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ABSTRACT: Glycosylation represents a major chemical chal-
lenge; while it is one of the most common reactions in Nature,
conventional chemistry struggles with stereochemistry, regioselec-
tivity, and solubility issues. In contrast, family 1 glycosyltransferase
(GT1) enzymes can glycosylate virtually any given nucleophilic
group with perfect control over stereochemistry and regioselectiv-
ity. However, the appropriate catalyst for a given reaction needs to
be identified among the tens of thousands of available sequences.
Here, we present the glycosyltransferase acceptor specificity
predictor (GASP) model, a data-driven approach to the
identification of reactive GT1:acceptor pairs. We trained a random
forest-based acceptor predictor on literature data and validated it
on independent in-house generated data on 1001 GT1:acceptor
pairs, obtaining an AUROC of 0.79 and a balanced accuracy of 72%. The performance was stable even in the case of completely new
GT1s and acceptors not present in the training data set, highlighting the pan-specificity of GASP. Moreover, the model is capable of
parsing all known GT1 sequences, as well as all chemicals, the latter through a pipeline for the generation of 153 chemical features
for a given molecule taking the CID or SMILES as input (freely available at https://github.com/degnbol/GASP). To investigate the
power of GASP, the model prediction probability scores were compared to GT1 substrate conversion yields from a newly published
data set, with the top 50% of GASP predictions corresponding to reactions with >50% synthetic yields. The model was also tested in
two comparative case studies: glycosylation of the antihelminth drug niclosamide and the plant defensive compound DIBOA. In the
first study, the model achieved an 83% hit rate, outperforming a hit rate of 53% from a random selection assay. In the second case
study, the hit rate of GASP was 50%, and while being lower than the hit rate of 83% using expert-selected enzymes, it provides a
reasonable performance for the cases when an expert opinion is unavailable. The hierarchal importance of the generated chemical
features was investigated by negative feature selection, revealing properties related to cyclization and atom hybridization status to be
the most important characteristics for accurate prediction. Our study provides a GT1:acceptor predictor which can be trained on
other data sets enabled by the automated feature generation pipelines. We also release the new in-house generated data set used for
testing of GASP to facilitate the future development of GT1 activity predictors and their robust benchmarking.

■ INTRODUCTION
Glycosylation is a crucial step to obtain a plethora of
biologically and industrially relevant molecules, from proteins
to natural products and artificial compounds.1 Accordingly,
glycosylation is one of the most common reactions in the
biosphere. However, to achieve the required control of stereo-
and regioselectivity, organic chemists apply a succession of
reactions, including protecting group manipulations and bond
activations, amounting to low chemical yields, poor atom
economy, and large amounts of waste.2,3 In Nature, these
reactions are mainly catalyzed by glycosyltransferases, enzymes
which offer perfect stereoselectivity and often high regiose-

lectivity in a single reaction with unprotected substrates.4,5

However, the factors governing acceptor specificity and
regioselectivity of glycosyltransferase reactions are poorly
understood, making it challenging to select an appropriate
biocatalyst without extensive experimentation.6
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Glycosyltransferases are phylogenetically organized into 115
families (as of May 15th, 2023) in the Carbohydrate Active
Enzymes (CAZy) database (http://www.cazy.org/).7 Glyco-
sylation of natural products and secondary metabolites is
primarily catalyzed by glycosyltransferase family 1 (GT1)
enzymes, which thus represent important biocatalysts for
biotechnological applications.1 GT1 enzymes have a GT-B
fold, catalyzing glycosylation in a cleft between two Rossmann-
like domains, the N-terminal domain binding mainly the
acceptor substrate(s), and the C-terminal domain binding
mainly the α-glycosyl donor.8 Usually, this glycosyl donor is a
uridine diphosphate-activated sugar, and thus GT1s are called
UDP-dependent glycosyltransferases or UGTs.9 They catalyze
C-, O-, N- and S- glycosylation with an inversion of
stereochemistry, leading to β-linked products.10,11 The
reaction proceeds through an oxocarbenium glycosyl inter-
mediate, with the catalytic dyad sharing the abstracted
proton.12 However, while much is known about their
structures and mechanisms, 59 GT1 enzymes have at least
one deposited crystallographic structure and 338 are biochemi-
cally characterized as of May 15th, 2023 according to the
CAZy database, little is known about their acceptor scope,
except that it is tremendously varied with thousands of
different acceptors being reported, and individual enzymes vary
from highly specific to very promiscuous.13,14 Their activity is
difficult to infer from biological data since a single organism
can contain over hundred different GT1 genes.15

Machine learning (ML) is emerging as a powerful tool in
enzymology, due to its strength in recognizing patterns in
complex data.16,17 Accordingly, ML has previously been
employed to predict enzyme−substrate specificities.18 This
includes a random forest thiolase activity predictor,19 a
gradient-boosted regression tree capable of predicting the
donor specificity of GT-A fold glycosyltransferases,20 and a
random forest adenylate-forming enzyme substrate and
function predictor.21,22 In addition, a decision tree-based

algorithm, GT-Predict, has been developed specifically for
GT1 enzymes to predict GT1:acceptor pairs.6 GT-Predict is
trained on reactivity measurements of 54 Arabidopsis thaliana
GT1 enzymes against 91 structurally diverse glycosylation
acceptors. GT-Predict was not tested on independent data, and
testing on substrates absent from the training set would require
the manual addition of substrate features. For sequences
outside the training data (i.e., non-Arabidopsis GT1 enzymes),
GT-Predict returns the substrate reactivity measured exper-
imentally for the closest A. thaliana homologue. Given that
phylogeny has been shown to be a relatively poor predictor of
GT1 specificity,14 there is potential for further development.

In this study, we aimed to address the broad landscape of
GT1:acceptor reactivity by implementing a pan-specific
predictor able to process enzymes and chemicals outside the
training data set. We used a random forest architecture trained
on 4160 data points (each representing a GT1:acceptor pair)
publicly available through the GT-Predict publication.6 We
developed an automated pipeline for enzyme and substrate
feature generation, capable of parsing all known GT1
sequences and automatically generating 153 chemical features
for any potential acceptor substrate, thereby allowing
predictions on all GT1:acceptor pairs (Figure 1). The model,
named Glycosyltransferase Acceptor Specificity Predictor
(GASP), was tested on an in-house-generated independent
data set of 1001 data points, demonstrating the generation of a
generic predictor with a balanced accuracy of 72% to evaluate
any GT1:acceptor pair. The performance of GASP was
compared to baseline models, to GT-predict, to that of a
group of GT1 experts for the glycosylation of the plant
defensive compound 2,4-dihydroxy-1,4-benzoxazinone
(DIBOA), and to random selection for the glycosylation of
the essential medicine niclosamide. In addition, negative
feature selection was performed to understand the importance
of the 153 generated chemical features.

Figure 1. General concept of GASP: a GT1:acceptor pair consisting of an acceptor and a GT1 sequence is used as input to two automated feature
generation pipelines: (i) the enzyme feature generation based on an MSA and BLOSUM62 encoding, with colors corresponding to amino acid
type, and (ii) the substrate feature generation based on chemical features (Figure 2). These features are fed into a random forest predictor, that
then returns the predicted reaction probability of the calculated GT1:acceptor pairs. GASP is trained on data from the GT-Predict publication and
tested on an independent in-house data set (active pairs shown as green balls and inactive as red balls).
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■ METHODS
Test Data Set Generation. Twenty-four GT1 genes

randomly selected from NCBI were synthesized by Genscript
(USA) in a modified pET28a(+) vector with an N-terminal
6xHis-tag followed by a TEV-cleavage site and the gene of
interest. BL21 Star (DE3) cells (ThermoFisher Scientific,
USA) carrying a pET28a(+) vector with the GT1-gene of
interest between restriction sites NcoI (5′) and XhoI (3′) were
inoculated with 1% (v/v) overnight culture and grown at 37
°C until OD600 0.5−0.8 in Luria−Bertani media supplemented
with 50 μg/mL kanamycin. Protein expression was induced
with 0.5 mM isopropyl-β-D-thiogalactopyranoside, and cells
were grown overnight at 18 °C. Cells were harvested by
centrifugation (4000g, 15 min, 4 °C) and stored at −20 °C. All
purification steps were done on ice or in a cold room. Cell
pellets were thawed and dissolved in lysis buffer (50 mM
HEPES, 300 mM NaCl, 20 mM imidazole, 1 mM
dithiothreitol (DTT), pH 7.4, supplemented with 1 μg/mL
DNase I and one complete EDTA-free protease inhibitor
cocktail (Roche) tablet per 50 mL lysis buffer). Cells were
lysed via three passes through a French press (EmulsiFlex C5,
Avestin), and the lysate was cleared by centrifugation (12,000g,
40 min, 4 °C). The supernatant was incubated with Ni-NTA
beads (HisPur NiNTA resin, Thermo-Fischer) with gentle
shaking (1 h), and the beads were washed three times with
wash buffer (50 mM HEPES, 300 mM NaCl, 20 mM
imidazole, pH 7.4). Bound proteins were eluted with elution
buffer (50 mM HEPES, 300 mM NaCl, 250 mM Imidazole,
pH 7.4). The buffer was exchanged to 50 mM HEPES pH 7.4,
50 mM NaCl, and 2 mM DTT for storage. The protein
concentration was adjusted to 5 mg/mL (estimated by A280
using a Nanodrop spectrophotometer) when necessary, and

aliquots were flash-frozen in liquid nitrogen and stored at −80
°C.

Each GT1 enzyme was assayed against a diverse substrate
library of compounds representing a typical GT1 acceptor (n =
88, SI: Appendix) using an in-house developed NADH-
coupled enzyme assay in 96-well format; UDP release by the
GT1 reaction was detected by coupling it to NADH
consumption through the combined action of pyruvate kinase
(UDP + phosphoenolpyruvate → pyruvate) and lactate
dehydrogenase (pyruvate + NADH → NAD+ + lactate). The
consumption of NADH was followed by A340 nm. A 150 μL of
reaction mixture consisted of 3 μL of a substrate (10 mM in
DMSO), 102 μL of assay buffer (50 mM HEPES, pH 7.4, 50
mM KCl, 5 mM MgCl2, 1 mM EDTA, 1.5 mM DTT, 0.6 mM
NADH), 15 μL of detection solution (8 mM phosphoenolpyr-
uvate, 40 U/mL pyruvate kinase, 60 U/mL lactate dehydro-
genase), and 15 μL of enzyme. The reaction was initiated by
the addition of 15 μL of 10 mM UDP-α-D-glucose (UDP-Glc)
and shaken linearly for 10 s before reading out A340 for 1 h at
15 s intervals, 25 °C, in a Synergy H1 plate reader. Data were
analyzed with R (https://www.R-project.org/) using RStudio
(https://www.RStudio.com). Slopes were fitted (A340/sec),
and initial apparent rates were calculated (kobs = slope/
[NADH]/[enzyme]). Background activity from enzyme
preparations (no substrate added) was subtracted.
Reactivity Classification Pipeline. A pipeline was

constructed for the conversion of reaction rates to reactivity
Booleans (i.e., reactive and nonreactive). Reactive GT1:accep-
tor pairs are identified with outlier detection, since most
measurements are of nonreactivity, typically with a sharp
contrast to a minor set of nonzero rates (Figure S1). The
outlier detection is performed independently on each enzyme
by assuming the measurements follow a normal distribution
N[μ = 0, σ = σ (measurements)], i.e., they are all nonreactive

Figure 2. Chemical feature generation pipeline can take CIDs or SMILES and generate chemical features. If a CID is used, SMILES are generated
from the CID. Molecular properties are then retrieved from PubChem via webchem24 using the SMILES. The SMILES are passed to RDKit which
creates a molecular representation, including 3D conformers that are written to PDBs and translated to volume features. RDKit is then used to
generate structural characteristics, while E3FP25 is used to generate molecular fingerprints from the SMILES representation (the symbol ‘#’
indicates “number of”). All pairwise Euclidean distances are calculated between the molecular fingerprints using E3FP which are converted to
projected points in a k-dimensional space (here, k = 12) using MultiDimensional Scaling (MDS). Features from all steps above are concatenated
into a total of 153 chemical features.
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with nonzero rates occurring due to noise. From the
distribution, a p-value is calculated to quantify how extreme
any of the measurements are. Adjusted p-values were
calculated from the p-values with the Holm method.
Measurements that have both p-value > 0.05 and adjusted p-
value > 0.05 are considered to fit the null hypothesis and are
therefore classified as nonreactive observations, while measure-
ments with both p-value < 0.05 and adjusted p-value < 0.05 do
not fit the null-hypothesis, so are classified as observations of
reactivity. Some data points have a p-value < 0.05 but adjusted
p-value > 0.05 which was considered inconclusive evidence;
thus, those data points were discarded.
Enzyme Feature Generation Pipeline. A pipeline was

developed for generating enzyme features that incorporate
GT1 enzyme sequences from experimental data sets (i.e., the
test data set, GT-Predict data set, and reactions from
literature) and the CAZy database (26,335 unique Genbank
ID entries as of Dec. 2nd, 2021). Sequences from experimental
data sets were aligned with MUSCLE23 and combined with
GT1 sequences from CAZy, filtered in length to range from
300 to 600 amino acids. Subsequently, a Hidden Markov
Model was built upon the combined set of GT1 sequences
using HMMER. Nonconsensus positions were discarded,
where a consensus position was identified as the majority of
sequences containing the same letter for that location.
Sequence alignments with less than 80% identity to the
consensus sequence (i.e., the sequence with the most frequent
amino acids at each position) were discarded, yielding a set of
10,374 sequences. As the N-terminus region is most important
for acceptor preference, each of the remaining 10,374
sequences was split in half, and only the part corresponding
to the N-terminus was kept for amino acid encoding with
BLOSUM62.
Substrate Feature Generation Pipeline. To enable easy

prediction of an active GT1 enzyme for any acceptor substrate,
we developed a pipeline for substrate feature generation:
acceptors represented as PubChem CIDs are converted to
SMILES and used as input to RDKit (https://www.rdkit.org),
webchem,24 and E3FP25 to generate molecular features (Figure
2). Molecular properties are found with the RDKit software
and curated from PubChem with the webchem R package.24 In
addition, RDKit is used for generating 3D representations of
the chemical compounds in PDB format, which are further
used to generate area and volume features with the PyMOL
Molecular Graphics System (Version 2.0 Schrödinger, LLC)
and ProteinVolume,26 respectively. E3FP25 is used for
generating molecular fingerprints. The fingerprints are
projected into a metric space by applying MultiDimensional
Scaling (MDS) to pairwise Euclidean distances calculated
between all the molecular fingerprints. Thus, the chemical
features from the molecular fingerprints are represented in a
12-dimensional space. MDS was employed to reduce the
dimensions of the molecular fingerprints, thereby mitigating
the risk of a potential dimensionality problem. A reduction to
12 dimensions was chosen to balance the need for retaining
enough information to distinguish different substrates while
avoiding fingerprints dominating the substrate encoding.
Furthermore, since random forest is employed, it is anticipated
that any extraneous MDS features will simply be excluded from
the decision trees. Ultimately, all these substrate features are
concatenated to a single feature vector.
Model Training and Evaluation. GT1:acceptor pairs

from the GT-Predict data set (77 chemicals and 73 GT1

enzymes, 4160 data points) was encoded using the
BLOSUM62 encodings and substrate features as described
previously, concatenating them both into a singular feature
vector. After removing redundant features with identical values
across the entire data set, the encoded GT-Predict data set was
used to train and optimize a random forest predictor as follows.
The effects of “n_estimators” and “max_depth” hyper-
parameters were first examined manually, and then a more
thorough grid search of a larger set of hyperparameters was
implemented based on the 5-fold cross-validation and area
under the receiver operating characteristic curve AUROC
(Table S1). Since an exhaustive grid search might lead to
overfitting, we decided to keep both the model after manual
search and the best performing model after the grid search.

The two developed models were tested using an
independent in-house data set (1001 data points, see Test
Data Set Generation), using the same protocol for feature
generation. The AUROC, calculated with the scikit-learn
metrics package27 in Python (version 3.8.5), indicated an
overfitting for the best model from the grid search (Figure S2),
and consequently, the corresponding model was discarded. It
should here be noted that the test set was only employed in
model selection for subsequent experimental validation (see
Case Study: Glycosylation of GASP-Predicted GT1s vs Expert
Selection and Random Selection in Methods), and neither
model was tuned toward our independent data set. The
resulting model, obtained from manual parameter search, was
further evaluated by the balanced accuracy, precision, recall,
and F1-score. The balanced accuracy (eq 1), precision (eq 2),
recall (eq 3), and F1-score (eq 4) were calculated as follows
(false negative (FN), false positive (FP), true negative (TN),
and true positive (TP)):

=
++ +balanced accuracy
2

TP
TP FN

TN
TN FP

(1)

=
+

precision
TP

TP FP (2)

=
+

recall
TP

TP FN (3)

= ·
+

F 2
precision recall

precision recall1
(4)

To calculate the confusion matrix for the reporting purposes,
the threshold of 0.345 corresponding to the maximum F1-
score was selected (Figure S3). However, the raw score
returned by GASP was eventually used in ranking the
sequences in the subsequent experimental validation (see
Case Study: Glycosylation of GASP-Predicted GT1s vs Expert
Selection and Random Selection).
Comparison to Baselines and Single-Task Models. To

examine the performance of GASP, we constructed baseline
and single-task models as described by Goldman et al.18 (Table
S2). Specifically, we trained a Levenshtein KNN model, a
Tanimoto KNN model, and a Ridge Regression model trained
on random features, henceforth denoted the “baseline models”.
Due to the limited overlap between the GT-Predict data set
and the in-house data, only eight individual enzyme discovery
models and six individual substrate discovery models were
constructed (Table S3). In addition to these baseline models,
two single-task GASP models were constructed, one for
enzyme discovery and one for substrate discovery, using the
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same overlapping enzymes and substrates as the baseline
models, denoted as the “single-task models”. The full GASP
model was also tested on the same subset of GT1:acceptor
pairs used to evaluate the enzyme and substrate discovery
models. As the full GASP incorporates information about both
enzyme and substrate, it is in theory able to learn the
interactions between the two, known as a compound-protein
interaction (CPI) model. To examine this CPI nature of
GASP, we employed three different test subsets, consisting of
all GT1:acceptor pairs where either the substrate, the enzyme,
or both were not present in the training data set. The
performance was compared to a Ridge Regression model
trained on random substrate and enzyme features.
Comparison to GT-Predict. As a comparison to the

performance of GT-Predict model, the leave-one-out validation
protocol from the original publication was replicated using our
GASP model and the Arabidopsis thaliana data from GT-
Predict (Table S4). The performance was evaluated using
accuracy (eq 5) and Matthews Correlation Coefficient (MCC)
(eq 6):

= +
+ + +

accuracy
TP TN

TP FN TN FP (5)

= · ·
+ · + · + · +

MCC
(TP TN) (FP FN)

(TP FP) (TP FN) (TN FP) (TN FN)
(6)

All hyperparameters of the GASP leave-one-out models were
the same as for the full model, as was the threshold chosen for
metric calculation. It was impossible to calculate the MCC for
16 substrates due to lack of positive labels in the corresponding
subset. The average MCC metric was therefore pruned of these
substrates.
Comparison to Substrate Conversion Yield Data. As

GASP is trained on binary activity data, it can also be used for
predicting the likelihood of activity for a given GT1:acceptor
pair. However, a typical data type for enzymatic assays is
conversion yield, describing the percentage of the substrate
being converted to the product. To examine the strength of the
GASP predictions, we compared the model probability outputs
with the conversion yields of the newly published GT1 data
set.28 Specifically, we examined the correlation between GASP
and the conversion yield of glycosylation of polyphenols using
GmUGT88E3 as enzyme.29 GASP was run for every possible
GmUGT88E3:acceptor pair to produce activity probabilities,
with the results ranked from highest to lowest model
probability.
Case Study: Glycosylation of GASP-Predicted GT1s vs

Expert Selection and Random Selection. To test the
performance of GASP, a small comparative case study for the
glycosylation of DIBOA and niclosamide via expert-selected
and GASP-predicted GT1s was carried out. Only GT1s
available from our in-house library were considered. For the
DIBOA case, expert-selected GT1s were inferred by employing
intuition to assess the structural similarity between DIBOA and
polyphenols from a publicly available data set28 and then
choosing among 40 GT1s enzymes that are known to be active
on the most similar polyphenol structures, namely 5,7-
dihydroxychromone, 4,7-dihydroxycoumarin, 4-methylescule-
tin, and 4-methyllimetol. GT1s which were active with 3 out of
the 4 similar polyphenols were chosen, resulting in six protein
sequences. For the selection of GASP-predicted sequences, six
GT1s among the highest probability scores present in our

stocks were chosen, resulting in a total number of six expert-
selected versus six GASP-predicted enzymes (Table S5). GT1
enzymes BX8 (AAL57037.1) and BX9 (AAL57038.1) from
Zea mays were chosen as positive controls.30

Our previous efforts for glycosylation of niclosamide had
revealed that 10 out of 19 randomly selected GT1s screened
were active, albeit yielding very low amounts of the
niclosamide-Glc. For the case study of niclosamide, we
therefore examined the performance of GASP to predict
GT1s for niclosamide glycosylation. With the use of the top
GASP predictions to construct an initial list of 14 sequences, 2
enzymes with SoluProt31 scores lower than 0.450 were
removed, resulting in a total number of 12 GASP-predicted
GT1s.

Selected GT1s were expressed as described in the test data
set generation. Proteins were extracted from 0.5−1 L cell
cultures. The filtered supernatant was purified by nickel affinity
chromatography (HisTrapTM FF, GE Healthcare, Sweden) on
an ÄKTA pure (GE Healthcare, Sweden) system. After
concentration and buffer exchange, each GT1 enzyme was
assayed for glycosylation activity against DIBOA or niclosa-
mide using UDP-Glc as the donor substrate.

The DIBOA glycosylation reactions were initiated via the
addition of the 100 μg/mL enzyme to the reaction mixture of
0.5 mM DIBOA from a 50 mM stock in 100% DMSO, 2 mM
UDP-Glc in water, and 100 mM citrate-phosphate buffer (pH
7.0) in a total reaction volume of 180 μL and incubated for 1 h
at 30 °C while shaking linearly at 300 rpm. Thirty microliters
of the reaction mixture were withdrawn and mixed with 30 μL
of methanol to stop the reaction and centrifuged for 10 min to
remove any precipitated proteins. Forty microliters of the
resulting supernatant were then diluted to 200 μL with Milli-Q
water before injection into an Ultimate 3000 Series apparatus
equipped with an Agilent ZORBAX Eclipse Plus C18 column.
A gradient of solutions A (0.1% aqueous formic acid) and B
(100% acetonitrile) was used as mobile phase for analyte
separation at a flow rate of 1 mL/min: gradient increase from
2% B to 70% B between 0−4 min, then immediate increase to
100% B until 4.5 min, and drop to 2% B after 4.5 min until the
separation is finished at 5 min. The system was kept at 30 °C
and DIBOA and DIBOA glycoside were monitored via a UV
detector at 220 and 240 nm. Monitoring and data handling
were operated using Chromeleon software (Thermofisher).

Glycosylation of niclosamide via GASP-predicted GT1s was
carried out in reactions containing 50 μg/mL of each enzyme,
5 mM of UDP-Glc, and <1 mM niclosamide from a < 7 mM
stock in 100% DMSO. Final niclosamide concentrations in the
reactions are rough estimations since a significant amount of it
could not be solubilized fully in DMSO even at 7 mM.
Reactions with a total volume of 100 μL were run in a 50 mM
potassium phosphate buffer (pH 7.45) with 50 mM NaCl at 30
°C and 300 rpm for 2 h. A hundred microliters of 100%
methanol was added to terminate the reactions at the end of 2
h, followed by centrifugation at 2451g for 30 min at 4 °C to
remove precipitations. Prior to HPLC analysis, 150 μL from
the upper phase of each sample was added to an equal volume
of methanol to facilitate niclosamide solubility further. The
HPLC analysis was carried out as described for the DIBOA
samples, except for a run time of 9 min and absorbance
recording at 290 nm.

For niclosamide glycosylation via randomly selected GT1s,
enzymes at varying concentrations were reacted with an
undetermined amount of niclosamide and 3 mM UDP-Glc in a
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buffer containing 50 mM HEPES and 50 mM NaCl (pH 7.0)
overnight at 30 °C.
Chemical Feature Selection. To compare the importance

of the 153 generated chemical substrate features, feature
selection was performed. Individual features were deselected
iteratively, where predictive performance was measured after
temporarily leaving out each remaining feature. The feature
whose removal led to the smallest decrease in performance was
then left out permanently for further iterations until only one
remained, which may be considered the most important single
feature in discerning reactivity from nonreactivity. At each
iteration, the available data points were randomly split into
train and test sets, where the test set contained 20% of
substrates. These were selected by randomly picking a single
substrate and then finding its nearest neighbors based on the
highest correlation on their chemical feature values. Perform-
ance metrics were averaged between 10 repetitions of each
iteration.

The performance for each deselection was evaluated by a
custom metric, named topP, which is designed to minimize
false positives. This is motivated by predictor application,
where experiments will only be carried out on the top-scoring
predictions. Thus, this metric has a bias for the accuracy of top-
scoring candidates rather than equal weight for all GT1:sub-
strate pairs. TopP is defined by assigning weights from 1 to P
to the top P predictions in ascending order, where P is the
number of positives (reactive pairs). TopP is then equal to the
sum of weights given to true positives, after normalization.

Moreover, as the MDS features are abstract values not
representing a single chemical property, their use requires
additional justification. Consequently, we studied their
importance by training GASP models without any of the 12
MDS features and comparing the resulting performance to the
full GASP model.

■ RESULTS
Test Data Set. For independent validation of predictor

performance, a test data set was collected by measuring initial

rates (kapp) of 24 GT1 enzymes from 15 different plants on 88
acceptors. This yielded a total of 1031 data points (not all
acceptors were tested against all enzymes) of which 81 were
active, 920 were inactive, and 30 were inconclusive. The
inconclusive data points were removed from the data set
yielding a total of 1001 data points with a distribution of 8%
active and 92% inactive GT1:acceptor pairs (see “dataset1.xlsx”
in the Supporting Information).
Algorithm Generation and Evaluation. The outputs of

our enzyme and substrate feature generation pipelines are fed
to a random forest classifier consisting of 1000 trees. We refer
to this as the GASP model. It was trained on a curated
published data set of 4160 data points, which were reactivity
measurements between 77 chemicals and 73 GT1 enzymes (53
from Arabidopsis thaliana, 10 from Lycium barbarum, 6 from
Avena strigosa, 2 from Medicago truncatula, 1 from Streptomyces
antibioticus, and 1 from Vitis vinifera).6 GASP was subsequently
tested on the independent in-house test data set, with the
predicted probabilities covering the full range of values (Figure
S4). Here, the random forest predictor achieved an AUROC of
0.79 (where an AUROC of 0.5 indicates random guessing and
a value of 1.0 indicates perfect classification) (Figure 3A).
Interestingly, the performance does not appear to be
determined solely by similarity to the training data, as
observed when examining the performance from enzymes
belonging to the same organisms (Figure S5). With a
probability threshold of 0.345 corresponding to the maximum
F1-score of 0.30, a confusion matrix was calculated (Figure 3B)
with a precision and recall of 0.25 and 0.59, respectively
(Figure 3C). We observed a high number of false positives
compared to true positives, probably due to the imbalance of
labels in the test data, as the majority of the GT1:acceptor
pairs are inactive (Figure 1). If the confusion matrix is
normalized by the number of points in each class, we instead
observe that only 15% of the inactive GT1:acceptor pairs are
falsely predicted as reactive, while 85% are predicted correctly
(Figure S6). A balanced accuracy of 72% was obtained,
although it should be noted that by lowering the threshold to

Figure 3. (A) ROC curve for GASP predictions on the in-house data set (black line) with the corresponding AUROC value. The gray dotted line
corresponds to the random predictor. (B) Confusion matrix and (C) calculated test metrics of the GASP model on test data set using the
probability threshold of 0.345 maximizing the F1 score.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c01583
ACS Omega 2024, 9, 27278−27288

27283

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c01583/suppl_file/ao4c01583_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c01583/suppl_file/ao4c01583_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c01583/suppl_file/ao4c01583_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c01583/suppl_file/ao4c01583_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c01583/suppl_file/ao4c01583_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01583?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01583?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01583?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01583?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01583?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


0.265, GASP can obtain the maximum balanced accuracy of
74% (Figure S7).
Comparison of GASP and Alternative Models. First,

we validated the GASP architecture by following the protocol
described by Goldman et al.,18 constructing baseline and
single-task models for both enzyme discovery and substrate
discovery for the enzyme and substrate subsets with sufficient
data (see Comparison to Baselines and Single-Task Models in
Methods). We observed a significant increase in performance
between the full GASP model and all baseline models (Figure
4A,B). Interestingly, the full model exhibited similar perform-
ance to the single-task GASP models within one standard
deviation, indicating that the CPI nature of the full GASP
model does not produce higher performance in the setting
when sufficient experimental data for a given substrate or
enzyme are available. This aligns with the conclusions by
Goldman et al.18 However, incorporating both enzyme and
substrate features into the model did not compromise its
performance and also enabled the full GASP model to predict
new GT1:acceptor pairs without the need to collect sufficient
training data and retrain a new single-task model. This is
highlighted by the good model performance on both enzymes
and substrates not present in the training data set, significantly
outperforming the baseline model (Figure 4D).

We also compared GASP to the previously published GT-
Predict model.6 Due to the nature of the GT-Predict
architecture, we were unable to use our in-house data set to
test GT-Predict. Instead, we replicated their leave-one-out
validation (see Comparison to GT-Predict in Methods). For
both the average accuracy and average MCC score, the two
models lie within one standard deviation of each other, and a
two-sided t test reveal them to be statistically similar (Figure
4C, Table S4, p-value of 0.918 and 0.227 for the accuracies and
MCC scores, respectively). This indicates that in the GT-
predict setting, the models have equal performance. However,
the pan-specificity unique to GASP allows it to automatically
generate features and make predictions for new GT1:acceptor
pairs (Figure 4D), which is a major practical benefit.
Correlation between GASP Predictions and Substrate

Conversion Yields. There is a strong biotechnological
interest in predicting which substrates a given enzyme could
glycosylate with high synthetic yields. We recently published a
data set evaluating the glycosylation yields of 32 structurally
similar polyphenols,28 which we further validated for the
soybean GT1 enzyme GmUGT88E3.29 Clearly, GASP
appeared to discriminate between the given 32 acceptors
despite their high chemical similarity, assigning prediction
scores ranging from 0.213 to 0.831 (Figure S8A). Interestingly,

Figure 4. (A, B) Performance of the full GASP, single-task, and baseline models for both enzyme (A) and substrate (B) discovery (see Comparison
to Baselines and Single-Task Models in Methods): Levenshtein KNN model (light blue), Tanimoto KNN model (dark blue), and Random features
Ridge regression model (gray). Performance of single-task and baseline models was averaged over individual discovery models, with error bars
denoting the standard deviation. All single-task and baseline models are compared to the performance of the full GASP model using a two-sided
one-mean t test, with each additional asterisk representing significance at [0.05, 0.0005, 0.000001] thresholds, respectively, while N.S. denotes
nonsignificant difference (p-value above 0.05). The dotted line corresponds to AUROC for the random predictor. (C) Comparison of performance
of GASP (yellow) and GT-Predict (green) using the GT-Predict validation protocol. Average values are represented as bars, with the average
accuracies calculated using 48 individual leave-one-out models and average MCC calculated using 32 individual models. Standard deviation is
represented as error bars, with a two-sided t test resulting in a p-value of 0.918 between the accuracies and 0.227 for the MCC scores. Individual
values are reported in Table S4. (D) Performance of GASP (yellow) and a baseline model (Random features Ridge regression model, gray) using
different test sets consisting either of the full data set, GT1:acceptor pairs with the substrates not present in the training data, pairs with the
enzymes not present, or pairs with both acceptor and enzyme being new to the model. Two-sided one-mean t tests between GASP the baseline
model for all test subsets result in p-values essentially zero. The dotted line again corresponds to AUROC for the random predictor.
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while there were a few false negatives (low prediction value, yet
high synthetic yields), the top 2 predictions corresponded to
quantitative yields, and the top 50% of predictions
corresponded to reactions with >50% synthetic yields (Figure
S8B). These results are definitely encouraging to explore the
synthetic prospects of a given GT1 enzyme.
DIBOA Glycosylation by Expert-Selected versus

Predicted GT1s. DIBOA is one of the most common
benzoxazinoids in plants, taking part in plant defense. It is
stored in the vacuole in its glycosylated form to reduce
autotoxicity. Upon cell damage, a β-glucosidase hydrolyses the
glycoside to release the toxic aglycon in response to pest or
pathogen attack.32 DIBOA is of interest as a phytoremediation
agent due to its ability to degrade the recalcitrant herbicide
atrazine,33 and as a biopesticide due to its toxicity to pests and
pathogens. There is only limited knowledge of GT1 enzymes
active on DIBOA, and thus it is interesting to discover novel
DIBOA-glycosylating enzymes.

BX8 and BX9 are two well-characterized GT1s that are
known to glycosylate DIBOA,30 thus were chosen as positive
controls in this study. The DIBOA molecule carries two
potential glycosylation sites, and our results indicate that while
BX8 and BX9 each produce a single product, they present
different regioselectivities as seen in two separate peaks with
different retention times on HPLC spectra (Figure S9).

To discover novel DIBOA-glycosylating enzymes, we
leveraged an in-house data set of 40 GT1s reactivity on
different polyphenols.28 On the basis of DIBOA’s chemical
similarity to some of the substrates in this data set (5,7-
dihydroxychromone, 4,7-dihydroxycoumarin, 4-methylescule-
tin, and 4-methyllimetol), we selected six in-house GT1
enzymes to be assayed for DIBOA activity (referred to as
“expert selection”). In parallel, we predicted DIBOA-active
GT1 enzymes using GASP (Figure S10) and chose six of the
top-ranking enzymes present in our stock (see Case Study:
Glycosylation of GASP-Predicted GT1s vs Expert Selection
and Random Selection in Methods). As summarized in Table
S5, five out of six expert-selected GT1s showed activity on
DIBOA, while for the GASP-predicted GT1s, the success rate
was three out of six. Among expert-selected GT1s, only RhGt1
from Rosa hybrid was inactive. As for the remaining five, only
GT171E5 from Carthamus tinctorius produced the same
product as the BX9 enzyme, while the others showed the
same product as BX8 (Figure S11). As the in-house data set
does not provide any information about the regioselectivity of
the reactive GT1:acceptor pairs, GASP is unable to predict this
property. Nevertheless, a similar trend to the expert-selected
GT1s was observed for the three active algorithm-predicted
GT1s, namely GT184A57 from Eutrema japonicum, GT174F2
from Arabidopsis thaliana, and GT175L5 from Lycium
barbarum, which all produced the same product as BX8

(Figure S12). It should be noted that the commercial DIBOA
preparation used as a standard contained trace amounts of a
compound with the same retention time as that produced by
BX8, as can be seen in the HPLC spectra of the negative
control samples. The corresponding peak area was subtracted.
Niclosamide Glycosylation by Random in-House

versus Predicted GT1s. Niclosamide is a lipophilic and
weakly acidic salicylanilide widely used as an antihelminth drug
for the treatment of tapeworm infections.34 Unfortunately,
niclosamide’s poor aqueous solubility reduces its bioavail-
ability, which presents a major challenge for the realization of
its pharmaceutical potential.35 Glycosylation can be a powerful
tool to increase the aqueous solubility of such compounds. Our
previous random screening of in-house GT1 enzymes for
niclosamide glycosylation had identified 10/19 (53%) active
enzymes (Table S6), although the activities were very low, and
conversion yields were too low to quantify. Hence, we
employed GASP to predict efficient niclosamide-glycosylating
GT1s (Figure S13). From the 12 sequences assessed, five
could not be expressed in E. coli, and one was expressed in its
insoluble form (Table S6). Five out of six remaining sequences,
however, demonstrated significant niclosamide glycosylation
activity as seen in the HPLC spectra (Figure S15). The GASP
hit rate for the niclosamide case was thus 83% (5 out of 6).
Acceptor Features Important for Prediction Perform-

ance. To learn which of the 153 chemical features describing
the acceptors were more important to prediction performance,
we performed negative feature selection. The ten most
important chemical features from the negative feature selection
are shown in Table 1, where chemical features relating to atom
hybridization and cyclic properties (i.e., number of saturated
rings, aromatic rings, furan structures and aromatic nitrogens)
are predominant. Indeed, the fraction of sp3 hybridized
carbons in a molecule is the most important feature, while
also impacting the features ranked fourth, sixth, and tenth. The
hybridization of nitrogen impacts features seventh and eighth.
Since GT1s predominantly glycosylate polyphenolic com-
pounds, and GASP was trained primarily on these compounds,
it is compelling to observe that the performance depends on
the description of cyclic structures.

It is worth noting that the negative feature selection ranks
the chemical features based on their importance to achieve
high accuracy, not whether these features favor glycosylation.
Indeed, while the number of sulfide bonds (i.e., thioether) was
ranked as the fifth most important feature, these were only
present in three out of the 88 chemicals with none of them
showing reactivity in 82 reactions.

To evaluate the usefulness of the MDS fingerprint reduction
included in the chemical features, we evaluated the model’s
performance without its use: when removing all MDS values
from the substrate feature set, we observed a decrease in

Table 1. Ten Most Important Features Found from the Negative Feature Selectiona

aNPR: normalized principal moment ratio, MDS: multidimensional scaling).
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prediction performance (Figure S15). Together with a
dimension of the MDS-generated space being the second
most important feature, we conclude that the molecular
fingerprints serve as relevant features for improving the
model’s performance, and the dimensionality reduction
conserves useful information.

■ DISCUSSION
In this work, we demonstrated the synergistic effect of high-
throughput data generation with a chemically informed
machine learning predictor. Indeed, we proposed GASP, an
enzyme specificity predictor trained on the largest exper-
imental data set of GT1 enzymes which performs well on
enzymes and acceptors absent from the training set. This was
demonstrated using an independent test data set of 1001 data
points, where GASP outperformed all baseline models. A leave-
one-out comparison to the previous state-of-the-art model for
predicting GT1:acceptor pairs, GT-Predict,6 revealed a
comparable accuracy but higher MCC score, demonstrating
the potential of GASP. And while the full model also exhibited
similar performance to single-task models, the pan-specificity
of GASP allows it to readily incorporate and predict new
GT1:acceptor pairs. This was observed when we examined the
performance of GASP on GT1:acceptor pairs absent from the
training data set, leading to only minimal changes in the
AUROC. We also investigated the predictions for enzymes
from individual organisms, where predictions on proteins from
organisms absent from the training data showed good
performance even when the phylogenetic similarity with
Arabidopsis thaliana, which comprises the majority of the
training data, was low. The model thereby exhibited the ability
to accurately extrapolate beyond the training GT1:acceptor
pairs, enabling researchers to estimate the substrate activity of
new GT1 enzymes without requiring preliminary experimental
analysis. It should be noted that the enzyme feature generation
pipeline requires alignment of new sequences to the current
consensus sequence, and sequences with very low similarity
might result in a drop in performance.

To examine this application of GASP, we examined the
correlation between the model probability output and the
substrate conversion yields of a single GT1. We observed a
positive correlation between the two properties, with the top
predictions all having experimental yields. Importantly, GASP
was solely trained on binary activity scores, while conversion
yields are inherently quantitative. The ability of GASP to
predict the changes in a separate property space is extremely
promising, as it not only allows for a broader application of the
model but also indicates that GASP is able to capture some of
the intrinsic forces behind glycosyltransferases beyond binary
activity.

We also conducted two use case studies with DIBOA and
niclosamide. GASP outperformed a random selection of GT1s
for the niclosamide case, as GASP had a hit rate of 83%
compared to the 53% obtained with random selection. In the
DIBOA case, a hit rate of 50% for the GASP-selected enzymes
indicates that, not surprisingly, GASP cannot compete with
highly trained researchers in the field, who got a hit rate of
83%. However, GASP can parse a much larger number of
sequences, including never-assayed sequences, while expert
selection is limited to sequences evaluated against analogues.
In conclusion, these case studies show that GASP can be
utilized as a tool for preliminary assessment of enzymes.

It should be noted that GASP is only trained to predict
acceptor specificity. Due to the limitations of the training data,
the model is incapable of estimating properties such as
regioselectivity, bond formation, and donor specificity.
Furthermore, GASP incorporates only the sequence of
proteins. Nevertheless, it is interesting that GASP is successful
despite the fact that the enzyme features are generated utilizing
a multiple sequence alignment, and therefore, the algorithm
does not directly use such important characteristics as loops of
varying length near the active site, which are known to have a
strong impact in CAZymes’ specificity, including GT1s’.36

With the recent release of AlphaFold237 and the wealth of
accurate structural models it provides, it might be feasible to
incorporate structural information of the overall protein fold as
well as active site loops, similar to what has been done for the
predictions of binding parameters of cellulases.38 In addition to
incorporating structural information, future models should
address the issue of regioselectivity. While GASP only focused
on predicting the acceptor specificity, partially due to the lack
of the regiochemical outcome of GT1 glycosylation
information in both our data sets and most of the literature,
regioselectivity is an important property of the GT1 enzymes.
ML models able to predict regioselectivity would thus be
highly advantageous when selecting an appropriate GT1 for
biocatalysis.

Finally, the developed pipelines enable the addition of new
data, thus the present framework can be extended for
generating new improved models on other data or in
combination with the data used in this work. The provided
pipelines for automated feature generation on proteins and
chemicals can even be used for other enzyme classes.
Furthermore, the in-house data set employed in this study
offers a new, cleaned, and independent GT1 activity data set
for use as training or test sets for future ML models.
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Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A.
J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.;
Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.;
Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.;
Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.;
Hassabis, D. Highly Accurate Protein Structure Prediction with
AlphaFold. Nature 2021, 596 (7873), 583−589.
(38) Schaller, K. S.; Kari, J.; Borch, K.; Peters, H. J.; Westh, P.

Binding Prediction of Multi-Domain Cellulases with a Dual-CNN.
arXiv; 02698v1 [physics. bio-ph], 2022, DOI: 10.48550/
arXiv.2207.02698.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c01583
ACS Omega 2024, 9, 27278−27288

27288

https://doi.org/10.18637/jss.v093.i13
https://doi.org/10.18637/jss.v093.i13
https://doi.org/10.1021/acs.jmedchem.7b00696?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.7b00696?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s12859-015-0531-2
https://doi.org/10.1186/s12859-015-0531-2
https://doi.org/10.1021/acsomega.3c08255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c08255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c08255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.3c00494?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.3c00494?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.3c00494?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1046/j.1365-313x.2001.01161.x
https://doi.org/10.1046/j.1365-313x.2001.01161.x
https://doi.org/10.1046/j.1365-313x.2001.01161.x
https://doi.org/10.1093/bioinformatics/btaa1102
https://doi.org/10.1093/bioinformatics/btaa1102
https://doi.org/10.1016/j.phytochem.2009.05.012
https://doi.org/10.1016/j.phytochem.2009.05.012
https://doi.org/10.1021/acs.jafc.6b01017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jafc.6b01017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.7326/0003-4819-102-4-550
https://doi.org/10.7326/0003-4819-102-4-550
https://doi.org/10.1007/s11095-021-03112-x
https://doi.org/10.1007/s11095-021-03112-x
https://doi.org/10.1007/s11095-021-03112-x
https://doi.org/10.1007/s11095-021-03112-x
https://doi.org/10.1073/pnas.0706421104
https://doi.org/10.1073/pnas.0706421104
https://doi.org/10.1073/pnas.0706421104
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.48550/arXiv.2207.02698
https://doi.org/10.48550/arXiv.2207.02698?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2207.02698?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01583?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

