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Abstract
Background and Aims: We aimed to assess the diagnostic potential of deep con-
volutional neural networks (DCNNs) for detecting Helicobacter pylori infection in
patients who underwent esophagogastroduodenoscopy and Campylobacter-like organ-
ism tests.
Methods: We categorized a total of 13,071 images of various gastric sub-areas
and employed five pretrained DCNN architectures: ResNet-101, Xception, Incep-
tion-v3, InceptionResnet-v2, and DenseNet-201. Additionally, we created an
ensemble model by combining the output probabilities of the best models. We
used images of different sub-areas of the stomach for training and evaluated the
performance of our models. The diagnostic metrics assessed included area under
the curve (AUC), specificity, accuracy, positive predictive value, and negative pre-
dictive value.
Results: When training included images from all sub-areas of the stomach,
our ensemble model demonstrated the highest AUC (0.867), with specificity
at 78.44%, accuracy at 80.28%, positive predictive value at 82.66%, and neg-
ative predictive value at 77.37%. Significant differences were observed in
AUC between the ensemble model and the individual DCNN models. When
training utilized images from each sub-area separately, the AUC values for
the antrum, cardia and fundus, lower body greater curvature and lesser curva-
ture, and upper body greater curvature and lesser curvature regions were
0.842, 0.826, 0.718, and 0.858, respectively, when the ensemble model
was used.
Conclusions: Our study demonstrates that the DCNN model, designed for automated
image analysis, holds promise for the evaluation and diagnosis of Helicobacter pylori
infection.

Introduction
Helicobacter pylori (H. pylori) is one of the most common infec-
tious diseases worldwide, with a prevalence of 11% in Northern
Europe, 23.1% in Canada, and 30% in the United States, and up
to 72–82% in South America and 91% in Nigeria1 In
South Korea, prevalence of up to 50% has been reported.2

H. pylori infection is associated with gastric adenocarcinoma,
peptic ulcer, gastritis, mucosal-associated lymphoid tissue
lymphoma, and immune thrombocytopenic purpura.3,4 Fur-
thermore, chronic atrophic gastritis, intestinal metaplasia in
superficial gastritis, dysplasia, and progression of gastric can-
cer have been found to be strongly associated with H. pylori
infection.5,6

With over 1 million new cases and an estimated 769 000
deaths (equivalent to 1 in every 13 deaths) occurring in 2020,
gastric cancer has the fifth highest incidence among cancers and
is the fourth leading cause of cancer death. Incidence rates are
twofold higher for men than women.7 Chronic H. pylori infection
is the most common cause of non-cardia stomach cancer,
accounting for nearly all cases.8,9 The International Agency for
Research on Cancer has classified H. pylori as a group 1 carcino-
gen based on the results of previous studies. The development of
gastric cancer following H. pylori infection is likely to occur via
an indirect effect of H. pylori on gastric epithelial cells by gener-
ating inflammation and a direct effect on epithelial cells.
H. pylori may also directly regulate epithelial cell activity via
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bacterial compounds such as cytotoxin-associated gene A. The
Asia–Pacific Gastric Cancer Consensus recommends screening
and treatment of H. pylori infection in communities with a high
incidence of gastric cancer as an effective strategy for prevention
of this disease.10

Atrophy, mucosal edema, enlarged mucosal folds, diffuse
erythema, and mucosal nodularity are the characteristic features
of H. pylori-induced gastritis. Conversely, fundic gland polyps
and regular arrangements of collecting venules are predictive
indicators of H. pylori-naïve stomach.11,12 These endoscopic
changes are not objective indicators because of the possible
intra- or inter-observer variability in the optical diagnosis of
H. pylori-infected mucosa.13 Recent developments in analytical
methods, such as neocognitron, support vector machine, and
deep learning, have resulted in advances in artificial intelligence
(AI) technology.14 As part of a broad family of machine-learning
methods based on learning data representations, deep learning
architectures are particularly suitable for qualifying images and
are known for their high performance in detection, classification,
and segmentation.15 AI using deep learning algorithms has
already surpassed human-level image recognition and is increas-
ingly used in clinical practice for image recognition and classifi-
cation.16,17 AI is expected to show promising diagnostic
performance in detecting cancer or neoplastic lesions using endo-
scopic imaging and in classifying neoplastic or non-neoplastic
lesions in the gastrointestinal tract.18

Therefore, we aimed to evaluate the diagnostic useful-
ness of different deep learning approaches in detecting
H. pylori infection, as well as the diagnostic usefulness of the
deep learning methodology based on the anatomic region of
the stomach.

Materials and methods

Study design. This study was performed in a single hospital.
Image data from 1268 patients who underwent
esophagogastroduodenoscopy (EGDS) and Campylobacter-like
organism (CLO) tests to confirm H. pylori infection without prior
gastric surgery, procedures, or anatomical abnormalities were
obtained from 2590 (positive: 1261, negative: 1329) patients
who underwent EGDS and CLO tests simultaneously at Busan
Paik Hospital between January 2019 and April 2020. A commer-
cially available CLO kit (Pylo Plus; Gulf Coast Scientific,
Oldsmar, FL, USA) was used. EGDS was performed at Busan
Paik Hospital, and images were captured using a standard endo-
scope (GIF-H260; Olympus Medical Systems, Co., Ltd., Tokyo,
Japan) and standard endoscopic video system (EVIS LUCERA
ELITE CV-290/CLV-290SL; Olympus Medical Systems). Of the
participants, 809 had tested CLO-negative and 459 CLO-positive.
This study included 13 071 images, of which 7279 were negative
and 5792 were positive for the CLO test. The
endoscopist visually classified the images, and the images of the
gastric mucosa were grouped individually. The angle, antrum,
cardia, fundus, lower body lesser curvature (LC), lower body
greater curvature (GC), upper body LC, and upper body GC were
also categorized.

Cases that displayed substandard video quality, character-
ized by either blurring or being out of focus, or those that pres-
ented suspected lesions specific to the mucosal area, such as

polyps, hemorrhages, ulcers, or cancer, were eliminated from
consideration. As H. pylori is not evenly distributed throughout
the gastric mucosa, it is recommended that tissues from the
antrum and body be collected and examined together to improve
the diagnostic rate.19 Tissue samples were obtained from the
antrum and body mucosa and placed in the test kit. A positive
CLO was determined by a change in color from yellow to red
within 60 min of the sample being deposited in the kit at room
temperature, as recommended by the manufacturer. This study
was approved by the Inje University Busan Paik Hospital’s Insti-
tutional Review Board (IRB) in Busan, Korea (IRB approval
number: 2021-08-059), which waived the requirement for written
informed consent.

Image preprocessing. The raw EGDS images include
black regions that contain patient information. In Figure 1a,
patient information is pictorially covered by a red rectangular
box to prevent leakage of personal information. In addition to
protecting patient privacy, black areas should be removed to pre-
vent deep learning models from mistraining. Therefore, image
processing techniques were applied to remove unnecessary black
regions from each EGDS image in the dataset to minimize
human intervention and to obtain consistent images.

To obtain a region of interest (ROI) from an image, we
used only the red channel in the red, green, blue (RGB) image
because the EGDS images are rich in red color. A Canny edge
was applied to find the edge in this grayscale image, as shown
in Figure 1b. After dilation of the morphological operation on
the edge image, image filling was performed to obtain the
results shown in Figure 1c. The image was complemented and
dilated to remove personal information. Consequently, the
image shown in Figure 1d was obtained. After complementing
the resulting image again, the coordinate information of the four
red dots at the corner of the white area, which is shown in
Figure 1e, was extracted. An ROI image, as shown in Figure 1f,
was obtained using the extracted coordinate information.
Through these preprocessing steps, we generated an appropriate
image for inputting into the convolutional neural net-
work (CNN).

Deep convolutional neural network. We used five pre-
trained deep convolutional neural network (DCNN) architectures:
ResNet-101,20 Xception,21 Inception-v3,22 InceptionResnet-v2,23

and DenseNet-201.24 The networks had already learned to extract
informative features from the ImageNet dataset. Five pretrained
DCNN models were used to discriminate H. pylori infection by
replacing the classifier layer with a new classifier. This was per-
formed by initializing the weight of the convolution layers with
the pretrained weights of the pretrained DCNN models while ini-
tializing the new classifier layers with random weights. The
EGDS image was then used to fine-tune the parameters of the
convolution and classifier layers. Fine-tuning of the five DCNN
models was implemented in MATLAB 2020a using the deep-
learning toolbox on a Windows 10 PC with an NVIDIA RTX
2080Ti GPU. The Adam optimizer (β1 = 0.9, β2 = 0.999) was
used with initial learning rates of 5e-4, 1e-4, and 5e-5 to fine-
tune the pretrained networks. We applied L2 regularization
(weight decay) to penalize large weights to avoid overfitting and
to generalize the results well. The regularization hyperparameter,
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which controls the amount of regularization, was set to 5e-4 and
1e-3 for all DCNN models. Furthermore, we adopted an early
stopping strategy to monitor the validation loss with a patience
set of 30 epochs to prevent overfitting. The number of epochs
to wait for a lower loss before aborting if no progress was noted
in the validation set. The sizes of the mini-batch were set to
32 for the Xception and Inception-v3 models, 16 for the
ResNet-101 and InceptionResnet-v2 models, and 8 for the
DenseNet-201 model. The mini-batch size was determined
based on the maximum capacity of the GPU. The best DCNN
model with the best AUC in the validation set was selected. To
improve discrimination power, we adopted an ensemble model
that constructs different DCNN models. The ensemble model
was obtained by averaging the output probabilities of the best
DCNN models.

Data configuration. Of the 13 071 EGDS images, 8894
images (positive 4953, negative 3941) were randomly chosen
as training data and 1570 images (positive 874 and negative
696) as validation data. The remaining 2607 images (positive
1452 and negative 1155) were independently chosen as test
data. After image preprocessing, as depicted in Figure 1, we
applied the following data augmentation methods to the
images to reduce overfitting and increase the number of train-
ing examples: resizing the input image using a scale factor
selected randomly from the range (0.8, 1.2); flipping with
50% probability in horizontal and vertical axes; rotating by
an angle selected randomly from the range (�20, 20)
degrees; and shifting horizontally and vertically by a distance
selected randomly from the range (�30, 30) pixels. Then, the
input images were resized to 224 � 224 pixels for the
ResNet-50 and DenseNet-201 models, and to 299 � 299
pixels for the Xception, Inception-v3, and Inceptionresnet-v2

models to be compatible with the proposed network. Before
being fed to the training networks, an input image was nor-
malized by channel-wise mean subtraction and divided by the
standard deviation using the ImageNet mean and standard
deviation values, respectively. The validation and test data
were not augmented.

Visual explanation by Grad-CAM. We employed a
gradient-weighted class activation mapping (Grad-CAM) tech-
nique on the classified images to understand why the DCNN
model made its decisions.25 The Grad-CAM method utilizes
the gradient of the classification score with respect to the con-
volutional features determined by the network to provide a
visual explanation of the areas of the image that influence the
classification of the model. The areas where this gradient is
large are the areas where the final score depends the most on
the data. Grad-CAM visualizes the resulting image through a
heatmap, where red typically represents high values and blue
represents low values. Figures 2 and 3 show several EGDS
images and their respective heatmaps generated by Grad-CAM
using the InceptionResnet-v2 model. The Grad-CAM heatmap
provides evidence of the areas that are most likely to be
infected with H. pylori. Figure 2 shows the basis of the deep
learning model making a correct decision (first row) and on
what basis it made a misdiagnosis (second row) in the image
of H. pylori infection. Figure 3 depicts the reason why the
deep learning model determined the normal EGDS image as
normal (first row) and as infected (second row) using
heatmaps.

Performance measures. To evaluate the diagnostic
capacity of the DCNN models, quantitative measures of the
overall classification accuracy, sensitivity, specificity, positive

Figure 1 Procedure to remove the black region of an image using image processing techniques. (a) Image captured by the endoscopic system.
The patient information in (a) is pictorially covered by a red rectangular box. (b) image in which the Canny edge algorithm is applied to the red chan-
nel of the color image (a). Morphological operations such as dilation, filling, and complement were used in (c) and (d) to identify corner coordinates
in (e) marked with red dots. Using the corner coordinates in (e), the region of interest as shown in (f) was cropped.
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Figure 2 Gradient-weighted class activation map (Grad-CAM) result of overlaying the heatmap on infected images. The first and third columns
show Helicobacter pylori-infected images. The second and fourth columns show the Grad-CAM results, which overlie the heatmap on the first and
third column images, respectively. Grad-CAM results were generated using the InceptionResnet-v2 model. The first-row images are the true positive
images, and the second-row images are the false negative images. Red areas show highly activated regions, and blue areas depict less activated
regions.

Figure 3 Gradient-weighted class activation map (Grad-CAM) result of overlaying the heatmap on uninfected images. The first and third columns
represent the uninfected images. The second and fourth columns show the Grad-CAM results, which overlie the heatmap on the first and third col-
umn images, respectively. The first-row images are true negative images, and the second-row images are false positive images. Grad-CAM results
were generated using the InceptionResnet-v2 model. Red areas show highly activated regions, and blue areas depict less activated regions.
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predictive value, and negative predictive value were calculated
as follows:

Accuracy¼ True positiveþ true negative
True positiveþ false positiveþ false negativeþ true negative

�100%,

Sensitivity¼ True positive
True positiveþ false negative

�100%,

Specificity¼ True negative
False positiveþ true negative

�100%,

Positive predictive value¼ True positive
True posiriveþ false positive

�100%,

Negative predictive value¼ True negative
False negativeþ true negative

�100%:

AUC is the area under the receiver operating characteristic
(ROC) curve for the computed values of (1 – specificity) and
sensitivity. The best cutoff point for each DCNN model to dis-
criminate H. pylori infection was determined using the maximal
Youden index (sensitivity + specificity � 1).26 As the number of
EGDS images in some regions was small, we grouped the cardia
and fundus, lower body GC and lower body LC, and upper body
GC and upper body LC into one region. This grouping was
designed based on the anatomical regions of the stomach and the
endoscopic images that were frequently displayed together.

To compare the six AUCs, we applied the nonparametric
DeLong test.27 Once the overall P-values indicated a significant
difference, pairwise comparisons were made to calculate the
P-value for each pair of models. The generalized estimating
equation (GEE) method was used to compare sensitivity, speci-
ficity, accuracy, positive predictive value, and negative predictive
value between the DCNN and ensemble models.28 All analyses
were performed using the SAS software (version 9.4; SAS Insti-
tute, Cary, NC, USA).

Results
Table 1 shows the diagnostic performances of the five DCNN
models and the ensemble model when all EGDS images were
used for training, validation, and test data. The best models for
ResNet-101, Xception, Inception-v3, InceptionResnet-v2, and
DenseNet-201 were obtained when the learning rates were 5e-5,
1e-4, and 5e-4, and L2 regularizations were 1e-3 and 5e-4,
respectively. Among the models, the ensemble model, which was
generated by averaging the output probabilities of the best
models, achieved the best AUC (0.867), specificity (78.44%),
accuracy (80.28%), positive predictive value (82.66%), and nega-
tive predictive value (77.37%). The highest sensitivity (83.75%)
was obtained by the Inception-v3 model. A comparison of the
ROC curves of the DCNN and the ensemble models is shown in
Figure 4. Based on the DeLong test, the AUCs of the five DCNN
models and the ensemble model were significantly different.

There were significant differences in sensitivity, specificity,
accuracy, positive predictive value, and negative predictive value
between the DCNN and ensemble models. The P-values listed in
Table 1 are the overall P-values, which show the overall difference
between each DCNN model, including the ensemble model.

Table 2 shows the AUC of the DCNN and ensemble
models when EGDS images are trained for each sub-anatomical
categories of stomach. For the sub-anatomical category,
DenseNet-201 had the highest AUC (0.765) in the angle region,
whereas the ensemble model achieved the best AUC for the other
regions. The AUCs for the antrum, cardia and fundus, lower
body GC and LC, and upper body GC and LC regions were
0.842, 0.826, 0.718, and 0.858, respectively, when the ensemble
model was used. Compared with the results of dealing with all
EGDS images, sub-anatomical category cases achieved a slightly
lower AUC. Figure 4 depicts the ROC curves of different sub-
anatomical regions with the ensemble model. The AUCs
according to the sub-anatomical categories of the stomach were
lower in the ensemble model than when the entire EGDS image
was used.

Discussion
For the purpose of this study, it was assumed that the presence
of H. pylori in any region of the stomach indicated an infection.
Furthermore, it was hypothesized that H. pylori infection would
result in variations in mucosal alterations depending upon the
anatomical location within the stomach; this hypothesis was con-
firmed through the study’s findings. In this study, we investigated
the diagnostic performance of five DCNN models and an ensem-
ble model to evaluate H. pylori infections using EGDS images.
As shown in Table 1, all DCNN models achieved reasonable
diagnostic performance, but the ensemble model showed better
diagnostic performance than the DCNN models. Five DCNN
models had AUCs of 0.83 or higher, while the ensemble model
had the highest AUC of 0.867 when all EGDS images were used
for training, validation, and test data. These findings suggest that
the DCNN can be used to diagnose H. pylori infection.

Four DCNN models and the ensemble model had the
highest AUC (0.858) in upper body GC and LC when images of
each sub-anatomical category of the stomach were used. The rea-
son for the higher AUC in the upper body GC and LC compared
to other regions appears to be that mucosal changes were easier
to observe compared to other regions; the number of pictures
used for training was also a factor. Among the sub-anatomical
categories of the stomach, the ensemble model showed the best
AUCs for all except the angular region. In the angular region,
DenseNet-201 had the best AUC (0.765). In a previous study,
biopsy results revealed that the antrum had more H. pylori-
associated gastritis than other regions.29 In another study, the
antrum and angular incisure showed more severe inflammation
than the gastric body.30 The AUC of the antrum was 0.842 in
this study, which was the second highest after the upper body
GC and LC. Previous reports have indicated that the antrum has
greater mucosal changes due to H. pylori-associated gastritis
because its AUC is higher than that of the other regions. How-
ever, the amount of training data for sub-anatomical categories
that came out lower than the upper body GC and LC is different,
which may be attributed to insufficient training. As shown in
Tables 1 and 2, the findings of the sub-anatomical analysis
appear to be slightly inferior to the results of processing all
EGDS images in the diagnosis of H. pylori. This is most likely
because the size of the data is not sufficient for training despite
using a pretrained model. On an experimental basis, the AUC
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values of the angular region (960 training images) and lower
body GC and LC regions (568 training images) were 0.753 and
0.718, respectively, which were smaller than the AUC values of
the other regions. Because the number of pictures taken in this
area was small, and the image quality was poor, the angle and
lower body GC and LC were small, making it difficult to use for

training. With regard to the angle component, it was determined
that utilizing it for training posed a challenge due to the frequent
variations in the shape and angle of the images captured by the
endoscopist. The underlying reason seems to be that the number
of training images used in these two domains was too small for
adequate training. The AUCs of the antrum region (3914 training
images), cardia and fundus regions (1343 training images), and
upper-body GC and LC regions (3110 training images) were
0.842, 0.826, and 0.858, respectively, which approximated the
values obtained when all EGDS images were used.

In a previous DCNN study using images of a large num-
ber of patients, the sensitivity, specificity, and accuracy of
H. pylori infection diagnosis were 80% or higher, and the AUC
was 0.89 or higher, although this was a small-scale study.12

These findings were consistent with those in another study
reporting an AUC of 0.956 and a sensitivity and specificity of
86.7%.31 In a study using the LCI-CAD (linked color imaging-
computer-aided detection) system, accuracy was 84.2% without
infection, 82.5% with current infection, and 79.2% after disinfec-
tion treatment.32 A previous meta-analysis had shown that AI
was a reliable tool for the endoscopic diagnosis of H. pylori
infection.33 For the prediction of H. pylori infection, the pooled
sensitivity, specificity, and AUC of AI were 0.87, 0.86, and 0.92,
respectively. However, in a meta-analysis including eight studies,
it was not possible to compare the diagnostic usefulness by
applying the machine learning method to each part of the stom-
ach or to evaluate the difference in diagnostic usefulness
according to the machine learning methods. These results show
similar or higher sensitivity, specificity, and AUC as those of the
present study, which is likely due to the fact that this study
focused on cases in which H. pylori infection was strongly
suspected. AUC measures how well a model can distinguish
between classes. The higher the AUC, the better the model can
differentiate between patients with and without infection.34

For endoscopic diagnosis of H. pylori infection, no diag-
nostic technique has proven to be accurate.11 Several studies
have examined the link between endoscopic findings and
H. pylori infection.35-37 Changes in the mucous membranes were
visually characterized as H. pylori-infected gastritis. Mucosal
alterations, such as regular arrangement of collecting venules
(RAC), atrophy, intestinal metaplasia, larger folds, nodularity,
diffuse redness, and others, were used as diagnostic criteria for
H. pylori infection in the Kyoto classification released in 2013.38

Because of possible intra- or inter-observer variability in the opti-
cal diagnosis of H. pylori-infected mucosa, these endoscopic
alterations are not objective indicators.13 The majority of the
CLO tests were performed, as in this study, by endoscopists and
involved cases in which H. pylori infection was suspected on
visual inspection of the gastric mucosa. This could explain why
the diagnostic rate in this study was slightly lower than those
reported in the previous studies.

The findings of this study suggest that even when
H. pylori infection is suspected, AI can be used to screen
infection. The strength of this study is that images were cap-
tured using endoscopic instruments by the same manufacturer
and were classified by a single specialist, ensuring consistent
image quality. A further strength of this study is that it com-
pared sub-anatomical regions of the stomach and used various
deep learning methods to evaluate the most appropriate

Figure 4 Receiver operating characteristic curves of deep convolutional
neural network and ensemble models. Comparison of receiver operating
characteristic (ROC) curves among deep convolutional neural network
(DCNN) and ensemble models when all esophagogastroduodenoscopy
(EGDS) images were used (upper panel). Comparison of ROC curves of
the ensemble model when each sub-anatomical category EGDS image is
used (lower panel). , ensemble (RUC = 00867); , ResNet-101
(AUC = 0.830); , Xception (AUC = 0.8333); , Inception-v3
(AUC = 0.834); , InceptionResnet-v2 (AUC = 0.847); ,
DenseNet-201 (AUC = 0.846); , All (AUC = 0.867); , Angle
(AUC = 0.753); , Antrum (AUC = 0.842); , cardian and fundus
(AUC = 0.826); , lower body GC and LC (AUC = 0.718); , upper
body GC and LC (AUC = 0.858).
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DCNN method and the optimal sub-anatomical region for AI
application in the diagnosis H. pylori infection. Furthermore,
despite the use of visual images of mucous membranes with
suspected H. pylori infection, image analysis yielded relatively
high diagnostic power.

Some limitations of this study should be noted. First,
both development and test datasets were gathered from a sin-
gle hospital. Validation with images from other facilities and
various endoscopic devices and procedures may improve the
generalizability of our findings. However, we used over
10 000 images in this investigation, so this constraint may be
resolved. Second, the CLO test, which is used to confirm
H. pylori infection status, is simple, efficient, and cost effec-
tive and has a high degree of sensitivity (around 90%) and
specificity (between 95% and 100%) in identifying the pres-
ence of H. pylori. This may have affected our evaluation of
the diagnostic ability of DCNN. This issue could be
addressed by including information about the technique of
validating H. pylori infection status in the design of DCNN.
In order to increase the diagnostic rate, samples were obtained
from two separate locations within both the antrum and the
body of the stomach; however, in most cases, it has the
drawback of being confirmed by a single EGDS test. Third,
the CLO test was performed only on patients with suspected
H. pylori infection; the study compared only the negative and
positive groups, and there was no healthy control group. As a
result, the diagnosis rate may be lower than reported in stud-
ies involving healthy controls.

This study revealed that endoscopic images can detect
H. pylori infection when using a deep learning method. It is
envisaged that applying this method to data from large-scale
national health check-ups will help lessen the disparity in
H. pylori infection evaluations between EGDS observers and
more properly assess people with suspected H. pylori infection.
As a result, this will reduce medical costs related to CLO testing.

Conclusion
Our findings show that the DCNN built to perform automatic
analysis of stored images could help with accurate H. pylori
infection screening and identify patients who require confirma-
tion tests.
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