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Acute otitis media (AOM) is the most common pediatric infection for which antibiotics are 
prescribed in the United States. The role of the respiratory tract microbiome in pathogenesis 
and immune modulation of AOM remains unexplored. We sought to compare the 
nasopharyngeal (NP) microbiome of children 1 to 3 weeks prior to onset of AOM vs. at 
onset of AOM, and the NP microbiome with the microbiome in middle ear (ME). Six children 
age 6 to 24 months old were studied. Nasal washes (NW) were collected at healthy 
visits 1 to 3 weeks prior to AOM and at onset of AOM. The middle ear fluids (MEF) were 
collected by tympanocentesis at onset of AOM. Samples were stored in Trizol reagents or 
phosphate-buffered saline (PBS) at −80°C until use. The microbiome was characterized by 
16S rRNA gene sequencing. Taxonomic designations and relative abundance of bacteria 
were determined using the RDP classifier tool through QIIME. Cumulative sum scaling 
normalization was applied before determining bacterial diversity and abundance. Shannon 
diversity index was calculated in Microsoft excel. The relative abundance of each bacteria 
species was compared via Mann-Whitney U test. We found that the NW microbiome of 
children during healthy state or at baseline was more diverse than microbiome during AOM. 
At AOM, no significant difference in microbiome diversity was found between NW and MEF, 
although some bacteria species appear to differ in MEF than in NW. The microbiome of 
samples stored in PBS had significant greater diversity than samples stored in Trizol reagent.

Keywords: nasopharyngeal microbiome, middle ear microbiome, acute otitis media, 16S rRNA, Shannon Diversity, 
sample storage

INTRODUCTION
Acute otitis media (AOM) is one of the most common bacterial infections in children for which 
antibiotics are prescribed in the United States of America (Vergison et al., 2010; Monasta et al., 
2012). The three major bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, and 
Moraxella catarrhalis are among hundreds species of commensal microbiomes in the respiratory 
tract. Current prevention and treatment options are being continuously eroded by emergence of 
new otopathogen strains (Pettigrew et al., 2012). It is estimated that each year, more than 5 million 
AOM cases occur in the US (Monasta et al., 2012; Suaya et al., 2018). The annual total cost is 
about $6 billion in the US for health care of OM including $3 billion to 4 billion in direct costs 
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for treatment of OM, and the most frequent surgery in children 
(after circumcision) involving insertion of tympanostomy tubes 
(Nsouli 2019).

Nasopharyngeal (NP) colonization by potential bacterial 
respiratory pathogens is a frequent event in early childhood, and 
initial, necessary step in pathogenesis of respiratory bacterial 
infectious diseases such as AOM, conjunctivitis, sinusitis, 
chronic obstructive pulmonary disease, and pneumonia in 
children (Bogaert et al., 2004; Libson et al., 2005; Syrjanen et al., 
2005; Revai et al., 2008; Littman and Pamer 2011; Chonmaitree 
et al., 2017). Previous studies have shown that the microbiome 
plays an important role in modulating immune homeostasis and 
disease susceptibility (Duan et al., 2003; Kuss et al., 2011; Littman 
and Pamer 2011). A large portion of this research has focused 
on the gut microbiome and susceptibility to enteric pathogens 
(Sekirov et al., 2008; Kuss et al., 2011). The role of the respiratory 
tract microbiome in pathogenesis and immune modulation of 
AOM remain unexplored. Middle ear (ME) microbiome has 
been reported in chronic otitis media (Santos-Cortez et  al., 
2016; Krueger et al., 2017; Boers et al., 2018; Johnston et al., 
2019), and NP microbiome is associated with pathogenesis 
of upper respiratory traction infection and AOM (Lappan 
et  al., 2018). None of these studies investigate changes in NP 
microbiota during onset of AOM. Here we sought to compare the 
microbiome in nasal wash (NW) of children 2 to 3 weeks prior 
to their onset of AOM (but otherwise healthy) versus those same 
children at onset of AOM, and compare their NW microbiome 
with ME microbiome during AOM.

MATERIALS AND METhODS

Study Cohorts and Samples
The NW and middle ear fluid (MEF) samples were previously 
collected under a US National Institutes of Health-funded study 
of AOM. The study design and sample collections have been 
described in previous publications (Xu et al., 2012; Pichichero 
2016). Briefly, healthy infants without previous episodes of 
AOM were enrolled at 6 months of age and NW samples were 
prospectively collected at 6, 9, 12, 15, 18, 24, and 30 to 36 months 
of age. Whenever the children were diagnosed with AOM, 
tympanocentesis was performed on the same day. MEF samples 
were handled aseptically and kept on ice during transport to 
the lab, where it was processed immediately to confirm the 
diagnosis with microbiologic culture for otopathogens. The study 
was approved by the Institutional Review Board of Rochester 
General Hospital, and written informed consent was obtained 
from parents or guardians of all children. Samples were either 
directly stored in 1 ml phosphate-buffered saline (PBS) at −80°C, 
or centrifuged at 3,000 rpm for 10 min at 4°C, after which the 
pellets were stored in 1 ml of Trizol reagents (Sigma) at −80°C 
until use for microbiome analyses.

16S rRNA Gene Sequencing Analysis
Bacteria DNA Extraction: Bacterial ribonucleotides from NP 
and MEF were extracted by FastPrep bead beating lysis in TRI 
Reagent (Ambion) and purified on a Zymo-Spin™ IC column 

(Zymo). Integrity of the purified nucleotides was assessed on an 
Agilent BioAnalyzer. The V1–V3 region of bacterial 16S rRNA 
genes were amplified using dual-indexed coded primers (Fadrosh 
et al., 2014) and Phusion High-Fidelity Polymerase (Thermo 
Fisher). V1–V3 amplicons were purified and normalized using 
SequalPrep™ Normalization plates (Life Technologies), pooled, 
and validated on an Agilent BioAnalyzer. The final library was 
paired-end sequenced (2 × 300 bp) on an Illumina MiSeq. The 
individual amplicons were pooled for sequencing. This approach 
routinely yields high quality sequence data, with ~40 K reads 
per sample and assembly of 550 bp overlapping amplicons from 
the paired-end reads for each sample. This depth of sequencing 
coverage results in a high likelihood of identifying rare taxa.

To minimize the variations from sample processing, both 
DNA extraction and 16S rRNA gene sequencing analysis were 
simultaneously performed for all the samples.

Processing of 16S rRNA Sequence Reads: Raw data in the form 
of BCL files were processed into 2x300 FASTQ format paired 
end read files using Illumina's bcl2fastq version 1.8.4 without 
demultiplexing and with the EAMMS algorithm disabled. After 
preprocessing, the open source software package, Quantitative 
Insights Into Microbial Ecology (QIIME) (Caporaso et al., 2010), 
was used to remove low quality sequences and chimeras and to 
perform bacterial community quantification, description, and 
analyses. Specifically, assembled 16S rRNA reads were truncated 
at the beginning of the first 30 base window with a mean Phred 
quality score of less than 20 or at the first ambiguous base, 
whichever came first. Sequences were aligned and then processed 
by complete linkage clustering using a maximum cluster distance 
cutoff of 3% (97% identity) to define operational taxonomic 
units (OTUs). These OTUs were used to calculate Shannon and 
evenness diversity indices (Lozupone et al., 2007; Lozupone and 
Knight 2008).

Taxonomic Description of the Respiratory Microbiome: 
Taxonomic designations of our sequences was done using the 
RDP classifier tool, which uses a naive Bayesian method for 
taxonomic assignment and can be accessed through QIIME 
(Wang et al., 2007; Caporaso et al., 2010). The taxonomic OTU 
proportion was used to describe the NP and ME microbiomes 
within our population. Rank abundance plots were made listing 
the most frequent taxonomic OTU's within NP and ME samples. 
We note OTUs that are present in a given stratum but absent or 
at low levels in other strata. The differences in the abundance of 
individual taxa of interest between samples grouped by outcomes 
were analyzed by Mann-Whitney U test.

Statistical Analysis
Shannon diversity index was calculated in Microsoft excel based 
on the equation H pi pi

i

n

 =  ln– ( )∑ . which pi is the portion of 
species i among the total population of n species in a sample. 
To minimize the discrepancy in data collection, only data from 
samples processed in Trizol were included in the comparison 
between healthy and AOM patients, in which three samples 
with the lowest DNA reads were excluded. Paired one-tailed 
t test was performed to measure the statistical significance 
between Shannon indexes using the GraphPad Prism software. 
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The relative abundance of taxa was compared between samples 
by Mann-Whitney U test.

RESULTS

Comparison of Np Microbiome at Onset of 
AOM and During health prior to AOM
From our sample inventory, we identified six cases of children 
with a diagnosed AOM who happened to have a prospective 
healthy visit without any symptoms of URI or AOM at 1 to 3 
weeks prior to AOM. This enabled us to perform a self-case-
control analysis of NP microbiome during health vs. at onset of 
AOM. The results are summarized in the Table 1 and Figures 1 
and 2. We found that the NP microbiome had significantly 
greater diversity during health than at onset of AOM (Figure 1). 
The genus whose abundance was >1% were 6 ± 3 (mean ± 
SE) in the NW during health, 3 ± 1 in the NW during AOM, 
and 3 ± 2 in the MEF during AOM (Figure 2A and Table 1). 
The most abundant microbiome at genus level were Moraxella 
(36.89%), Streptococcus (21.65%), Haemophilus (14.16%), 
Corynebacterium (11.31%), Veillonella (2.97%), and Alloiococcus 
(2.12%) in NW of healthy children; Haemophilus (51.01%), 
Moraxella (20.69%), Streptococcus (16.75%), Corynebacterium 
(7.43%), and Alloiococcus (2.24%) in NW of AOM children; and 
Haemophilus (74.05%), Streptococcus (18.43%), Corynebacterium 
(3.02%), and Alloiococcus (2.91%) in MEF of AOM children 
(Table 1). Mann-Whitney test was performed to identify the 
OTUs that differ statistically significantly between the NWs 
during health and the NWs during AOM. They were found to 
be Rothia mucilaginosa, Streptococcus sp., Veillonella dispar, and 
Prevotella melaninogenica (Figure 2B and Table 2). On the other 
hand, more OTUs differed significantly between NWs during 
health and MEFs during AOM. They included Haemophilus sp., 
R. mucilaginosa, Streptococcus sp., V. dispar, P. melaninogenica, 
Porphyromonas sp., Granulicatella sp., and Alloiococcus sp. 
(Figure 2B and Table 2).

Comparison of Np and Middle Ear 
Microbiome at Onset of AOM
We also compared NP microbiome and MEF microbiome in 
children at onset of AOM. There was no significant differences in 
microbiome diversity between NP and MEF samples (p = 0.31) 

(Figure 1). However, there appeared to be some difference at the 
level of individual OTUs. Specifically, Veillonella was reduced 
in the MEFs relative to NPs whereas Alloiococcus otitidis was 
increased (Figure 2B and Table 2).

Comparison of Differences in Microbiome 
Diversities of the Samples processed With 
Different Methods
We have six children whose MEF samples were stored in 
Trizol reagents before microbiome analysis and five children 
whose MEF samples were stored in PBS before microbiome 
analysis. We found that samples stored in PBS had significant 
greater diversities than those stored in Trizol (Shannon index, 
Supplementary Figure 1).

DISCUSSION
The pathogenesis, development, severity, and clinical outcomes 
of AOM are largely dependent on the resident composition of 
the NP microbiome and immune defense and few studies have 
provided an understanding of how the NP microbiome and 
molecular immune responses might be manipulated to favor 
the child host (Melendi et al., 2007; Alper et al., 2009; Wine 
and Alper 2012). The NP is the main ecological niche of AOM 
pathogens and is the site of transmission for otopathogens to 
others (contagion). Imbalance of the NP microbiome diversity 
(number and abundance) occurs during symptomatic infections 
(Pettigrew et al., 2012; Santee et al., 2016; Chonmaitree et al., 
2017). Composition of the microbiome including the number of 
different species present (diversity), and the relative proportion 
of these species (evenness or abundance) are influenced by 
multiple factors (Lozupone and Knight 2008; Dominguez-
Bello et al., 2010; Teo et al., 2015; Chonmaitree et al., 2017). 
In a study of 65 children with AOM and 74 children without 
AOM, Chonmaitree et al. (2017) have recently shown that 
viral URI frequency is positively associated with an increase in 
otopathogen colonization, and AOM frequency is associated 
with lower Micrococcus NP colonization. They also found 
during viral URI and AOM, increases in abundance in the NP of 
otopathogen genera when Pseudomonas, Myroides, Yersinia, and 
Sphingomonas are decreased. Finally, infant children with AOM 
in the first year were shown to have significant lower abundance 

TABLE 1 | OTUs with > 1% abundance in NW or MEF microbiome during health prior to an AOM (<3 weeks) and at onset of AOM.

NW during health prior to AOM MEf at onset of AOM MEf at onset of AOM

Moraxella;s_ 36.89% Haemophilus;s_influenzae 47.80% Haemophilus;s_influenzae 67.79%
Haemophilus;s_influenzae 14.16% Moraxella;s_ 20.69% Streptococcus;Other 18.43%
Streptococcus;s_ 11.85% Streptococcus;Other 16.75% Haemophilus;Other 6.26%
Corynebacterium;s_ 11.31% Corynebacterium;s_ 7.43% Corynebacterium;s_ 3.02%
Streptococcus;Other 9,80% Haemophilus;Other 3.21% Alloiococcus;s_otitis 2.91%
Moraxellaceae;g_;s_ 2.88% Alloiococcus;s_ 2.24%
Alloiococcus;s_ 2.12%
Veillonella;s–dispar 1.96%
Granulicatella;s_ 1.36%
Veillonella;s_ 1.01%
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of Corynebacterium and antibiotics significantly decrease 
Corynebacterium and Dolosigranulum (Pettigrew et al., 2012; Teo 
et al., 2015).

In our study, we found that NP microbiome diversity at onset 
of AOM significant lower compared with diversity during heath 
prior to AOM. The potential bacterial pathogens Haemophilus, 
Moraxella, and Streptococcus became the most abundant 
microbiota in the NP both during health prior to AOM and at 
onset of AOM. The commensal Corynebacterium was more 
abundant during health than at onset of AOM, although this 
difference did not reach statistical significance. Instead, R. 
mucilaginosa, V. dispar, P. melaninogenica, and certain species 
in the genus of Streptococcus appear to be less abundant in the 
NWs during AOM relative to health, suggesting these bacteria 
species may compete with the otopathogens for niche and their 
abundance reduces when the otopathogens prevail. Whether this 
is indeed the case has not been reported and may serve as new 
research directions in the microbiome field of AOM.

fIGURE 1 | Diversity of NP and ME microbiome during health and AOM. 
The nasal wash (NW) and MEF samples were collected at onset of AOM 
and during heath prior to the AOM with 3 weeks' time interval. The samples 
were analyzed by 16S rRNA gene sequencing. Shannon diversity index 
was calculated and compared between samples (see MATERIALS AND 
METHODS) by one-tailed t test.

fIGURE 2 | OTUs in NWs and MEFs during heath and at onset of AOM. The NW samples were collected at onset of AOM and during heath prior to the AOM with 
3 weeks' time interval. The microbiome was analyzed by 16S rRNA gene sequencing and taxonomic designations. (A) Average abundance of OTUs in each group 
was plotted. (B) Comparison of abundance of each individual OUT between groups by Mann-Whitney test. *p < 0.05.
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Relative to the difference between NWs of healthy children and 
children at onset of AOM, more OTUs diverged in their abundance 
between the MEFs of AOM children and NWs of healthy children. 
This increment in disparity suggests that after establishing in the 
NP, the invasion of otopathogens into ME and later growth in ME 
is associated with reduced abundance of commensal bacteria. This 
may be subtle and/or vary significantly among individuals, since 
very few OTUs differed significantly between the NWs and MEFs 
in children during AOM (Figure 2 and Table 2).

The ME microbiome has been investigated recently in children 
with otitis media with effusion (OME), chronic otitis media, or 
recurrent AOM (Liu et al., 2011; Jervis-Bardy et al., 2015; Chan 
et  al., 2016; Minami et al., 2017; Lappan et al., 2018). Several 
reports showed that the most abundant microbiome in ME of 
children with OME were A. otitidis followed by Haemophilus, 
Moraxella, and Streptococcus (Jervis-Bardy et al., 2015; Chan et  al., 
2016). We also observed a significant enrichment of A. otitidis in 
MEFs of AOM children, compared with NWs in AOM children 
or healthy children. It is unclear if A. otitidis is an otopathogen, a 
co-pathogen that facilitates biofilm formation, or a contaminant 
for the external ear canal skin flora. A prior study children with 
recurrent AOM found Alloiococcus, Staphylococcus sp. and 
Turicella were most abundant in the ME (Lappan et al., 2018), 
whereas adenoids microbiome was dominated by H. influenzae, 
M. catarrhalis, S. pneumoniae, P. aeruginosa, and S. aureus (Dirain 
et al., 2017). On the other hand, in chronic otitis media, Krueger 
et al. reported that the Haemophilus and Moraxella were the most 
abundant microbiota in the ME of children (Krueger et al., 2017), 
whereas Liu et al. reported that Pseudomonadaceae dominated in 
the ME, Streptococcaceae in the tonsil, and Pseudomonadaceae, 
Streptococcaceae, Fusobacteriaceae, and Pasteurellaceae dominated 
in the adenoid (Liu et al., 2011). In spite of the differences, our study 

and others suggest a resident microbiota in the ME that differs from 
NP after an initial ME infection has occurred.

Sample processing approaches and preservation methods may 
impact microbiome analysis results (Choo et al., 2015; Penington 
et al., 2018; Chen et al., 2019). In this study, we found that 
MEF samples stored in PBS had significant greater diversity of 
microbiome than MEF samples stored in the Trizol reagent after 
going through centrifugations.

Our study has limitations. Contamination during samples 
collection is always a concern for microbiome analysis. Contact 
with the external auditory canal during MEF samples collection 
may influence the accuracy in microbiome abundance of 
skin colonizers such as Staphylococcus, Pseudomonas, and 
Alloiococcus. (Johnston et al., 2019). The MEF samples were 
collected by tympanocentesis. Although we tired our best to 
avert contamination we cannot exclude the possibility contact 
of the external auditory canal by the tympanocentesis needle. 
Our participant cohort was small and sample size is a concern to 
interpret microbiome analysis results (Johnston et al., 2019). The 
16S reads did not allow differentiation at the species level for most 
organisms identified; whole genome sequencing likely would 
have allowed better species level results. We expected to identify 
Dolosigranulum pigrum in some NP samples (Lappan et al., 
2018). A recent report suggests D. pigrum may be mis-identified 
as Alloiococcus species during data analyses (Lappan et al., 2018).

In summary, in this study we found that the NP microbiome 
during health prior to AOM had greater diversity and are enriched 
in certain commensal bacteria, compared with the NP microbiome 
during AOM. The most abundant microbiota in the NP were known 
potential otopathogens (Haemophilus, Moraxella, and Streptococcus) 
along with nasal commensals such as Corynebacterium. At onset of 
AOM, no significant difference was found in microbiome diversity 

TABLE 2 | Difference in OTUs Abundance % between Groups.

NW MEf Mann-Whitney Test

health AOM AOM heath vs AOM 
(NW)

health vs AOM 
(MEf)

AOM (NW) vs 
AOM (MEf)

Haemophilus;s_influenzae 14.16 47.80 67.79 not sig p = 0.027 not sig
Haemophilus;Other 0.42 3.21 6.26 not sig p = 0.033 not sig
Corynebacterium;s_ 11.31 7.43 3.02 not sig not sig not sig
Streptococcus;Other 9.80 16.75 18.43 not sig not sig not sig
Rothia;s–mucilaginosa 0.88 0.08 0.00 p = 0.015 p = 0.0026 not sig
Streptococcus;s_ 11.85 0.22 0.03 p = 0.015 p = 0.015 not sig
Veillonella;s_ 1.01 0.10 0.00 not sig p = 0.0066 p = 0.025
Veillonella;s_dispar 1.96 0.02 0.01 p = 0.033 p = 0.0042 not sig
Prevotella;s_melaninogenica 0.72 0.02 0.00 p = 0.015 p = 0.0042 not sig
Porphyromonas;s_ 0.36 0.03 0.00 not sig p = 0.023 not sig
Granulicatella;s_ 1.36 0.11 0.02 not sig p = 0.01 not sig
Haemophilus;s_parainfluenzae 0.42 0.07 0.00 not sig p = 0.039 not sig
Moraxella;s_ 36.89 20.69 0.53 not sig not sig not sig
Kocuria;s_palustris 0.00 0.00 0.34 not sig not sig not sig
Staphylococcus;Other 0.55 0.03 0.15 not sig not sig not sig
Streptophyta;f_;g_;s_ 0.38 0.01 0.00 not sig not sig not sig
Lactobacillus;s_delbrueckii 0.69 0.00 0.00 not sig not sig not sig
Bifidobacterium;s_breve 0.30 0.00 0.00 not sig not sig not sig
Alloiococcus;s_otitis 0.00 0.00 2.91 not sig p = 0.01 p = 0.025
Alloiococcus;s_ 2.12 2.24 0.00 not sig p = 0.033 not sig
Chlorophyta;f_;g_;s_ 0.00 0.18 0.00 not sig not sig not sig
Moraxellaceae;g_;s_ 2.88 0.00 0.00 not sig not sig not sig
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between NP and MEF. MEF may have a different microbiome 
profile than the NP suggesting a resident microbiota in the ME 
after a first ME infection. Sample processing and storage methods 
influence microbiome analysis results.
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