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The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including
hyaluronic acid (HA) is closely related to the occurrence and development of tumors.
Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin,
TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/
Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-kB/NANOG and other signaling pathways,
thereby having a profound impact on the tumor microenvironment and tumor cell fate.
However, the glycosylation of CD44 is complex and largely unknown, and the current
understanding of how CD44 glycosylation affects tumors is limited. These issues must be
addressed before targeted CD44 glycosylation can be applied to treat human cancers.
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INTRODUCTION

CD44 is a nonkinase family and single-transmembrane glycoprotein that is expressed at different
levels on the cell membranes of embryonic stem cells, bone marrow cells, tumor cells, etc. (1). In
humans, CD44 is encoded by 19 exons, 10 of which are constant across all subtypes. The canonical
forms of CD44 (CD44s) are encoded by 10 constant exons. CD44 variant isoforms (CD44v1-10) are
produced by alternative splicing with any combination of 10 constant exons and the remaining 9
variant exons (2, 3). CD44s and various CD44v isoforms have overlapping and distinct functional
roles. CD44v isoforms have additional binding motifs that facilitate CD44 interactions with
molecules in the microenvironment (4). CD44v isoforms can act as coreceptors by binding/
sequestering growth factors on the cell surface and presenting these growth factors to their specific
receptors (5). CD44 promotes the stemness of cancer stem cells through interactions with HA,
extracellular matrix components, growth factors, and cytokines (1). CD44 has been identified as a
surface marker of cancer stem cell (CSC), especially the CD44v subtype is widely used to isolate and
enrich CSC in different types of cancers (6). The CD44 transmembrane glycoprotein family not only
establishes specific transmembrane complexes but also organizes signaling cascades through
association with the actin cytoskeleton (7). Thus, CD44 is a signaling platform that integrates
cellular microenvironmental signals, growth factor and cytokine signals and transduces signals to
membrane-associated cytoskeletal proteins or the nucleus to regulate cell-matrix adhesion, cell
migration, proliferation, differentiation and survival (6). Therefore, targeting different CD44
variants may be a promising therapeutic target for malignancies.
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As a common feature of cancers, aberrant glycosylation is
involved in fundamental molecular and cellular biological
processes in cancer such as cell signaling and communication,
tumor cell division and invasion, cell-matrix interactions, tumor
angiogenesis, immune regulation, and metastasis formation (8).
A growing body of biochemical, molecular and genetic studies
suggests that alterations in protein glycosylation may be a major
contributor to the tumorigenic transformation process, with
significant effects on tumor disease progression (9). In this
review, we describe the glycosylat ion modificat ion
characteristics and the potential of glycosylation alterations as
a tumor therapy involving the glycoprotein CD44.
THE STRUCTURE AND GLYCOSYLATION
DOMAIN OF CD44

The CD44 protein has four main structures: an extracellular
region, a stem region (standard stem region and/or variable stem
region), a transmembrane region (TM) and a short C-terminal
intracellular/cytoplasmic region (CP) (10). The extracellular part
consists of 7 extracellular domains (constant exons 1, 5, 6, 7),
including the N-terminal domain (ligand binding region). The
stem region (alternatively spliced region) inserts one or more
variant exons between exon 5 and exon 6. The transmembrane
region is encoded by exon 8, whereas the cytoplasmic region is
encoded by exons 9 or 10. However, exon 9 is spliced out in
almost all CD44 cDNA isoforms (11). CD44v has different
structures in the stem region (Figure 1A), resulting in different
functions (10). Due to the attachment of side chains, the
conserved form of CD44 (37 kDa) expands to 80-100 kDa,
with some isoforms exceeding 200 kDa due to the high degree
of glycosylation (11). The extracellular domain of the CD44
protein is also known as the extracellular HA-binding domain
(HABD) (13). CD44-HABD mainly binds to hyaluronic acid
(HA), collagen, laminin and fibronectin (14–16).

No t ab l y , t h e CD44 ex t r a c e l l u l a r s t r u c t u r e i s
posttranslationally modified by N-glycans, O-glycans and
glycosaminoglycans (heparan sulfate [HS], chondroitin sulfate
[CS] and keratan sulfate) (17–19). Five conserved N-
glycosylation consensus sites are located at amino-terminal 120
aa of CD44 (Figure 1B) (20). Mutation of any one of the five N-
glycosylation sites of human CD44 results in the loss of wild-type
CD44-mediated adhesion in active human cell lines (21).
Nonsialylated and nonsucucosylated complex glycans dominate
the N-glycans of CD44s (Figure 2) . In addition, the site-specific
N-glycan profiles analyzed using LC-ESI-MS (E) showed that the
vast majority of glycosyl groups, except for glycosyl N100,
contained complex-type sugars, and high-mannose-type N-
glycans occupied glycosyl N100 (22). The level of N-
glycosylation may play a key role in CD44 activation-specific
ligand binding (23–25). Most of the potential sites for O-
glycosylation are located at the membrane proximal end of the
CD44 ectodomain. A total of 146 O-glycan sites were predicted
(26). Colon cancer cells modify CD44 with O-linked glycosyl
groups, blocking CD44-mediated adhesion to HA (27). However,
Frontiers in Oncology | www.frontiersin.org 2
some studies suggest that the binding of HA to CD44 is not
related to the level of CD44 O-glycosylation (25, 28).

Signals for glycosaminoglycan (GAG) assembly are encoded
by the proteoglycan backbone. GAG synthesis occurs at serine
followed by glycine, one or more proximal acidic amino acids. In
addition, some acceptor sites are modified with CS only, and
some acceptor sites are modified with both CS and HS (29). This
suggests that CS synthesis occurs by default wherever GAGs can
be attached, whereas HS assembly requires an additional signal.
Duplication of the SG motif and signals found in the
proteoglycan backbone also include proximal hydrophobic
residues, when HS is assembled (30–32). The SGSG motif in
the exon of CD44v3 is the only assembly site for HS, and the HS
and CS linking at this site is abolished by serine to alanine
(AGAG) mutation in the V3 motif. Eight amino acids
downstream of the SGSG site in the V3 region are responsible
for the specific addition of HS to this site (29). The E5 exon is the
only exon in CD44 that supports GAG assembly and is modified
by CS. If the 8 amino acids downstream of the first SG site of the
CD44 E5 exon are exchanged with the 8 amino acids
downstream of the SGSG site of the V3 exon, the SG site of E5
is modified by HS and CS. The 8 amino acids downstream of the
first SG found in E5 are located downstream of SGSG in V3, and
this site is modified by CS but not HS (29).
N-GLYCOSYLATION AND SIALYLATION
LEVELS REGULATE CD44 BINDING TO HA

HA is a group of polysaccharides, originally designated acid
mucopo ly s a c cha r ide s , wh i ch a r e now labe l ed a s
glycosaminoglycans and are usually found in the connective
tissue of vertebrates (33). Although HA is similar to other
glycosaminoglycans, it consists of a single polysaccharide chain
due to its molecular weight, which is in the millions of daltons
(34). HA is composed of repeating disaccharide units of N-
acetyl-D-glucosamine and D-glucuronic acid and is abundantly
present in the extracellular matrix (35). HA is a polyanion that
can self-associate or bind to water molecules, creating a viscous,
gel-like environment when it is not bound to other molecules
(35). The size of the HA polymer ranges from 50 to 20 million
Da, and the function of HA is largely determined by its size (36).
High molecular weight HA is present in normal, intact, healthy
tissues and helps maintain normal homeostasis by inhibiting cell
proliferation, migration, angiogenesis, inflammation and
immunogenicity (37). Low-molecular-weight HA regulates
tumor cell motility by binding to the CD44 receptor (38, 39).
The interaction between HA and the CD44 receptor affects cell
pro l i fe ra t ion , surv iva l , mot i l i ty , invas iveness and
chemoresistance (40). Posttranslational modifications,
including glycosylation, sulfation, phosphorylation and
clustering can all regulate the binding capacity of CD44 to HA
(38, 41).

CD44 N-glycosylation regulates the "on" or "off" status of
CD44 binding to HA (12, 24). Of the five N-glycosylation sites in
CD44-HABD, Asn25 and Asn120 are required for HA binding
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and subsequent biological functions (20, 42). The negatively
charged sugar chain attached to Asn25 directly hinders the
binding of CD44 to HA (12), and N25 glycans can interact
closely with nearby N100 and N110 glycans to form a sugar
shield covering the typical binding sites of HA (43). Asn120 is
located on the backside of the HABD close to Arg29 and does not
appear to directly hinder the binding of CD44 to HA (12). A
possible explanation is that charged glycans attached to Asn120
Frontiers in Oncology | www.frontiersin.org 3
interfere with CD44 self-association and optimal binding of
cross-linked CD44 molecules by directing them to adjacent
sites on the same HA molecule (44). Furthermore, two
mutations (IRAWB14 and IRAWB26) immediately adjacent to
Asn120 in the CD44 structure, centered on Lys68, affect CD44
binding to HA (45).

The CD44 antigen is modified with sialic acids at the terminus
of its glycans (46). The sialidase inhibitor 2-deoxy-2,3-dehydro-
A

B

FIGURE 1 | CD44 gene and CD44s protein structure. (A) Schematic representation of full-length CD44, CD44s, CD44v3, CD44v6 and CD44v8-10. (B) Example
structure and N-glycan pattern of myeloma CD44-HABD monosialo (12).
FIGURE 2 | N-Glycans mudel presented on CD44s.
July 2022 | Volume 12 | Article 883831
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N-acetylneuraminic acid blocks HA recognition (47). When
CD44 N-glycans are modified with sialic acid, sialic acid forms
a competing intramolecular contact with the arginine side chain,
thereby hindering the binding of HA (48). When CD44 N-
glycans are modified with sialic acid, sialic acid forms a
competing intramolecular contact with the arginine side chain,
thereby hindering the binding of HA (48). Sialidase catalyzes the
removal of sialic acid (49), including NEU1, NEU2, NEU3 and
NEU4 and is associated with apoptosis, neuronal differentiation,
and tumorigenesis (50). After NEU4 overexpression or
activation, the modification of a-(2,3)-sialylation on CD44
decreases, and the binding affinity of CD44 for HA increases
in HCC (51). Similarly, in airway inflammation, CD44 HA
binding activity is also dependent on Neu1 enzymatic activity
(52). The sialylation status of CD44 may be more important than
its degree of expression for binding to HA (53).

N-glycosylation at specific sites of CD44 and the level of
sialylation modification on N-glycans together affect HA
binding. The extent of primary CD44 glycosylation and the
size of the attached oligosaccharides determine the coverage of
the binding site to HA. It is worth noting that the addition of
sialic acid had little effect on binding site coverage compared
with similarly sized nonsialylated N-glycans (43). The inhibition
of HA binding by sialylation may be due to the increased degree
of negative charge. Smaller N-glycan types, such as simple
GlcNAc residues, lack the range and charge necessary to
negatively affect HA binding. Conversely, the presence of
GlcNAc residues provides HA with an additional binding
surface, potentially facilitating HA recognition by providing
additional polar interaction sites and minimal binding barriers
(43, 54). In addition, N-glycosylation of CD44-HABD promotes
a secondary, less shielded but weaker (>10 mM) HA binding site
(12, 55). In the case of CD44 N-glycosylation, the flanking
arginines (R150, R154 and R162) are relatively more likely to
interact with HA (43). Modulation of glycosylation alone cannot
completely block CD44 binding to HA; however, this binding is
weak enough that modulation of the CD44 N-glycan/HA axis
remains a potential therapeutic target.
CD44 O-GLYCOSYLATION REGULATES
THE AGGRESSIVENESS OF CANCER

The O-glycosylation process refers to the addition of N-
acetylgalactosamine (GalNAc) to serine or threonine residues in
proteins and the addition of other sugar branches to create more
complex structures (56, 57). The biosynthesis of O-glycans is
controlled by T-synthase (C1GalT1) (58, 59). The endoplasmic
reticulum-localized chaperone Cosmc is required for C1GalT1
activity and expression (60, 61). Cosmc dysfunction results in
inactive C1GalT1 and subsequent expression of the Tn antigen
(62). Cosmc deficiency disrupts the CD44 O-glycosylation
structure and subsequent inhibition of MAPK signaling leads to
the inhibition of breast cancer cell growth in vivo (63). Deficiency
or overexpression of Tn antigens occurs in many types of cancer,
including gastric, colon, breast, lung, esophageal, prostate and
Frontiers in Oncology | www.frontiersin.org 4
endometrial cancers (64), which suggests that aberrant O-
glycosylation occurs frequently during tumor development. In
the complex O-glycosylation process, the formation of the Core 1
O-glycosyl is considered to be one of the main modes of
glycosylation. Core 1-mediated disruption of CD44 O-
glycosylation allows truncated CD44 in human colon cancer cell
lines to be secreted into the extracellular environment via
microvesicles; thus, exosome CD44 may be a potential vehicle for
aberrant O-glycosylation (65). In addition, higher levels of serum
CD44 protein containing the STn structure have been shown to
distinguish gastric cancer patients from healthy subjects (66, 67).

C1GalT1 is overexpressed in many cancers of epithelial origin,
including colon, breast, gastric, HNSCC, esophagus, prostate, and
hepatocellular carcinoma. C1GalT1 overexpression is also
frequently associated with poorer prognosis and poorer patient
survival (68). The oncogenic effects of C1GalT1 may be achieved
by altering the glycosylation and function of receptor tyrosine
kinases, cell surface integrins, and cell surface death receptors (68).
However, human pancreatic cancer cells with knockout of
C1GALT1 had an increased tendency for tumorigenesis and
metastasis (69). By localizing Tn-containing glycoproteins in
C1GalT1 KO cells, Leon et al. (70) found that Tn was
significantly enriched on the CSC glycoprotein CD44. C1GalT1-
mediated truncation of O-glycans on CD44 inactivates the ERK/
NF-kB signaling pathway, resulting in NANOG expression in
pancreatic cancer (PC) cells and changes in tumor stem cell
characteristics. However, high C1GALT1 expression is
associated with poor survival in pancreatic duct adenocarcinoma
patients (71). Why does truncation of CD44 O-glycosylation
contribute to downstream signaling? We speculate that excessive
O-glycosylation, similar to incomplete O-glycosylation of CD44,
affects the efficiency of CD44 function (68–71). Furthermore, the
increased tumorigenicity of pancreatic cancer caused by
knockdown of C1GalT1 may be also related to the truncation of
o-glycosylation on MUC16 (69).

Proteoglycan 4 (PRG4) is a mucin-like glycoprotein originally
found in synovial fluid, a secreted product of the intimal cells of
joint tissue and present on the surface of articular cartilage (72).
Extensive O-glycosylated mucin-like domains are required for
the boundary lubrication and lytic properties of PRG4 at various
biological interfaces in vivo, including articular cartilage, tendon,
pericardium, and the ocular surface (72). PRG4 is a ligand for
CD44 (73–75). Removal of CD44 O-glycosylation significantly
increases rhPRG4 binding to CD44 (76). PRG4 has been
observed to inhibit cancer progression through the CD44/
TGF-b pathway (77, 78). However, it is unknown whether
PRG4 inhibits tumor progression by binding to CD44, thereby
competing with HA or other ligands.
FUCOSYLTRANSFERASE-MEDIATED
CD44 FUCOSYLATION PROMOTES
TUMOR PROGRESSION

Fucosylation comprises the attachment of a fucose residue to N-
glycans, O-glycans and glycolipids, and is one of the most
July 2022 | Volume 12 | Article 883831
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common modifications (79). All fucosylation reactions in cells
are catalyzed by focusyltransferases (FUTs). To date, 13 FUTs—
FUT1 to 11, protein O-focusyltransferase 1 (POFUT1) and
POFUT—have been identified (80). After CD44 N-
acetylglucosamine is modified by a-(1,3)-focusylation, it can
further form a sialyl-Lewis X (sLeX) structure, which can
effectively bind to E-selectin (81, 82). Cell adhesion mediated
by selectin and its carbohydrate ligand sLeX plays an important
role in cancer metastasis (83). CD44 fucosylation improves the
stemness of mouse bone marrow mesenchymal stem cells (84–
87). During chemotherapy in canine lymphosarcoma, Xiong
et al. (88) found that the concentration of CD44 fucosylated
protein decreased by more than 2-fold, which may be related to
tumor cell adhesion and migration. Increasing some specific
forms of CD44 fucosylation in tumors is also thought to promote
tumor progression.

MicroRNA 29b is a tumor suppressor with important effects
on cancer progression (89). Specificity protein 1 (Sp1) is a well-
known member of a family of transcription factors that also
includes Sp2, Sp3, and Sp4, which are involved in processes such
as cell growth, differentiation, apoptosis, and carcinogenesis (90).
Sp1 is one of the targets of miR-29b (91, 92). Liu et al. (93) found
that miR-29b/Sp1 mediates the malignancy of leukemia stem
cells by regulating FUT4-mediated CD44 fucosylation in acute
myeloid leukemia. CD44/E-selectin-binding signaling
upregulates intercellular adhesion molecule 1 (ICAM-1)
expression on the cell surface via the PKCa/p38/Sp1 pathway,
thereby promoting melanoma cell metastasis (94). The E-selectin
ligand activity of CD44 is conferred by sialylation and
fucosylation modification of CD44 N-glycans (95). The
lncRNA HOX transcribed antisense RNA (HOTAIR) is
elevated in broad-spectrum tumors and is associated with
metastasis and poor prognosis (96). In human tumors,
HOTAIR competitively binds to miR-326, thereby regulating
miR-326 expression (97–99). The HOTAIR/miR-326 axis was
shown to regulate FUT6 expression to promote fucosylation of
CD44 in colorectal cancer, and fucosylated CD44 could activate
the PI3K/AKT/mTOR pathway to promote tumor progression
(100). FUT6 mediates cell surface a-(1,3)-fucosylation, induces
sLeX expression, and converts CD44 to hematopoietic cell E-/L-
selectin ligand (HCELL) (82). Both FUT4 and FUT6 can modify
a-(1,3)fucosyl bond formation. In addition, transfection of a-
(1,2)-focusyltransferase (FUT1/2) cDNA into colon cancer cell
lines resulted in cell surface expression of CD44 variants carrying
the amino acid sequence encoded by exon v6 (CD44v6), thereby
promoting tumorigenesis progress (101–104). CD44v6 is
thought to be expressed and to have increased tumorigenicity
in various human tumors, including colorectal, and head and
neck squamous cell carcinoma (HNSCC) (105–107).

The enzyme a-(1,6)-focusyltransferase (FUT8) is the only
fucosyltransferase responsible for protein N-glycan core
fucosylation (108). In the Golgi apparatus, FUT8 transfers an
L-focal site from guanosine diphosphate (GDP-b-L-focus)
(GDP-fuc) to the innermost GlcNAc of N-glycans to form an
a-1,6 fucosyl bond (109, 110). FUT8 knockout homozygous
mice experience early postnatal death, severe growth retardation,
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and emphysema-like changes in the lungs (111). FUT8 has an
important stabilizing effect on N-glycan structure, which allows
FUT8 to regulate key glycoproteins. FUT8-mediated core
fucosylation plays an important role in regulating the
biological functions of EGFR, TGFBR, E-cadherin, PD1/PD-L1
and a3b1 integrin (80). However, there is still no report on the
effect of removing core fucosylation modification from the
CD44 protein.
CD44 N-GLYCOSYLATION REGULATES
ITS BINDING TO TM4SF5

Hepatic transmembrane 4 L six family member 5 (TM4SF5) is a
membrane protein and a member of the tetrase protein family,
with four transmembrane domains, a cytoplasmic N- and C-
terminus, and an intracellular loop. TM4SF5 is N-glycosylated
on residues N138 and N155 and palmitoylated on cysteine
residues near the cytoplasmic boundary of the transmembrane
domain (112). Similar to other tetraterpenoids, TM4SF5 has
been shown to interact with a variety of membrane proteins and
receptors on the cell membrane, resulting in TM4SF5-enriched
microdomains (T5ERMs) (113). TM4SF5 has been shown to
form protein–protein complexes with CD44 (114), CD133 (115),
CD151 (116), epidermal growth factor receptor (EGFR) (117),
insulin-like growth factor 1 receptor (IGF1R) (118) and integrin-
a5 (119) on the cell surface and play roles in tumor cell
migration and anticancer drug resistance. The TM4SF5/CD44
interaction activates the proto-oncogene tyrosine-protein kinase
Src (c-Src)/signal transducer and activator of transcription 3
(STAT3)/Twist-related protein 1 (Twist1)/B-cell-specific
Moloney murine leukemia virus integration site 1 (Bmi1)
signaling pathway (120), and epithelial-mesenchymal transition
(EMT) (111), which makes TM4SF5/CD44 a potential target for
tumor-targeted therapy with coexpression of TM4SF5 and
CD44. The interaction between TM4SF5 and CD44 and the
activation of the c-Src/STAT3/Twist1/Bmi1 pathway occur
through the N-glycosylation modification of the extracellular
domain of TM4SF5 and CD44 (114). Targeted therapy of
TM4SF5 or TM4SF5/CD44 interaction may effectively inhibit
tumor progression.
CD44 TERMINAL SIALIC ACIDS ON
TUMORS REGULATE THEIR BINDING
TO SIGLEC-15

Siglec-15 was originally identified as a member of the Siglec
family with structural features of sialic acid-binding
immunoglobulin-type lectins (121). Siglec15 is upregulated in
many human cancers, and as an immunosuppressive molecule
that plays a role in the tumor microenvironment (TME), it is
mutually exclusive with PD-L1 and has potential implications in
patients with anti-PD-1/PD-L1 resistance (122, 123). CD44 is a
ligand for Siglec-15 (124). In the presence of CD44 N-glycan a-
July 2022 | Volume 12 | Article 883831
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(2,6)-linked sialic acid modifications, Siglec-15 interacts with
CD44 and mediates liver cancer progression and metastasis by
preventing CD44 lysosome-mediated degradation (125).

The ST3GAL4 gene encodes b-galactosidase a-(2,3)
sialyltransferase 4 and is involved in the biosynthesis of tumor
antigens sLeX and sulfo sLeX (126). MicroRNA 193b targets
ST3GAL4 to regulate CD44 sialylation via the NF-kB pathway,
thereby accelerating osteoarthritis progression (127). The a-
(2,3)-sialyltransferases ST3GAL1 and ST3GAL4 are the main
enzymes for the synthesis of Siglec7 and Siglec-9 in tumor cells.
Both ST3GAL4 and Siglec-7/9 have been shown to play
important roles in human tumors (128, 129). However,
whether ST3GAL4 regulates CD44 sialylation and plays a role
in tumors still needs to be confirmed. In conclusion, inhibition of
tumor progression by modulating CD44 sialylation appears to be
a viable option.
HCELLS ARE MAJOR E-/L-SELECTIN
LIGANDS IN TUMORS

E-selectin is a cytokine-activated cell adhesion molecule
expressed on endothelial cells and plays an important role in
the adhesion of inflammatory and metastatic cancer cells to
endothelial cells (130). L-selectin is an L-type transmembrane
glycoprotein and cell adhesion molecule expressed on most
circulating leukocytes and plays a role in regulating monocyte
protrusion during monocyte transendothelial migration (131).
Hematopoietic cell E/L-selectin ligand (HCELL) is a specific
glycated form of sialofucosylated CD44 that is characteristically
expressed on human hematopoietic stem cells and is the most
potent E-selectin and L-selectin expressed on human cell prime
ligands (132). According to the current commonly used CD44
nomenclature, the activities of HCELL on standard and variant
CD44 isoforms are designated as HCELLs and HCELLv,
respectively (133). The two isoforms of HCELL differ from
each other at the protein backbone and glycosylation levels.
The two HCELL isoforms have significantly different molecular
weights: HCELL migrates as a band of 90-100 kDa on SDS–
PAGE gels, whereas the HCELLv of colon cancer cells typically
has a molecular weight of approximately 150 kDa (134).
Metastatic MDA-MB-231 breast cancer cells express high
levels of the ~170 kDa HCELLv4 isoform (135). HCELLs have
been shown to be present at high levels in human malignant
hematopoietic cells, including neonatal acute myeloid leukemia
(AML) cells and the AML-derived primitive human
hematopoietic progenitor cell line KG1a (95, 132, 136). In
contrast, malignant cells of solid cancers predominantly
express the HCELLv subtype (132, 133, 137).

HCELLv is characterized by the presentation of
sialofucosylated glycosyl groups on O-glycans of the CD44
subtype. Despite these differences, cleavage-based in vitro
assays suggest that HCELLs and HCELLv are equally potent
ligands for E- and L-selectin (81). Current evidence suggests that
HCELL is a key E-selectin ligand in breast cancer (138) and a
major E-/L-selectin ligand in colon cancer (139). Human bone
Frontiers in Oncology | www.frontiersin.org 6
marrow-derived mesenchymal stem cells migrate across
endothelial cells without the need for chemokine signaling
through a VLA-4/vcam-1-dependent "Step 2-bypass pathway"
after forced targeted expression of HCELL (140, 141). The
discovery of HCELL and its function as a bone marrow
homing receptor may have enormous implications for the
realization of inverted glycobiology in clinical medicine.
CD44 CHONDROITIN SULFATE
MODIFICATION MEDIATES CD44 BINDING
TO FIBRONECTIN AND COLLAGEN
IN TUMORS

Chondroitin sulfate (CS) is a sulfated glycosaminoglycan
(GAG) distributed on the cell surface and in the extracellular
space. CS chains are covalently linked to a core protein called
CS proteoglycan (CSPG), which mediates protein–protein
interactions between cells and the extracellular matrix (ECM)
by maintaining the physical structure of the tissue, supporting
various biological functions of CSPG (142). CSPG interacts
with multiple transmembrane proteins, including integrins and
receptor tyrosine kinases, and modulates cell signaling related
to tumor cell proliferation, invasion, migration, angiogenesis,
and metastasis (143, 144). CS and keratin sulfate are found on
CD44 in certain cell types (145, 146). The addition of this
glycosaminoglycan has been shown to modify the function of
CD44. The keratin sulfate side chain on CD44H in highly
metastatic colon cancer cells significantly reduces HA binding
(146). Keratin sulfate modification of CD44 regulates
hyaluronic acid adhesion through its B-loop domain (146).
Tumor necrosis factor alpha or lipopolysaccharide and
interferon gamma (LPS/IFNg) stimulation in mouse bone
marrow-derived macrophages induces HA binding by
downregulating the sulfation of CD44 by CS (147).
Chondroitin sulfate-modified CD44 (110 kDa) in mouse
melanoma promotes melanoma cell motility (not adhesion
and spread) on type I collagen. Furthermore, the binding of
CD44 to type I collagen was mediated by chondroitin sulfate by
affinity chromatography and solid-phase binding assays (148).
The nonspliced core protein of CD44 is glycosylated by
chondroitin sulfate, which promotes the migration of
fibroblasts to the fibrin clot and the migration of endothelial
cells on the fibrin matrix. The attachment of CD44 to
fibronectin requires chondroitin sulfate modification (16,
149). CD44 chondroitin sulfate modification may be a target
for inhibiting tumor cell motility and metastasis.
CD44 HEPARAN SULFATE MODIFICATION
MEDIATES CD44 BINDING TO
GROWTH FACTORS

HS proteoglycan is ubiquitously expressed on the surface of most
animal cells and in the extracellular matrix, and its function
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mainly depends on the interaction of the HS side chain with
various proteins such as cytokines, growth factors and their
receptors, and it plays an important role in tumor progression
(150). In HS polysaccharides, negatively charged sulfate and
carboxylic acid groups are arranged in various domains and
generated through tightly regulated biosynthetic reactions, with
great potential for structural change (151). The CD44v3 isoform
containing the HS attachment site is overexpressed on the tumor
epithelium of colorectal adenomas and most carcinomas
compared with normal colon (152). CD44v3 is modified by HS
and has been shown to bind growth factors (153, 154),
promoting the binding of CD44 molecules to the cytoskeleton
in colon cancer (155). In colorectal cancer, the heparin-like and
chondroitin sulfate B side chains of CD44 bind to the laminin
A5G27 peptide (156, 157). The A5G27 peptide has excellent
specificity for cancer cells overexpressing CD44v3 and CD44v6
and inhibits the migration and invasion of cancer cells (158).
A5G27 shares considerable sequence homology (69%) with a
sequence in fibroblast growth factor 2 (FGF2) that binds heparin
and the FGF receptor, which is essential for central cavity
formation in FGF2 (159). CD44 binding to FGF2 specifically
increases FGF2-mediated proliferation, migration and survival of
tumor and endothelial cells, thereby increasing tumor growth
and metastasis (160, 161). The A5G27 peptide inhibits
melanoma metastasis and angiogenesis by reducing the
biological activity of FGF2 by blocking the binding of
FGF2 to the HS side chain of CD44v3 (162). Modulation of
CD44 heparan sulfate modification may be a promising
antitumor therapy.
CD44 GLYCOSYLATION NEGATIVELY
REGULATES PODOPLANIN-CD44
BINDING IN SQUAMOUS
CELL CARCINOMA

Podoplanin (PDPN) is a type I transmembrane mucin-like
sialoglycoprotein (163). PDPN is highly expressed on
lymphatic endothelial cells and used as a marker of
lymphangiogenesis (164). Mice deficient in PDPN die soon
after birth due to abnormalities in the lungs, heart, and
lymphatic vasculature (165). PDPN increases tumor cell
clonality, EMT, migration, invasion, metastasis and
inflammation in tumors including glioma, squamous cell
carcinoma, mesothelioma and melanoma and is considered a
potential tumor biomarker and therapy target (166). Podoplanin
molecules lack obvious enzymatic motifs, so they must exert
their biological and pathological functions through protein–
protein interactions. The C-type lectin-like receptor 2 (CLEC-
2), ERM (ezrin, radixin, moesin) protein family members ezrin
and moesin, CD9 tetraspanin, standard isoforms of CD44s and
CD44s have been found in different cell types and environments
in which PDPN interacts (167). In squamous cell carcinoma
(SCC) cells, CD44 and PDPN colocalize on cell surface
protrusions, and CD44 is required for PDPN to promote
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directional and sustained movement of epithelial cells (168).
CD44v3-10 is the main variant isoform coexpressed by CD44s
and PDPN in human SCC cell lines (169). The interaction of
PDPN and CD44 is mediated by the transmembrane and
cytoplasmic domains and is negatively regulated by
glycosylation of the extracellular domain of CD44 (169).
Inhibition of PDPN-mediated tumor progression by regulating
CD44 glycosylation deserves further in-depth research.
CONCLUSION AND PROSPECT

The level of CD44 N-glycosylation and sialylation negatively
regulates the binding to HA; however, whether O-glycosylation
has a similar effect still needs further study. The functioning of
CD44 generally involves combining with some membrane
proteins or the extracellular matrix, and N-glycosylation and
O-glycosylation on the extracellular domain of CD44
cover or constitute the corresponding binding site, thereby
regulating the tumor microenvironment and intracellular
signal transduction.

The development of glycosyl-based cancer neoantigens as
cancer vaccines and targeted therapies may pave the way for
more effective and specific tumor targeting (170). The
monoclonal antibody F77 is highly specific for prostate cancer
and can recognize the glycosylation structure of CD44v10 (171).
Bivalent F77 can induce apoptosis in prostate cancer cells,
particularly at 4°C (172), where F77 has a higher binding
affinity to its antigen (173). Downregulation of CD44 or FUT1
genes significantly reduced F77-induced apoptosis in prostate
cancer cell lines, suggesting that the binding site of F77 may
require fucosylation modification (172). KMP1 is an IgG1
antibody that specifically binds EJ, BIU-87, and T24 bladder
cancer cell lines and bladder cancer tissue but not Lovo, HeLa,
K562, HepG2, Jurkat, 293, or HCV29 cell lines, human
erythrocytes, human lymphocytes or normal bladder tissue
(174). However, the effectiveness of CD44 as a therapeutic or
diagnostic target has not been fully demonstrated in some other
studies. In addition, polysaccharide-based biomaterials HA and
CS have attracted great interest as tumor drug delivery systems
due to their good biocompatibility with and targeting to CD44.
The use of such drugs, combined with drugs targeting the CD44
glycosylation site, may be able to achieve better therapeutic
effects (175).

The critical biological roles of CD44s and CD44v in tumors
have been extensively studied; however, the glycosylation
patterns of CD44s and CD44v in different tumors are
unknown. How to engineer the glycosylation pattern of the
CD44 extracellular domain to achieve antitumor effects still
requires much effort. Notably, the CD44 glycosylation pattern
as a precise diagnostic marker in different tumors has also not
been reported. The identification of glycan epitopes by tumor
subtype may have potential applications in patient treatment
stratification. Furthermore, the prospects for creating CAR-T
cells specific to CD44 glycosylation could be very interesting
work. The complexity of the glycosylation process and the lack of
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specific methods to study it hinder related research progress.
However, recent advances in new methods such as cellular
glycoengineering and high-throughput screening (HTS) have
opened new avenues of discovery (176), which helps to explore
the effect of different glycosylation of specific amino acid residues
on the binding of different ligands
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168. Martıń-Villar E, Fernández-Muñoz B, Parsons M, Yurrita MM, Megıás D,
Pérez-Gómez E, et al. Podoplanin Associates With CD44 to Promote
Directional Cell Migration. Mol Biol Cell (2010) 21(24):4387–99.
doi: 10.1091/mbc.E10-06-0489

169. Montero-Montero L, Renart J, Ramıŕez A, Ramos C, Shamhood M, Jarcovsky
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