(,1,800 Å2), the decrease in the number and strength of the

proteinase-inhibitor interactions offers an explanation for the lower

Ki determined for boophilin (see Discussion).

It is noteworthy that a good fraction of boophilin’s negative

charges cluster in the solvent exposed side of the molecule,

pointing away from the basic exosite I of thrombin (Supplemen-

tary Figure S2). This suggests that the C-terminal domain serves a

multiple role, sterically blocking substrate access, masking the

overall positive charge of the exosite, and creating a new

negatively-charged surface that can repel approaching thrombin

substrates. These combined effects would thus counteract

competitive displacement of the inhibitor by physiological

substrates, which require previous exosite I binding for processing.

The N-terminal residues of boophilin occupy the active
site cleft in a parallel manner

The experimental electron-density map (Figure 8A) unambig-

uously shows that the N-terminal residues of boophilin bind across

thrombin’s active site cleft in a parallel, hirudin-like manner [16].

In the three-dimensional structure of the thrombin?ornithodorin

complex, it was observed that the introduction of a non-natural

Figure 5. Three-dimensional structure of the a-thrombin?boo-
philin complex. The crystallographic dimer present in the asymmetric
unit is shown as a ribbon plot; thrombin molecules are coloured blue
and green and boophilin molecules are coloured red and orange.
Notice that the reactive-site loops of both inhibitor domains point away
from the proteinase moiety; the corresponding P1 residues, BK31 and
BA99, are shown as space-filling models. Within the dimer interface,
direct hydrogen bonds are formed between the side chain of BS97 and
the main-chain carbonyl of BG124 located in opposite C-terminal
domains of boophilin, and between the side chains of TD21 and TQ14A.
doi:10.1371/journal.pone.0001624.g005

Figure 6. Boophilin is structurally more related to canonical Kunitz modules than to the distorted ornithodorin domains. Stereo plots
showing the three-dimensional structure of (A) boophilin’s N-terminal domain (red) overlaid on those of the second TFPI domain, as seen in its
complex with porcine trypsin (orange, PDB entry 1TFX) [6], and of the N-terminal ornithodorin domain (yellow, 1TOC) [25], and (B) boophilin’s C-
terminal domain (red) superimposed on those of APP single Kunitz domain (cyan, 1TAW) [8], and the C-terminal ornithodorin domain (yellow, 1TOC)
[25]. The N and C termini of boophilin are labelled and its disulfide bonds are shown as sticks. Notice that in spite of significant sequence similarity
between the carboxy-terminal domain of boophilin and other Kunitz-type inhibitors (Figure 3), with strict conservation of cysteine spacing, its
putative P1 residue is nevertheless an alanine (BA99), thus precluding inhibition of trypsin-like serine proteinases.
doi:10.1371/journal.pone.0001624.g006
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serine residue at the N-terminus of the inhibitor results in an

unfavourable chemical environment around the side chain of TE192.

By contrast, the present structure shows that this carboxylate group is

stabilised by hydrogen-bonding interactions with the side chain of

the natural N-terminal residue of mature boophilin, BQ16 (see

Figure 8B for a schematic representation of major thrombin-

boophilin interactions). Inspection of the electron density maps

suggests that the latter side chain displays a somewhat increased

flexibility, which correlates well with its above-average B-factor. The

main chain of this N-terminal residue is positioned in the S2 pocket of

thrombin, stabilised by a direct hydrogen bond between its carbonyl

oxygen and the guanidinium group of BR22.

The most relevant feature of active site interactions is the

occupancy of thrombin’s S1 subsite by the ideally suited side chain

of BR17. The guanidinium group of this boophilin residue forms

two hydrogen bonds with the carboxyl group of TD189 (3.4 and

3.6 Å) at the bottom of the S1 pocket (Figure 8A). Two additional

hydrogen bonds are formed between the terminal group of BR17

and the main chain carbonyls of TG219 (direct bond) and TF227

(water-mediated). This feature also distinguishes boophilin from

ornithodorin, which lacks an equivalent residue at this position.

The following boophilin residue, BN18, interacts through its side

chain with the main chain nitrogen atom of TG219 and the

carboxyl oxygen of TE146, the latter via a solvent molecule.

Finally, BG19 is hydrogen-bonded to the carbonyl group of TG216

(Figure 8B), thus partially mimicking the interaction of a ligand

occupying the S3 pocket of the proteinase. This subsite

accommodates the side chain of BR22, which forms a direct

hydrogen bond with the hydroxyl group of TY60A. The only other

major contact between the proteinase moiety and the N-terminal

domain of boophilin is the parallel stacking of the side-chain of
BF39 with those of TP60C and TW60D.

Discussion

Tick-derived anti-hemostatics
We report the isolation and cloning of a two-domain Kunitz

inhibitor from the cattle tick Boophilus microplus, which we have

termed boophilin. Further, we characterise boophilin’s inhibitory

mechanism by solving the three-dimensional structure of its

complex with bovine thrombin. Together with our identification of

carrapatin, a single domain Kunitz-type inhibitor in engorged ticks

(Swiss-Prot accession number P81162), as well as with previous

reports of inhibitors isolated from eggs and larvae of this parasite

[28–34,40], evidence is emerging that B. microplus utilizes a whole

array of both single- and multi-domain Kunitz inhibitors during its

whole life cycle. Recently, several salivary proteins that contain

single or tandem Kunitz repeats have also been identified in the

hard ticks Ixodes scapularis [41] and I. pacificus [42], indicating that

inhibitors from this family might play a general role as

antihemostatic factors. One of these proteins, the double-headed

inhibitor, ixolaris, was shown to inhibit the tissue factor?FVIIa

complex in a FX(a)-dependent manner by binding to exosite II in

FXa, in line with its homology to TFPI [43,44].

Figure 7. Different orientations of the Kunitz domains in thrombin complexes with boophilin and ornithodorin. (A) Stereo plot
showing a comparison of thrombin?boophilin (blue/red) and thrombin?ornithodorin (blue/yellow) complexes, after overlaying both thrombin
moieties. Notice the large displacements of the corresponding N- and C-terminal Kunitz modules relative to each other. (B) Stereo close-up
highlighting the docking of the C-terminal domain of boophilin (red) to thrombin (blue) exosite I. Water molecules are represented as orange spheres
and hydrogen bonds as rows of small grey spheres. The side chains of residues involved in intermolecular contacts are shown and labelled.
doi:10.1371/journal.pone.0001624.g007
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Recently, another two-domain Kunitz inhibitor with anti-

thrombin activity, amblin from the hard tick Amblyomma hebraeum,

has been described [37]. Notably, amblin differs from boophilin due

to (i) a much shorter interdomain linker; (ii) a relatively long, highly

basic C-terminal extension; (iii) the presence of two additional

cysteine residues located in this extension and in the C-terminal

Kunitz domain, respectively, which might form an extra disulfide

bond; and (iv) non-conservative replacements of several acidic

residues of the C-terminal domain (Figure 3). We have generated a

three-dimensional model of amblin on the basis of its closest relative

of known structure, bikunin [45]. The high pI of amblin is reflected

in extended areas of basic potential on both Kunitz domains

(Supplementary Figure S2). Thus, both strong electrostatic repulsion

and inappropriate quaternary structure would make extremely

unlikely that amblin interacts with any of the positively charged

exosites on the thrombin moiety. The lack of anti-trypsin activity by

amblin is also surprising in view of the conservation of ‘‘canonical’’

reactive-site loops, and because our homology model suggests that

the reactive-site loop of the N-terminal Kunitz domain remains

accessible to target proteinases. These observations require a

thorough investigation of amblin’s inhibitory potential.

Boophilin is a canonical Kunitz-type inhibitor
Inhibition of the key procoagulant enzyme, thrombin, by

canonically binding Kunitz-type inhibitors is unfavourable due to

the presence of a prominent insertion loop at position 60, and of a

glutamate at position 192. These obstacles are circumvented in the

double-headed Kunitz inhibitor from O. moubata, ornithodorin, as

only its N-terminal peptide inserts into the active-site cleft of the

proteinase [25]. A highly similar thrombin inhibitor, savignin, has

been isolated from the salivary glands of O. savignyi [46,47], and

would be expected to use the same non-canonical mechanism for

thrombin inhibition. On the other hand, the close resemblance of

boophilin to canonical Kunitz domains and the presence of an

optimal P1 residue in its N-terminal domain (K31) suggested that

boophilin could inhibit thrombin in a canonical manner, i.e. by

occupying the active-site cleft of the proteinase with the reactive-

site loop of this module. This would require a considerable

repositioning of the N-terminal Kunitz module compared to the

thrombin?ornithodorin complex, which is nevertheless possible

given that the two domains are connected by a long, flexible linker.

Canonical binding would in turn require that initial binding of the

C-terminal domain to exosite I provided enough energy to drive

insertion of the N-terminal reactive site loop past the energetic

barrier that thrombin’s 60-loop represents.

Boophilin inhibits thrombin in a non-canonical manner,
despite possessing a canonical reactive-site loop

However, structural and functional evidence presented here

indicates that boophilin also adopts the non-canonical mechanism

for thrombin inhibition, in spite of possessing a regular BPTI-like

domain. We conclude that binding of the acidic C-terminal Kunitz

domains to exosite I does not induce major rearrangements of loops

surrounding thrombin’s active-site cleft. This is in line with our

previous observations of essentially unmodified active sites in the

crystal structures of thrombin?triabin [15] and thrombin?thrombo-

modulin [24] complexes. A recent crystal structure of murine

thrombin bound to an acidic peptide from PAR3 via exosite I

revealed some displacements of 60-loop residues, in particular

W60D [48]. However, analysis of the thrombin?PAR3 complex

(PDB entry 2PUX) indicates that these rearrangements are either

induced or stabilised by artifactual interactions with a neighbouring

crystal molecule. In conclusion, it would seem that interactions with

exosite I neither induce rearrangements of thrombin structure, in

particular of the 60-loop, nor are required for inhibitors or substrates

to approach the proteinase catalytic machinery. Exosite-mediated

interactions are nevertheless strictly required for positioning

unfavourable substrates (protein C, thrombin-activatable fibrinolysis

inhibitor/TAFI)/inhibitors (Kunitz) at a proper distance and

orientation to gain access to the active site of thrombin.

In spite of similar domain organisations and the presence of

highly acidic C-terminal domains, ornithodorin/savignin are

much tighter thrombin inhibitors (Ki = 1.0610212 M or

4.9610212 M) than boophilin (Ki = 1.861029 M). Further, where-

as ornithodorin and savignin do not cross-react with other serine

proteinases, boophilin is a potent inhibitor of trypsin and of the

fibrinolytic enzyme, plasmin. It is tempting to speculate that the

less efficient thrombin inhibitor, boophilin, confers an evolutionary

advantage to B. microplus by controlling opposing mechanisms of

hemostatic balance. Another interesting possibility is discussed

Figure 8. Boophilin inhibits thrombin in a non-canonical manner. (A) Stereo close-up of the thrombin active centre (blue) showing the
bound tetrapeptide BQ16–BR17–BN18–BG19 of boophilin (red), along with S1A–L1–N2–V3 of ornithodorin (yellow; notice that the N-terminal residue
of the latter is an artifact introduced for cloning purposes). The final electron density for the thrombin?boophilin complex, contoured at 1s, is
displayed as a blue mesh. The catalytic triad of thrombin (TH57, TD102, TS195) is highlighted in orange and the side-chains of TD189 and TE192 are
coloured pale green and cyan, respectively. Disulfide bonds are represented as yellow sticks. (B) Schematic representation of the thrombin-boophilin
interactions at the enzyme’s active site. Inhibitor residues are coloured red and hydrogen bonds are depicted as dashed lines.
doi:10.1371/journal.pone.0001624.g008
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below. Of note, a thrombin inhibitor with an apparent Mr

,60 kDa, BmAP, has been isolated from the saliva of B. microplus

[49]. In contrast to boophilin, BmAP does not inhibit plasmin or

trypsin. Finally, a small (Mr = 1,770 Da) exosite-binding thrombin

inhibitor, microphilin, has been identified in the tick saliva [50]. It

is thus conceivable that the three inhibitors cooperate to inhibit

thrombin activity during feeding and digestion.

It is also worth mentioning that immunization of cows with

salivary gland preparations from B. microplus reduced babesiosis

[51], pointing to the immunological potential of proteins secreted

by this parasite. Of note, the sequence containing the reactive-site

loop in boophilin N-terminal domain is predicted to be the major

antigenic determinant of the protein. Given that thrombin

inhibitors are critical for hematophagous animals during feeding

and digestion, boophilin would appear as a promising candidate

for the development of recombinant vaccines.

The close relatedness of boophilin to BPTI-like Kunitz inhibitors

(Figures 3 and 6) explains its ability to potently inhibit trypsin and

plasmin. In particular the N-terminal domain possesses all the

necessary features for canonical inhibition, including a lysine side

chain (K31) ideally suited for occupying the S1 pocket of trypsin-like

serine proteinases with a serine at position 190 [7,52,53]. Further,

the I29 side chain is preferred at the P3 position in Kunitz-type

inhibitors [53]. Finally, the conserved alanine residue at position P1’

is also essential for formation of stable complexes with trypsin and

plasmin [54]. For several other serine proteinases tested, the

presence of A190 at the bottom of the S1 specificity pocket, instead

of a serine in e.g. trypsin and plasmin, increases the size of this pocket

and eliminates a potential hydrogen-bond partner for a lysine side

chain [55]. In these cases, Kunitz inhibitors with an arginine at

position P1 are strongly preferred over those with a P1 lysine [52,53],

thus explaining at least partially the poor or absent effect of boophilin

on FXa, FXIIa, uPA and t-PA. Finally, in the tryptase tetramer the

active sites of all four monomers are arranged facing an internal

pore, and are therefore inaccessible to most substrates and inhibitors

[56]. Kunitz inhibitors are too bulky to enter the tryptase channel,

explaining the inactivity of boophilin towards tryptase.

Boophilin is a bi-functional serine proteinase inhibitor
As mentioned above, boophilin possesses a rather high Ki for

thrombin inhibition when compared to the two other thrombin

inhibitors known or predicted to bind in a non-canonical manner,

ornithodorin [25] and savignin [46,47]. This observation raises the

interesting possibility that boophilin could have evolved to target not

only circulating thrombin, but to block in addition the membrane-

bound activation intermediate, meizothrombin (MzT). The crystal

structure of a MzT variant that lacks the membrane-binding

fragment 1, reveals formed exosite I and active centre, while exosite

II is covered by the kringle 2 domain of the intermediate form [57].

Therefore boophilin could dock to this form essentially as seen in the

current crystal structure (see Figure 9A for a representation of the

modelled MzT?boophilin complex).

Our current data also indicate that thrombin-bound boophilin

retains the capability to interact with additional serine proteinases,

as demonstrated by formation of a stable ternary complex with

trypsin (Figure 4), and the reactive-site loop of the N-terminal

boophilin domain would remain fully accessible in the MzT?boo-

philin complex (compare Figures 5 and 9A). These observations

immediately suggest that a proximal, membrane-bound proteinase

could easily dock to this complex. Coagulation FXa would appear

as the most attractive candidate, because of its proximity to MzT

during prothrombin activation by the prothrombinase complex

(FVa?FXa). To verify that MzT?boophilin?FXa ternary complex

formation is feasible without steric clashes, we overlaid the

structurally and functionally related second Kunitz domain of

TFPI (refer to Figure 6A) bound to trypsin [6] onto the N-terminal

boophilin domain. Next, we superposed the FXa crystallographic

model [58] onto the trypsin moiety. This revealed that the serine

proteinase moieties of FXa and meizothrombin could be cross-

linked by the N-terminal domain of a boophilin molecule

(Figure 9B). Furthermore, the N-terminal domains of both

proteinases would not interfere with ternary complex formation.

In this manner, boophilin could efficiently inhibit thrombin

generation by prothrombinase. A schematic representation of this

putative, membrane-bound complex is shown in Figure 9C. We

stress, however, that free boophilin only marginally inhibits FXa in

vitro (Table 1), and thus formation of the ternary complex would

rely on the proper orientation of both membrane-bound serine

proteinases, and would probably require additional boophilin-FVa

interactions. In support of our hypothesis, we note that both

endogenous (TFPI) [4] and tick-derived multidomain Kunitz

inhibitors ixolaris [43,44] and penthalaris [59] employ this dual

strategy for inhibiting the related FVIIa?TF?FXa complex. Of

particular note, TFPI inhibits FVIIa through its first Kunitz

domain, but only after the second Kunitz moiety has bound FXa

[4,60]. Future investigations should test the validity of this model,

or identify other targets for thrombin-bound boophilin in vivo.

Finally, we notice that the current structure has implications for

modelling procedures, in particular for macromolecular docking.

Current docking algorithms have only had limited success rates, even

when the structures of isolated modules were known [61]. Our

structure of the thrombin?boophilin complex and its comparison

with the related thrombin?ornithodorin heterodimer reveals that

caution must be exercised even when a highly homologous template

for the expected complex does exist. Indeed, these two inhibitors

share a common binding mode (blockade of basic exosite I of the

proteinase and parallel alignment of N-terminal residues across the

active-site cleft). However, the details of interacting residues (e.g.,

direct vs. water-mediated contacts at exosite I, occupancy or not of

the major S1 subsite on thrombin) vary considerably in their

complexes with the proteinase. Concomitantly, and perhaps more

striking from the viewpoint of macromolecular docking, the two

pairs of inhibitor domains adopt markedly different orientations

relative to the cognate thrombin molecule.

Materials and Methods
Animals

Ticks were obtained from Drs. D.H. Aguirre and A.B. Gaido,

Instituto Nacional de Tecnologı́a Agropecuaria, Estación Exper-

imental Agropecuaria Salta (Argentina).

Reagents
Bovine a-thrombin was isolated from fresh ox blood as described

previously [62]. Other serine proteinases were purchased from the

suppliers listed below: bovine FXa, Diagnostic Reagents Ltd. (Oxon,

England); human a-FXIIa and plasma kallikrein, Kordia Laboratory

Supplies (Leiden, Netherlands); recombinant human FVIIa (Novo-

SevenH), Novo Nordisk (Denmark); human plasmin, Behringwerke

GmbH (Marburg, Germany); recombinant tryptase, Promega

(Madison, USA); recombinant sc-tPA, Boehringer Mannheim

(Mannheim, Germany); bovine pancreatic trypsin, Serva Feinbio-

chemika (Heidelberg, Germany); and urokinase (uPA), Ribosepharm

GmbH (Haan, Germany). All chromogenic substrates used were

obtained from Pentapharm AG (Basel, Switzerland), except for

ChromozymH TH (Tos-Gly-Pro-Arg-para-nitroanilide), purchased

from Boehringer Mannheim, which also provided APTT reagent

and endoproteinases Lys-C and Asp-N. DadeH Thromboplastin-IS

was purchased from Dade Behring Marburg (Marburg, Germany).
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Figure 9. Predicted boophilin interactions with meizothrombin and FXa. (A) Model of the three-dimensional meizothrombin?boophilin
complex, generated by overlaying the coordinates of bovine meizothrombin (blue except for the Kringle 2 domain, in green; 1A0H) [57] onto the
thrombin moiety of the current complex with boophilin. Residues BR17 and BK31 are shown as space-filling models and labelled. (B) Model of the
putative MzT?boophilin?FXa ternary complex. FXa (yellow, except for domain EGF2, in olive; 1FJS) [58] was docked onto the complex displayed in (A)
by juxtaposition onto a trypsin?APP complex (1TFX) [6] that had been previously overlaid onto the N-terminal domain of boophilin (red). Absence of
any steric clashes shows that formation of such a ternary complex in vivo would be feasible. The N- and C-terminal domains of boophilin (Boophilin
(N) and Boophilin (C), respectively), the serine proteinase and Kringle 2 domains of meizothrombin (SP (MzT) and Kringle 2, respectively), and the
serine proteinase and EGF-2 domains of factor Xa (SP (FXa) and EGF-2, respectively) are labelled. (C) Schematic representation of a possible
mechanism for boophilin inhibition of the membrane-bound prothrombinase complex. Both FXa and meizothrombin interact with the membrane
surface (dark red) via their respective Gla domains (light green). The multi-domain organisation of FVa (violet) and its contacts with FXa/MzT have
been omitted for simplicity. The N-terminal domain of boophilin (red) could bridge the catalytic domains of meizothrombin (dark green) and FXa
(blue) while bound to the cofactor.
doi:10.1371/journal.pone.0001624.g009
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All other chemicals, of the highest purity grade available, were

purchased from Merck (Darmstadt, Germany), except where noted.

Isolation of native boophilin
One-hundred fifty grams of frozen engorged ticks were

homogenised in 1 l buffer A (20 mM Tris-HCl, pH 8.0, 1 mM

CaCl2, 1 mM benzamidine). After centrifugation at 10,0006g for

10 minutes, the filtered (5-mm pore) supernatant was applied to a

Q-Sepharose (Pharmacia, Freiburg, Germany) column

(200650 mm) previously equilibrated with 20 mM Tris-HCl,

pH 8.0 (buffer B). The column was extensively washed with buffer

B and bound proteins were eluted with a linear NaCl gradient

(from 0 to 1.0 M in buffer B).

A thrombin affinity column was prepared by coupling 10 mg of

bovine a-thrombin to 2 g of CNBr-activated Sepharose 4B

(Pharmacia), according to the manufacturer’s guidelines. Ion-

exchange chromatography fractions with thrombin inhibitory

activity (determined as described below) were pooled, diluted with

two volumes of 20 mM sodium phosphate, pH 7.4 (buffer C) and

applied to the thrombin-Sepharose column previously equilibrated

in buffer C. The column was extensively washed with buffer C and

subsequently with buffer C containing 500 mM NaCl and with

double distilled water, before elution of specifically bound proteins

with 20 mM glycine-HCl, pH 2.5. The pH of the eluate was

immediately adjusted to 8.0 with 0.1 volumes 1 M Tris-HCl,

pH 8.0 before lyophilising the sample.

Activity assays
Thrombin inhibitory activity was followed during boophilin

purification by measuring the residual amidolytic activity of the

proteinase towards ChromozymH TH. Bovine thrombin (900 ml,

15 nM) in assay buffer (50 mM Tris-HCl, pH 7.8, 0.1 M NaCl,

0.05% PEG 6,000) was incubated with 50 ml protein samples or

with the same volume of assay buffer for 2 minutes at 37uC.

Substrate (50 ml, 1.5 mM) was then added, and absorbance of the

reaction mixture at 405 nm was monitored for 2 minutes.

Inhibition of blood clotting by boophilin
To determine thrombin time, 100 ml citrated human plasma

were mixed with 50 ml 0.154 M NaCl or inhibitor solution and

equilibrated at 37uC. Bovine thrombin (50 ml; 5 IU/ml) was then

added and the time to clot was measured. Prothrombin time was

determined by mixing 50 ml of DadeH Thromboplastin-IS with

50 ml of either 25 mM CaCl2 or the same solution containing the

sample to be assayed. After equilibration at 37uC, 50 ml human

citrated plasma were added, and the coagulation time measured.

Activated partial thromboplastin time was determined both with

and without preincubation of the inhibitor solution (40 ml) with

50 ml citrated human plasma and 50 ml APTT reagent for

3 minutes at 37uC. Ten ml of a 125 mM CaCl2 solution were

finally added and the coagulation time was measured. Clotting

times were determined in duplicate.

Inhibition of other serine proteinases
The amidolytic activity of each proteinase towards a specific

chromogenic substrate was assayed at room temperature, by

measuring the variation of light absorbance at 405 nm in the assay

mixture. Briefly, 200 ml of assay buffer (50 mM Tris-HCl,

pH 7.4–8.4, 154 mM NaCl) or of inhibitor were mixed with

50 ml of the enzyme solution and dispensed in 96-well microtiter

plates. After five minutes pre-incubation, 25 ml of the chromogenic

substrate solution were added and the reaction was allowed to

proceed for an enzyme-dependent period (2–6 minutes). Reactions

were stopped by adding 25 ml 50% (v/v) acetic acid. The enzymes

tested are given in the legend to Table 1, along with the

chromogenic substrates used in each case.

For determination of the second-order rate constants of trypsin/

plasmin inhibition, 200 ml of inhibitor solution were mixed with

25 ml substrate (Chromozym TH or Chromozym PL, respectively;

final concentration: 0.2 mM). The final concentration of recom-

binant boophilin was varied between 0.1 and 0.65 mM (trypsin), or

between 0.04 and 0.4 mM (plasmin). The reaction was started by

addition of 25 ml enzyme solution (final concentrations: 6.25 ng/

ml and 12.5 mg/ml, respectively), and the absorption at 405 nm

was measured over 45 minutes at 37uC. The pseudo-first order

rate of inactivation for each inhibitor concentration (kobs) was

determined from the progression curve according to the equation

[P] = A+Bt–Cexp(-kobst). Second-order rate constants were calcu-

lated from the equation k2/Ki = (1+[S0]/Km)/b, with

S0 = 0.2 mM, Km = 0.0117 mM for ChromozymH TH or

0.286 mM for ChromozymH PL; the slope b was computed from

the regression line 1/kobs versus 1/[I].

Electrophoretic mobility shift assays
Five-hundred ng human thrombin or bovine trypsin in 25 mM

Tris-HCl pH 8.0, 190 mM glycine, were mixed with increasing

concentrations of boophilin and incubated at room temperature for

15 min before adding glycerol to 5% final concentration. In other

experiments, thrombin?boophilin complexes were similarly titrated

with increasing concentrations of trypsin. Samples were resolved at

4uC in Tris-glycine-polyacrylamide gels and silver-stained.

Protein sequencing
Lyophilised protein samples were dissolved in 0.1 M Tris-HCl,

pH 8.0, 6 M guanidinium hydrochloride, 5% (v/v) b-mercapto-

ethanol and incubated for 16 hours at room temperature to

reduce disulfide bonds. The free thiol groups were derivatised with

5% (v/v) 4-vinylpyridine; samples were incubated for further

90 minutes at room temperature, acidified with formic acid, and

finally desalted by RP-HPLC. The S-b-pyridylethylated samples

were digested for 10 hours at 37uC with either Lys-C (in 25 mM

Tris-HCl, pH 8.5, 1 mM EDTA) or Asp-N (in 50 mM sodium

phosphate, pH 8.0). Reactions were stopped by adjusting the pH

of the samples to 2.0 with formic acid. For CNBr-cleavage, S-b-

pyridylethylated boophilin was dissolved in 70% (v/v) formic acid

containing 10% (w/v) CNBr and incubated in the dark at room

temperature for 14 h. Peptides were separated by RP-HPLC and

subjected to automated sequencing. The molecular mass of the

unmodified protein was determined by MALDI-MS.

Construction and screening of the B. microplus cDNA
library

Total RNA was isolated from 1 g of unfed ticks (for cDNA library

construction) or from 10 g of engorged adults (for PCR amplifica-

tion) and enriched in poly(A)+ RNA by oligo(dT)-cellulose affinity

chromatography. cDNA was synthesised from 1 mg of poly(A)+ RNA

with random hexanucleotides as primers, and a cDNA library was

constructed in l Uni-ZAP XR (Stratagene, Amsterdam, Nether-

lands), following the manufacturer’s instructions.

An internal fragment of boophilin cDNA was amplified by PCR

using degenerate oligonucleotides (Supplementary Table S2), cloned

into the BamH I site of pBluescript KS (Stratagene, Amsterdam,

Netherlands), and sequenced. A fragment of similar size was

amplified using aliquots of the cDNA library phage stock as

template, to verify the presence of boophilin cDNA in the library.

Positive clones, identified using the a-32P-dATP-labelled boophilin
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cDNA fragment as probe, were isolated and converted into double

stranded pBluescript phagemids by in vivo excision, and further

characterised by automated DNA sequencing of both strands.

Heterologous expression of mature boophilin
Mature boophilin (variant H2) was cloned into the bi-cistronic

expression vector pRBI-DsbC [63] by overlap-extension PCR.

Briefly, the OmpA signal-coding region of the vector and the

fragment of boophilin cDNA coding for the mature inhibitor were

amplified independently, using specific primers (Supplementary

Table S2). Aliquots of both PCR products were then mixed and

amplified using the previously used 59 primer for the OmpA

fragment and the 39 primer for boophilin. The amplified fragment,

coding for an OmpA signal–mature boophilin fusion protein was

cloned into the Xba I and Hind III sites of the expression plasmid.

Escherichia coli DH5a cells transformed with the expression

construct were grown in LB with 2 g/l glucose and 100 mg/l

ampicillin to an optical density of 0.7, before induction with 1 mM

IPTG (isopropyl-b-D-thiogalactopyranoside). At induction time,

2 g/l glucose, 100 mg/l ampicillin, and 5 mM N-acetyl-cysteine

were added. Cells were harvested 36 hours post-induction and

periplasmic proteins were released via cold osmotic shock. The

resulting solution was immediately applied to an 80650 mm Q-

Sepharose FF column pre-equilibrated with buffer D (20 mM Tris-

HCl, pH 8.0). The column was extensively washed with buffer D,

and bound proteins eluted with a linear salt gradient (from 0 to

0.5 M NaCl in buffer D). Fractions displaying anti-thrombin activity

were pooled, diluted with buffer D and loaded onto a ResourceQ

column (Pharmacia, Freiburg, Germany) pre-equilibrated with the

same buffer. The column was extensively washed with buffer D and

bound proteins were eluted with a linear salt gradient (0–0.4 M

NaCl in buffer D). Samples with anti-thrombin activity eluted as a

single peak. Correct processing of the recombinant inhibitor was

verified by MALDI-MS and N-terminal sequencing.

Complex preparation and crystallisation
The macromolecular complex was prepared by mixing bovine

a-thrombin with a molar excess of purified recombinant boophilin.

The mixture was incubated on ice for two hours, and the

thrombin?boophilin complex was separated from excess inhibitor

by size exclusion chromatography on a Superdex 75 10/30

column (Amersham Pharmacia), using 0.01 M MES pH 6.5,

0.1 M NaCl as the mobile phase. Fractions were collected and

analysed by SDS-PAGE. Those containing the thrombin?boophi-

lin complex were pooled and concentrated on a 10-kDa cut-off

centrifugal concentrator (Vivascience).

Single crystals of the macromolecular complex were obtained by

vapour diffusion at 279 K from 4-ml sitting drops containing equal

volumes of bovine thrombin?boophilin complex solution (7.5 mg/

ml in 0.01 M MES pH 6.5, 0.1 M NaCl) and precipitant (0.05 M

KH2PO4, 18% (w/v) PEG 8,000). Crystals belong to the

orthorhombic space group P212121, with unit cell constants

a = 92.5 Å, b = 104.2 Å, c = 129.1 Å, and contain two complexes

per asymmetric unit (solvent content 60.6%). The crystals were

transferred to 1.56 mother liquor containing 15% glycerol as

cryoprotectant and cryo-cooled in liquid nitrogen.

Data collection, processing and refinement
Diffraction data to 2.35 Å were collected from a single cryo-

cooled (100 K) crystal on a MAR CCD detector at ESRF

beamline ID14-EH3. Data were processed with MOSFLM [64],

scaled with SCALA [65], and reduced with tools from the CCP4

package [65]. Data collection and refinement statistics are

summarised in Table 2.

The structure was solved by molecular replacement using AMoRe

[66] with data in the 10-4.0 Å resolution range. Two proteinase

molecules were located using the coordinates of unliganded bovine

a-thrombin from PDB entry 1MKX [67] as search model. All

attempts to locate the Kunitz domains of boophilin by molecular

replacement, using truncated models of either BPTI (1BPI) [68] or

ornithodorin (1TOC) [25] were unsuccessful.

The initial electron density maps, computed after rigid body

refinement of the proteinase molecules with CNS v. 1.1 [69],

Table 2. Statistics of data collection and refinement

Crystallographic analysis

Resolution range (Å) (overall/outer shell) 54.9–2.35/2.48–2.35

Space group P212121

Unit cell dimensions (Å) a = 92.5 b = 104.2
c = 129.2

Number of observations (total/unique) 192,392/51,554

Multiplicity (overall/outer shell) 3.7/3.7

Rmerge
a (overall/outer shell) 6.4/29.0

Completeness (%) (overall/outer shell) 98.0/97.4

I/s(I) (overall/outer shell) 9.5/2.6

Mathews coefficient (Å3 Da21) 3.1

Solvent content (%) 60.6

Structure refinement

Rfactor
b/Free Rfactor

c (%) 19.0/23.0

Nu of unique reflections (working/test set) 48,886/2,627

Water molecules 453

Ions 6 (4 PO4
32, 2 Na+)

Total number of atoms 7,261

Number of protein atoms 6,771

Average overall B-factor (Å2) 31.2

Average protein B-factor (Å2) 30.8

Average main-chain B-factor (Å2) 30.5

Average side-chain B-factor (Å2) 31.2

Average water B-factor (Å2) 33.1

Average ion B-factor (Å2) 62.4 (PO4
32)/32.5 (Na+)

r.m.s.d. bonded Bs (Å2) 0.751

r.m.s.d. bond lengths (Å) 0.008

r.m.s.d. bond angles (u) 1.137

Ramachandran plot statistics

Residues in allowed regions 717 (99.9%)

Residues in generously allowed regions 1 (0.1%)

Residues in disallowed regions 0 (0%)

Estimated coordinate error

E.s.d. from Luzzati plot (Å) 0.30

DPId (Å) 0.20

aRmerge = ShSi |Ihi-,Ih.|/Sh Si ,Ih., where Ihi is the observed intensity of the
i-th measurement of reflection (h), including symmetry-related ones, and ,Ih.

is the mean intensity of the i observations of reflection h over all
measurements of Ihi.

bRfactor = S||Fo|-|Fc||/S |Fo| where |Fo| and |Fc| are observed and calculated
structure factor amplitudes, respectively.

cFree Rfactor is the cross-validation R-factor computed for a randomly chosen
subset of 5% of the total number of reflections, which were not used during
refinement.

dDiffraction-data precision indicator
doi:10.1371/journal.pone.0001624.t002

Boophilin 3D-Structure

PLoS ONE | www.plosone.org 14 February 2008 | Volume 3 | Issue 2 | e1624



displayed additional density for most of the inhibitor molecules.

Two cycles of manual rebuilding of the proteinase models on a

graphic workstation using TurboFRODO (Bio-Graphics, France),

followed by positional refinement with CNS resulted in significant

improvement of the electron density maps. This allowed manual

docking of a truncated model of BPTI close to thrombin exosite I

for each of the complexes. Further crystallographic refinement

alternated with manual model building until complete interpreta-

tion of the electron density maps. The final isotropically refined

model obtained with CNS was further refined with REFMAC_5

[70] using TLS displacement parameters.

The final model comprises residues TF1P to TR15 and TI16 to
TD243 of one thrombin molecule (chains A and B, respectively)

and residues TP1N to TE14L and TI16 to TD243 of the other

proteinase moiety (chains C and D, respectively). Both boophilin

molecules (chains E and F) were modelled from BQ16 to BM142.

The side chains of TE14L (chain A), TK236 (chain B), TK1I,
TK14D (chain C), TK87, TR93, TK97, TE113 (chain D), BE75,
BE110 (chain E), and of BK86 (chain F) are not well defined in the

electron density maps; we have assigned an occupancy value of

zero to these side chains. The model comprises also three

phosphate and two sodium ions, 453 water molecules and an N-

acetyl-glucosamine sugar moiety attached to TN60G in chain D.

Modelling and other computational methods
Sequence similarity searches were performed with the program

FastA from the Wisconsin package (version 9.0, Genetics

Computer Group, Madison, Wisconsin), and alignments were

prepared with ALSCRIPT [71]. Major antigenic peptides were

predicted with the Kolaskar & Tongaonkar method (http://bio.

dfci.harvard.edu/Tools/antigenic.pl). Models of the thrombin?

boophilin complex were built based on the co-ordinates of

(E192Q)thrombin?BPTI (1BTH) [23] and thrombin?ornithodorin

(1TOC) [25] complexes, and were subjected to energy minimiza-

tion with CNS. The amblin model was built by applying

homology-based methods as implemented in the automatic

SWISS-MODEL server (http://swissmodel.expasy.org) [72], us-

ing the structure of the Kunitz inhibitor bikunin as template [45].

Structure representations were generated with PyMOL (http://

www.pymol.org) or SETOR [73].

Accession codes
The complete nucleotide sequences of both boophilin isoforms

have been deposited with the EMBL database under accession

numbers AJ304446 and AJ304447, respectively. Coordinates for

the bovine a-thrombin?boophilin complex have been deposited

with Protein Data Bank, accession number 2ODY.

Supporting Information

Figure S1 Native boophilin is a small disulfide-linked, acidic

thrombin inhibitor. Mass spectrum of affinity-purified native

boophilin obtained using MALDI-TOF. Notice the position of the

myoglobin marker (both M+H+ and M+2H+ peaks). The inset

shows the electrophoretic analysis of purified boophilin separated

in a 15% SDS-polyacrylamide gel, stained with Coomassie

Brilliant Blue. Lane 1, non-reduced boophilin sample; lane 2,

molecular mass marker; lane 3, reduced boophilin; molecular mass

markers are given to the right.

Found at: doi:10.1371/journal.pone.0001624.s001 (0.82 MB TIF)

Figure S2 Two-domain Kunitz inhibitors of thrombin display

different surface potentials. Electrostatic surface potential (red,

negative; blue, positive) representation of (A) boophilin, (B)

ornithodorin, and (C) amblin. For image pairs in panels (A) and

(B) the left image corresponds to the exposed side of the molecule

when bound to the proteinase, and the right image results from a

180{degree sign} rotation around the y-axis, to expose the

thrombin-binding surfaces to the viewer. The model of amblin is

represented with its N-terminal domain in a similar orientation to

those of the other inhibitors. Selected topologically equivalent

residues in boophilin and ornithodorin are labelled.

Found at: doi:10.1371/journal.pone.0001624.s002 (3.19 MB TIF)

Table S1 Amino acid sequences of peptides derived from

purified native boophilin. Reduced and S-b-pyridylethylated

samples were digested with endopeptidases Lys-C or Asp-N, or

chemically hydrolysed with CNBr. The resulting fragments were

separated by RP-HPLC and major peaks were sequenced;

peptides obtained by either procedure are numbered according

to their elution order in the corresponding chromatograms.

Positions at which two different amino acid residues have been

obtained are underlined; they indicate the existence of at least two

boophilin isoforms. Overlapping peptides CNBr-Asp-N4-(Lys-C5/

Lys-C6)-Asp-N2-Lys-C15-Asp-N7 define a single sequence of 77

residues: FSYGGC4GGNENNFETIEDC5QKAC6GAPERV(N/

S)DFE(S/G)ADFKTGC1’EPAADSGSC2’AGQLERWFYNVRS-

GEC3’ETFVYGGC4’ (S/G)GN. Based on the homology to BPTI,

peptide Lys-C11 appears to correspond to the segment between the

second and the third cysteine residue of the N-terminal domain,

i.e. preceding the assembled sequence, while Asp-N8 could be

assigned to the region immediately following the C-terminal

residue in the assembled sequence.

Found at: doi:10.1371/journal.pone.0001624.s003 (0.03 MB

DOC)

Table S2 Oligonucleotides used for boophilin cloning. The

BamH I (primers Lys-C15Fwd and Lys-C15Rev), Xba I (OmpA-Fwd)

and Hind III sites (Booph-Rev) introduced for cloning purposes are

underlined. R, Y, and N, represent equimolar amounts of A and

G, C and T, and of all four bases, respectively. The triplet coding

for Q16 in primer Booph-Fwd and the termination codon in Booph-

Rev are given in bold letters.

Found at: doi:10.1371/journal.pone.0001624.s004 (0.03 MB

DOC)
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