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To construct a prognostic model for preoperative prediction on computed tomography

(CT) images of esophageal squamous cell carcinoma (ESCC), we created radiomics

signature with high throughput radiomics features extracted from CT images of 272

patients (204 in training and 68 in validation cohort). Multivariable logistic regression was

applied to build the radiomics signature and the predictive nomogram model, which was

composed of radiomics signature, traditional TNM stage, and clinical features. A total of

21 radiomics features were selected from 954 to build a radiomics signature which was

significantly associated with progression-free survival (p < 0.001). The area under the

curve of performance was 0.878 (95% CI: 0.831–0.924) for the training cohort and 0.857

(95% CI: 0.767–0.947) for the validation cohort. The radscore of signatures’ combination

showed significant discrimination for survival status. Radiomics nomogram combined

radscore with TNM staging and showed considerable improvement over TNM staging

alone in the training cohort (C-index, 0.770 vs. 0.603; p < 0.05), and it is the same with

clinical data (C-index, 0.792 vs. 0.680; p < 0.05), which were confirmed in the validation

cohort. Decision curve analysis showed that the model would receive a benefit when

the threshold probability was between 0 and 0.9. Collectively, multiparametric CT-based

radiomics nomograms provided improved prognostic ability in ESCC.

Keywords: esophageal squamous cell carcinoma, computed tomography, progression-free survival, radiomics,

nomogram

INTRODUCTION

Esophageal cancer (EC) remains the seventh most frequently occurring cancer and the
sixth most prevalent cause of cancer deaths globally (Bray et al., 2018). An estimated
477,900 new cases and 375,000 annual deaths have been reported in China, and most
of them were esophageal squamous cell carcinoma (ESCC) (Chen W. et al., 2016). Most
patients with ESCC are diagnosed at an advanced stage due to the vague symptoms in
the early stage and have a meager 5-year survival rate (<20%) (Pennathur et al., 2013;
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Chen et al., 2017). However, surgery is still the most sanative
treatment, and the 5-year survival rate of resectable EC treated
with surgery alone is only 34–36% (Omloo et al., 2007). Hence,
effectivemeans to preoperatively predict the prognosis of patients
with ESCC is necessary.

Prognosis survival evaluation of EC mainly depends on
traditional Tumor NodeMetastasis (TNM) staging. However, the
TNM system only considers anatomical features and neglects the
intrinsic factors of the tumor, resulting in an inaccurate prognosis
(Wang et al., 2011). Then scholars started to collect clinical data,
such as age, gender, body mass index (BMI), and the quality of
life (Tang et al., 2013; Ng et al., 2014; Zeng et al., 2015; Zhang
et al., 2016). However, the performance is still weak, for they
failed to reflect the internals of tumors. Furthermore, prognostic
evaluation by multi-omics approaches is based on molecular
features of a small portion of tumor tissue, which limits the
understanding of the heterogeneous tumor.

Radiomics, as a non-invasive, quantitative, and low-cost
approach, can objectively and comprehensively evaluate
tumor heterogeneity by converting medical images into high-
dimensional, mineable, and quantitative imaging features via
high-throughput extraction of data-characterization algorithms
(Aerts et al., 2014; Gillies et al., 2016). These features can
reveal disease progression, providing valuable information for
personalized therapy and decision-support (Chicklore et al.,
2013; Cameron et al., 2016; Huynh et al., 2016; Jin and Kong,
2016; Kotrotsou et al., 2016; Parekh and Jacobs, 2016; Ginsburg
et al., 2017; Lee et al., 2017; Marin et al., 2017; Scalco and Rizzo,
2017; Shafiq-Ul-Hassan et al., 2017). Previous studies have
shown that the radiomics signature alone or merged with clinical
parameters could enhance predictive accuracy in cancers (Huang
Y. et al., 2016; Huang Y. Q. et al., 2016; Zhang et al., 2017).
Recently, the most widely-used imaging modality in radiomics
is computed tomography (CT), which is universally used for
preoperative diagnostics of ESCC. Due to the poor contrast
resolution, it is not easy to distinguish the different histologic
layers of the esophageal wall. However, it is believed that a
lot of digital information could be deeply excavated through
radiomics approaches.

In the present study, we developed CT-based radiomics as
a novel approach for individualized, pretreatment evaluation
of progression-free survival (PFS) in ESCC patients (stage I-
III). Additionally, we sought to reveal the association between
radiomics and clinical information.

MATERIALS AND METHODS

Patients and Clinical Characteristics
Shanxi Medical University Review Board approved this
retrospective study. The entire cohort was obtained from the
Institutional Picture Archiving and Communication System
(PACS) at Shanxi Cancer Hospital from February 2016 to
October 2018. The patients who had histologically confirmed
ESCC (TNM stage: I-III) and underwent surgery after diagnosis,
underwent pretreatment CT scans from neck to abdomen and
signed informed consent. All methods were carried out following
the relevant guidelines and regulations.

To determine the patients that could be included, we
developed the following criteria: (1) pathologically confirmed
ESCC; (2) underwent surgery for ESCC; (3) standard contrast-
enhanced CT was performed preoperatively; and (4) complete
clinical and follow-up information was available. We randomly
divided the patients into training and validation cohorts by a
ratio of about 3:1. We trained models in the training cohort and
validated them in the validation cohort.

Clinical characteristics including age, gender, tumor location
(upper, middle, lower), drinking history, smoking history,
genetic alterations, and pathologic features including depth of
invasion, TNM stage, and lymph node metastasis information
were collected from patient records. These clinicopathologic
characteristics are presented in Table 1.

Follow Up and Clinical Endpoint
All patients were followed up every 1–3 months during the
first 2 years, every 6 months in years 2–5, and annually after

TABLE 1 | Patient and tumor characteristics in the training and validation cohorts.

Training

(N = 204)

Validation

(N = 68)

P-value

Gender 0.539

Male 146 (71.6%) 46 (67.6%)

Female 58 (28.4%) 22 (32.4%)

Age 0.398

Median (interquartile range) 60.22 60.44

≤56 63 (30.9%) 19 (27.9%)

56–66 92 (45.1%) 27 (39.7%)

≥66 49 (24.0%) 22 (32.4%)

Location 0.452

Up 10 (4.9%) 5 (7.4%)

Mid 135 (66.2%) 48 (70.6%)

Down 59 (28.9%) 15 (22.1%)

Drinking 0.662

Yes 75 (36.8%) 23 (33.8%)

No 129 (63.2%) 45 (66.2%)

Smoking 0.569

Yes 118 (57.8%) 42 (61.8%)

No 86 (42.2%) 26 (38.2%)

Genetic history 0.880

Yes 64 (31.4%) 22 (32.4%)

No 140 (68.6%) 46 (67.6%)

Invasion degree 0.887

Full layer 121 (59.3%) 41 (60.3%)

Non-full layer 83 (40.7%) 27 (39.7%)

TNM 0.556

I 19 (9.3%) 9 (13.2%)

II 105 (51.5%) 36 (52.9%)

III 80 (39.2%) 23 (33.8%)

Lymph node metastasis 0.255

Yes 88 (43.1%) 24 (35.3%)

No 116 (56.9%) 44 (64.7%)
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that. To provide an efficient tool, which would allow earlier
personalized treatment, we chose PFS as the endpoint (Sargent
et al., 2005).We defined PFS from the first day of treatment to the
date of disease progression (locoregional recurrences or distant
metastases), death from any cause, or the date of the last follow-
up visit (censored). Theminimum follow-up time to ascertain the
PFS was 2 months.

CT Acquisition and Segmentation
All patients were underwent the contrast-enhanced CT using
a 64-channel multi-detector CT scanner (LightSpeed VCT,
GE Medical Systems, Milwaukee, Wis, USA). The acquisition
parameters were: 120 kV; 160mA; 0.5-s rotation time; detector
collimation: 64 × 0.625mm; field of view: 350 × 350mm;
and matrix: 512 × 512. After routine non-enhanced CT,
contrast-enhanced CT was performed after a 25-s delay
following intravenous administration of 85mL of iodinated
contrast material (Ultravist 370; Bayer Schering Pharma, Berlin,
Germany) at a rate of 3.0 mL/s with a pump injector (Ulrich
CT Plus 150, Ulrich Medical, Ulm, Germany). All images were
reconstructed with a thick slice of 5.0mm. We converted the
image format from DICOM to NII for feature selection without
any preprocessing.

Note that segmentation is required before the extraction of
quantitative radiomics features; we performed three-dimensional
manual segmentation using 3D-Slicer software (https://www.
slicer.org/), an open platform for medical image processing. The
chief physician of Shanxi Cancer Hospital, with more than 5
years’ experience in interpreting chest radiology, outlined the
tumor regions for each CT image layer. The tumor segmentation
was guided and verified by the specialist. The region of interest
(ROI) covered the whole tumor mass, was delineated on each CT
slice, and used in subsequent feature extraction.

Selection of Radiomics Features and
Building of Radiomics Signature
We performed the calculation through our homemade Python
scripts (Python3.6, https://www.python.org) for radiomics
feature extraction based on the segmentation results. A total
of 954 features were obtained by calling feature calculation in
pyradiomics package (open-source python package; https://
pyradiomics.readthedocs.io/en/latest/), which included the
following fourcategories: (1) first-order statistics features; (2)
size- and shape-based features; (3) texture features; and 4)
wavelet features; and five typical matrixes: Gray-Level Co-
occurrence Matrix (GLCM), Gray Level Run Length Matrix
(GLRLM), Gray Level Size Zone Matrix (GLSZM), Gray Level

TABLE 2 | Radiomics features selection results based on the ANOVA.

Result category CT

Number of selected features 221

The best-performance feature HLL-original_glcm_InverseVariance

(p = 2.316589e-04)

TABLE 3 | Radiomics signature selection results with descriptions.

Feature name Feature coefficient

HHL_firstorder_Skewness 0.066

HLH_firstorder_Median −1.812

HLH_glszm_SmallAreaEmphasis −13.697

HLH_glszm_ZoneEntropy 0.092

HLL_glcm_ClusterShade −0.004

HLL_glcm_InverseVariance −6.470

HLL_glszm_GrayLevelNonUniformityNormalized −0.612

HLL_glszm_SizeZoneNonUniformityNormalized 15.084

HLL_gldm_SmallDependenceHighGrayLevelEmphasis −0.0008

HLL_ngtdm_Complexity −0.0007

LHH_glszm_LargeAreaLowGrayLevelEmphasis 1.02e-06

LHH_gldm_DependenceNonUniformityNormalized 31.635

LHH_ngtdm_Busyness 0.001

LHL_glcm_Idn 12.445

LHL_glszm_LargeAreaHighGrayLevelEmphasis −1.42e-10

LHL_gldm_SmallDependenceLowGrayLevelEmphasis −82.462

LLH_firstorder_Energy 9.77e-10

LLH_glcm_Contrast 0.029

LLH_glszm_SizeZoneNonUniformity 1.37e-05

LLH_ngtdm_Complexity 5.66e-05

LLL_gldm_LargeDependenceHighGrayLevelEmphasis 2.44e-06

Skewness:The asymmetric distribution of the Mean value. Depending on where the tail is

elongated and the mass of the distribution is concentrated, it can be positive or negative.

Median:The median gray level intensity within ROI.

Small Area Emphasis (SAE): A measure of the distribution of small size zones, with a

greater value indicative of more smaller size zones and more fine textures.

Zone Entropy (ZE): The degree of instability and variation in spatial and regional differences

of the image distribution range.

Cluster Shade: A measure of skewness and uniformity of the GLCM. A higher cluster

shade implies greater asymmetry about the mean.

Size Zone Non-Uniformity Normalized: The variability of size zone volumes throughout

images, with a lower value indicating more homogeneity among zone size volumes in

images. it’s the normalized version of the SZN formula.

Small Dependence High Gray Level Emphasis (SDHGLE): Measures the joint distribution

of small dependence with higher gray-level values.

Large Area Low Gray Level Emphasis (LALGLE): The proportion in images of the joint

distribution of larger size zones with lower gray-level values.

Dependence Non-Uniformity Normalized (DNN): Measures the similarity of dependence

throughout images, with a lower value indicating more homogeneity among dependencies

in images. This is the normalized version of the DLN formula.

Busyness: A measure of the change from a pixel to its neighbor. A high value for

busyness indicates a ‘busy’ image, with rapid changes of intensity between pixels and

their neighborhood.

IDN (inverse difference normalized): Another measure of a local homogeneity of images.

Unlike Homogeneity1, IDN normalizes the difference between neighboring intensity values

by dividing over the total number of discrete intensity values.

Large Area High Gray Level Emphasis (LAHGLE): The proportion in images of the joint

distribution of larger size zones with higher gray-level values.

Small Dependence Low Gray Level Emphasis (SDLGLE): Measures the joint distribution

of small dependence with lower gray-level values.

Energy: The sum of squares of gray level intensity within ROI.

Contrast: A measure of local intensity variation, favoring values away from the diagonal

(i=j). A larger value correlates with a greater disparity in intensity values among

neighboring voxels.

Large Dependence High Gray Level Emphasis (LDHGLE): Measures the joint distribution

of large dependence with higher gray-level values.
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Dependence Matrix (GLDM) and Neighboring Gray Tone
Difference Matrix (NGTDM).

We built the radiomics signature with selected features in
the training cohort. To reduce over-fitting or any types of bias,
we applied the following two steps: First, the best features
based on univariate statistical tests (2-sample t-test) between
death and censoring groups in the primary cohort were selected
and executed by using Matlab 2016b. Second, we used our
homemade R scripts to select features that were most significant
by using the least absolute shrinkage and selection operator
(LASSO) method, which would be a suitable methodology for
the feature selection through regression of high-dimensional
data. Additionally, the accuracy of the prediction model could
be improved by regularizing the features through penalized
estimation. We added the L1 penalty term to the normal linear
model, and the parameter lambda controls the complexity of
regression. When the λ is large, it indicates no effect on the
estimated regression parameters, while the λ gets smaller, most
covariate coefficients were shrunk to zero. Then the remaining
variables with non-zero coefficients were selected by the λ

that the 10-fold cross-validation error was the most minor
(Kumamaru et al., 2016; Vasquez et al., 2016). When performing
10-fold cross-validation, the training cohort was divided into 10
equal parts; each called a fold. Next, it will train a series of models.
The first model was trained using the first fold as the test set and
the other folds (2–10) as the training set. Then anothermodel was
constructed using 2nd fold as the test set and the1st, 3th-10th
folds as the training set. The process is repeated with 3th-10th
folds as a test set.

Finally, the radiomics signature was built by combining those
variables in the primary cohort and validated in the validation
cohort. The radiomics signature is a linear combination of
selected features with respective weights, which would be
calculated as a factor (Radiomics score, Rad-score) for the
further prediction model. The Rad-score calculated by using the
following formula:

Rad− score = c1F1 + c2F2 + . . . + ciFi (1)

Where Fi is the selected radiomics feature, ci is the LASSO
coefficient of Fi. Then, the assessment method of the logistic
regression model is the receiver operating characteristic (ROC)
curve and its area under the curve (AUC).

Prognostic Validation of Radiomics
Signature
We calculated Rad-score for each patient with ESCC and grouped
them according to two rules. (1) The patients were divided into
high-risk and low-risk groups based on themedian Rad-score. (2)
Patients with median scores were placed in high-risk groups. The
radiomics signature discriminative performance of the survival
status was assessed according to the overall distribution of
ESCC patients. And then, the potential association of radiomics
signature and clinical feature with PFS was assessed in the
training cohort and validated in the validation cohort. Kaplan–
Meier survival analysis was used in these two cohorts. Stratified

analyses were implemented to determine the PFS in high-risk
and low-risk patient subgroups. Univariate Cox Proportional
Hazards Models were performed to explore the C-index of the
radiomics signature.

Performance of TNM Staging and Clinical
Nomograms in the Training Cohort Before
and After Addition of Rad-Score
The nomogram with the predicting model was based on
the multivariable logistic regression analysis. The following
candidate factors: TNM stage (dummy variable: “0” for I, “1”
for II, “2” for III), the status of clinical features, and Rad-
scores were involved in a diagnostic model for preoperative
prediction of ESCC. The nomogram is a graphical representation
of this prediction model in the training cohort. The prognostic
performance of TNM staging and clinical nomograms in the
training cohort before and after the addition of the Rad-score
was quantitatively measured using Harrell’s concordance index
(C-Index), which is commonly used for the evaluation of the
discriminative power of prognostic models (Harrell, 2018). The
value of the C-index could range from 0.5, which indicated no
discriminative ability, to 1.0, which showed perfect ability to
distinguish between the patients who suffered disease progression
or death and those who did not. Bootstrap analyses with 1,000
resample were applied to obtain a C-index with a 95% confidence
interval (CI) (Canty and Ripley, 2021) corrected for potential
overfitting. The calibration curves were drawn for assessing the
agreement between the predicted probability of 3-year PFS and
actual 3-year PFS (Pencina et al., 2011).

Nomogram Validation in the Validation
Cohort
The prognostic performance of TNM staging and clinical
nomograms in the validation cohort before and after the addition
of the Rad-score was tested by the above method. The calibration
curve and C-index were calculated through multivariable Cox
proportional hazard regression analyses. The decision curve
analysis (DCA) was introduced to evaluate the quantified net
benefit of our prediction model in the validation cohort (Vickers
et al., 2008; Shen et al., 2018).

Association of Radiomics Features With
Clinical Data
Aheatmap analysis was used to evaluate the associations between
clinical data and radiomics features.

Statistical Analysis
All the statistical analyses were performed using IBM SPSS
software (version 26; IBM Corp, Armonk, NY, USA), Matlab
2016b (Mathworks, Natick, USA), and R software (version 4.1.1,
Boston, MA, USA). In this study, 2-sample t-test was applied
to confirm whether differences between death and censoring
groups in the primary cohort. The differences in gender, age,
TNM stage, smoking status, drinking status, location, genetic
history, invasion degree and metastasis between the training
and validation data sets were assessed by using the χ

2-test. The
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following R packages were used: the glmnet package was used for
the LASSO logistic regression model analysis, the pROC package
was used for the ROC curves, the Hmisc package was used for
the comparisons between the C-indices, the survival package
was used for Kaplan–Meier survival analyses, the rms package
was used for the nomograms and calibration curves, the rmda
package was used to implement the DCA, and the gplots and
pheatmap packages were used for heat maps.

RESULTS

Clinical Characteristics of All the Patients
A total of 272 consecutive patients who met the criteria (192 men
and 80 women; mean age, 60.27 years ± 7.43) were included
and divided into two cohorts by a ratio of 3:1 using computer-
generated random numbers. A total of 204 patients were enrolled
in the training cohort (146 men and 58 women; mean age, 60.22
years± 7.28), while 68 patients were enrolled in the independent
validation cohort (46 men and 22 women; mean age, 60.44
years ± 7.90). The clinical characteristics with statistics of the
training and validation cohorts are summarized in Table 1. No
significant differences were found between these two cohorts in
terms of gender, age, history of smoking and drinking, location,
genetic history, invasion degree, lymph node metastasis, and
overall TNM Stage (p= 0.255–0.887). The median PFS was 35.35
months (range, 2–75 months).

Radiomics Feature Selection and
Radiomics Signature Building
A total of 954 features were extracted from CT images and
might contain many redundant and highly correlated features.
To find out robust and valuable features, we performed the
following steps: First, 221 features were selected by univariate
statistical tests (p < 0.05) (Table 2). Then, based on the LASSO
logistic regression algorithm approach in the training cohort, we
selected the features with non-zero coefficients. As a result, 21
radiomics features were screened out from 221 features (Table 3).
The procedures of parameter tuning and feature space reduction
of the regression model are illustrated in Figure 1. Then the
21 features were selected to build the radiomics signature
and involved in the Rad-score-based prognostic model. The
discriminative ability of the survival status based on radiomics
signatures was assessed by ROC in both cohorts, respectively
(Figure 2A).

Prognostic Validation of Radiomics
Signature
Rad-score for each patient in the training cohort and the
validation cohort correspondingly showed that the higher the
Rad-score, the greater the probability of death (Figures 2B,C).
Besides, in the training cohort, the radiomics signature from CT
images yielded the highest C-index, which was 0.758 (95% CI:
0.708–0.808). In the validation cohort, the radiomics signature
from CT images yielded a C-index of 0.748 (95% CI: 0.656–
0.840). It showed a significant discrimination between the PFS
of high-risk and low-risk patients (Figure 3).

Performance of TNM Staging and Clinical
Nomograms in the Training Cohort Before
and After the Addition of Rad-Score
We developed a radiomics nomogram that integrated the
radiomics signature from the CT images with the traditional
TNM staging system, which yielded a C-index of 0.603 (95%
CI: 0.549–0.657). This nomogram significantly improved the
discrimination ability in evaluating PFS (C-index: 0.770; 95% CI:
0.721–0.819) than TNM staging system (p < 0.05; Figure 4A),
and showed good calibration as well (Figure 4B). Moreover, a
radiomics nomogram was created by integrating the radiomics
signature from the CT images with all clinical data, whose
nomogram yielded a C-index of 0.680 (95% CI: 0.626–0.734). We
found that the radiomics nomogram possessed good calibration
and seemed to be more accurate than the clinical nomogram for
evaluating PFS (C-index: 0.792; 95% CI: 0.748–0.836) with a p <

0.05 (Figures 4C,D).

The Validation of Nomograms in the
Validation Cohort
In the validation cohort, the C-index of the traditional TNM
staging system is 0.572 (95% CI: 0.478–0.666). We integrated the
radiomics signature with the TNM staging system to produce
a radiomics nomogram, which showed an improvement over
the TNM staging system alone (C-index: 0.760; 95% CI: 0.673–
0.847). The calibration curve of probability in PFS evaluation
showed good agreement between nomogram-evaluated and
actual observation (Figure not shown). While the clinical
nomogram yielded a C-index of 0.605 (95% CI: 0.501–0.709)
in the validation cohort and was advanced by combining with
radiomics signature (C-index: 0.779; 95% CI: 0.697–0.861). The
calibration curves of this nomogram showed good agreement
between nomogram-evaluated and actual survival (Figure not
shown). The DCA for the prediction model derived from the
addition of Rad-score before and after is presented in Figure 5A.
It showed that the predictive model collaborated with Rad-score
had a better net benefit than that with only traditional TNM
staging combined with clinical features.

Association of Radiomics Features With
Clinical Data
The ESCC patients with similar patterns of radiomics expression
were clustered through unsupervised clustering (Figure 5B).
Then we organized a heat map to determine the association
between radiomics features and clinical data (Figure 5B).
The results showed significant correlations between signature
features LHL_glcm_Idn, LHL_glszm_Large Area High Gray
Level Emphasis with drinking (p < 0.001) as well as gender (p
< 0.001). LHL_glcm_ldn was associated with smoking (p <

0.01). LHL_gldm_Small Dependence Low Gray Level Emphasis
was associated with location (p < 0.01). LHL_glcm_Idn and
LHL_glszm_Large Area High Gray Level Emphasis were
associated with invasion degree (p < 0.05). HLH_glszm_Zone
Entropy, LHL_glcm_Idn and LLH_firstorder_Energy were
associated with overall stage (p< 0.05). In contrast, no radiomics
feature was significantly associated with age, genetic history
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FIGURE 1 | Radiomics feature selection using LASSO logistic regression model. (A) Identification of the optimal penalization coefficient lambda (λ) in the LASSO model

used 10-fold cross-validation and the minimum criterion. As a result, a λ value of 0.022 was selected. (B) LASSO coefficient profiles of the 221 radiomics features.

and metastasis (for all, p > 0.05). These p-values for all the
correlations of radiomics features with clinical data are shown in
Supplementary Table 1.

DISCUSSION

Here, we first developed and validated a new approach
based on CT radiomics to evaluate PFS before treatment in
ESCC (stage I-III). The radiomics signature from CT images
demonstrated better prognostic performance than traditional
clinical information alone. It could be competently differentiated
between patients with high-risk and low-risk, who had
significantly different 3-year PFS, and were defined according
to the median Rad-score. The developed radiomics nomogram
transcended the traditional TNM staging system and clinical
nomogram alone.

In clinical practice, CT, magnetic resonance imaging
(MRI), positron emission tomography (PET), and endoscopic
ultrasound (EUS) have their own advantages and disadvantages
in the staging of esophageal cancer or even cancer. But the use of
these modalities is limited to their cost in both time and money.
CT owns the highest cost performance of its high availability
and non-invasive process. However, the traditional prognosis
is dependent on the doctors’ observation, which differs greatly
according to the experience. Moreover, the evaluation from
traditional clinical information is even more inadequate. It is
believed that there is still a lot of digital data that can be deeply
excavated through the radiomics methodology and used for
judgment conversely. Therefore, we analyzed all acquired CT

images and constructed a CT-based radiomics signature. And the
results confirmed our expectations that the radiomics signatures
have the potential for evaluating prognosis in ESCC.

To build the radiomics signature, we selected 21 potential
predictors from 954 candidate features by selecting highly
correlated features with event outcomes and LASSO logistic
regression. The radiomics features obtained are generally
accurate. Because the regression coefficients of most features
have shrunk toward zero during model fitting. It allowed the
identification of features that had the strongest association
with PFS (Ndhlovu et al., 2013) and avoided overfitting (Hepp
et al., 2016). The radiomics signatures could reveal adequate
discrimination both in the training cohort (C-index, 0.758)
and the validation cohort (C-index, 0.748). Additionally, the
selected features were used to improve radiomics signature
and Rad-scores. We sorted the Rad-scores of all the patients
with the labeled living status in Figure 2B, suggesting that
the Rad-score could potentially differentiate the two types
of patients. Other related statistical analyses also supported
that the radiomics signature could be used as a biomarker
in the prognosis of ESCC. We found that compared to the
traditional TNM staging system and clinical nomogram, the
radiomics signature dominated our nomogram in the training
and validation cohorts. It means the radiomics signature has
better discrimination and prognosis than classical radiologists,
indicating the clinical importance of our findings due to
the traditional clinical information and TNM staging are
routinely used in clinical practice (Li et al., 2015; Wu et al.,
2015).
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FIGURE 2 | Rad-score for each patient in the training cohort and validation cohort. (A) ROCs were employed to assess the radiomics signature discriminative

performance of the survival status. ROC in the training cohort with 0.878 (95% CI: 0.831–0.924, sensitivity = 71.3%, specificity = 90.0%); ROC in the validation cohort

with 0.857 (95% CI: 0.767–0.947, sensitivity = 62.9%, specificity = 97.0%). Rad-score for each patient in the training cohort (B) and validation cohort (C). Blue bars

show scores for patients who survived without disease progression or were censored, while red bars show scores for those who experienced progression or died.

Generally, doctors use the traditional TNM staging system
for risk prediction and treatment planning. However, there were
apparent differences in PFS with the same clinical identified
disease stage, indicating that tumor heterogeneity would affect
the survival outcomes. Patients with ESCC (stage I-III) with
shorter PFS may benefit from the prognostic model because
they may give up aggressive treatments to avoid suffering
and overspending. Here, we developed the radiomics features

possessing better prognostic ability than the traditional TNM
staging system for pretreatment of PFS in the validation and
training cohorts. Our study focused on the patients with stage
I-III tumors (Table 1), and the patients with stage I accounted
for a small proportion (9.3% in the training cohort, 13.2% in
the validation cohort). Consequently, it might be not easy to
stratify PFS accurately since the similar information of clinical
stage. Additionally, the traditional TNM stage mainly reflects
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FIGURE 3 | Stratified analyses were performed to estimate PFS in various subgroups, comparing high-risk patients and low-risk patients.
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FIGURE 4 | (A) A radiomics nomogram integrated the radiomics signature from CT images with the TNM staging system in the training cohort. (B) Calibration curve

of the radiomics nomogram. The diagonal dotted line represents an ideal evaluation, while the yellow and red solid lines represent the performance of the nomogram.

Closer fit to the diagonal dotted line indicates a better evaluation. (C) Adding Age, gender, invasion degree, location, genetic history, and metastasis to the radiomics

nomogram. (D) Calibration curve of the radiomics nomogram with the addition of Age, gender, invasion degree, location, genetic history, metastasis.

cancer patients’ clinicopathologic features, such as tumor size,
lymph node involvement, and distant metastasis status. They
do have prognostic value in tumor treatment but neglected
the intratumor heterogeneity, which was deemed as a crucial
factor for tumor progression and prognosis (Yan et al., 2019).
As a result, it provided an inefficient nomogram performance
in both the training cohort (C-index, 0.603) and the validation
cohort (C-index, 0.572). While the radiomics approach extracted

the features of the entire tumor from medical images, which
produced a more comprehensive way to involve the intratumor
heterogeneity non-invasively. It might be why the combination of
radiomics signatures and traditional TNM staging could provide
a better nomogram performance in both the training cohort
(C-index, 0.770) and validation cohort (C-index, 0.760). Hence,
the radiomics signatures could assist the prognosis for ESCC
complementarily to the traditional TNM staging.
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FIGURE 5 | (A) The DCA of the radiomics-comparison-based nomogram. The black dotted line describes the scheme of no treatment. The green dotted line

describes the scheme of treatment. The red line represents our predictive model with only traditional TNM staging combined with clinical features. And the blue line

(Continued)
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FIGURE 5 | represents our personalized prediction model that added Rad-score. The x-axis is the threshold probability and the y-axis is the net benefit. It can be seen

the personalized prediction model with Rad-score added had a better net benefit than the traditional predictive model when the threshold is in the range of 0–0.9.

Hence, the patient with ESCC would receive benefit from taking our CT-based radiomics nomogram guidance. (B) Heatmap of associations between selected

radiomics features and clinical data. p < 0.05 indicates statistical associations, as determined using t-tests.

Previous studies reported that clinical information including
gender, pathological type, tumor differentiation, depth of
invasion, and regional lymph node metastasis was associated
with overall survival (OS) outcomes through univariate analysis.
While multivariate analysis showed that pathologic type, depth
of invasion, and regional lymph node metastasis were the
independent predictors of OS (Liu et al., 2019). Besides, the
tumor volume of ESCC could be used as an important prognostic
factor for radiotherapy and chemotherapy assessment (Chen
et al., 2013; Li et al., 2013; Chen Y. et al., 2016). Therefore,
we exploited a clinical nomogram that combined available risk
factors (age, gender, invasion degree, location, genetic history,
metastasis) with the overall stage, but it doesn’t exhibit well (C-
index of training cohort, 0.680; C-index of validation cohort,
0.605). Then, we developed the nomogram by combining the
radiomics signature in both the training cohort (C-index,
0.792) and the validation cohort (C-index, 0.779). This process
suggested that radiomics signatures have important prognostic
value for patients with ESCC.

Unlike the traditional methods, radiomics system is a non-
invasive and low-spending approach, which could provide
new insights into the associations between intrinsic tumor
properties and biological behaviors. We analyzed the relationship
between radiomics features and tumor-associated characteristics
and observed some radiomics features were related to the
general information of patients (gender, drinking, or smoking
information, Figure 5B). Additionally, our radiomics system
showed some radiomics features associated with invasion degree
as well (Figure 5B). As a result, the present study may provide
some different insights into the mechanisms of lymphatic
metastasis of ESCC, which require future investigation.

There were several limitations in our study. First, we used
thick-slice CT images rather than thin-slice images to extract
radiomics signatures. Zhao et al. (2016) found that thin-slice
images could reflect texture features of tumors more complete
than thick-slice images. For the measurement of tumor volumes,
thin-slice images had less measurement variability. We will
further study the effect of thin-slice CT images for the staging
of ESCC and confirm whether the performance is comparable
with thick-slice images. Second, all data involved in this study
are derived from the same hospital, resulting in the lack of multi-
center validation. Further investigations on the applicability to
the patients of other institutions are still required. Third, the
analysis did not cover two-way or higher-order interactions of the
radiomics features. If the interaction(s) strongly associated with

the outcomes were applied, the prognostic performance of our
nomogram might be significantly improved. However, revealing
the interactions of multiple factors is challenging. In brief, our
study clearly showed that the radiomics approach is potential for
the prognosis of ESCC patients.
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