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Abstract

Purpose: The purpose of this study was to evaluate the performance of three com-

mon deformable image registration (DIR) packages across algorithms and institu-

tions.

Methods and Materials: The Deformable Image Registration Evaluation Project

(DIREP) provides ten virtual phantoms derived from computed tomography (CT)

datasets of head‐and‐neck cancer patients over a single treatment course. Using the

DIREP phantoms, DIR results from 35 institutions were submitted using either

Velocity, MIM, or Eclipse. Submitted deformation vector fields (DVFs) were com-

pared to ground‐truth DVFs to calculate target registration error (TRE) for six

regions of interest (ROIs). Statistical analysis was performed to determine the vari-

ability between each DIR software package and the variability of users within each

algorithm.

Results: Overall mean TRE was 2.04 ± 0.35 mm for Velocity, 1.10 ± 0.29 mm for

MIM, and 2.35 ± 0.15 mm for Eclipse. The MIM mean TRE was significantly differ-

ent than both Velocity and Eclipse for all ROIs. Velocity and Eclipse mean TREs

were not significantly different except for when evaluating the registration of the

cord or mandible. Significant differences between institutions were found for the

MIM and Velocity platforms. However, these differences could be explained by vari-

ations in Velocity DIR parameters and MIM software versions.

Conclusions: Average TRE was shown to be <3 mm for all three software plat-

forms. However, maximum errors could be larger than 2 cm indicating that care

should be exercised when using DIR. While MIM performed statistically better than

the other packages, all evaluated algorithms had an average TRE better than the lar-

gest voxel dimension. For the phantoms studied here, significant differences

between algorithm users were minimal suggesting that the algorithm used may have

more impact on DIR accuracy than the particular registration technique employed. A

significant difference in TRE was discovered between MIM versions showing that

DIR QA should be performed after software upgrades as recommended by TG‐132.
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1 | INTRODUCTION

When treating a patient, anatomical changes that occur over the

treatment course can result in meaningful effects on radiation dose

delivery.1,2 To quantify the impact of these changes, it is important

to identify corresponding physical points between multiple images of

the same patient. Deformable image registration (DIR) has become

available in many commercial treatment planning and contouring sys-

tems for this purpose. This is particularly useful to propagate con-

tours from one image to another3 or accumulate dose across a

treatment.4 Understanding the accuracy of DIR is a critical duty for

the clinician, as the DIR accuracy may influence clinical decisions.

For example, the DIR accuracy for contour propagation may be less

stringent, as long as the propagated contours are reviewed and cor-

rected, than the accuracy required for deformable dose accumulation

where decisions may be made concerning organ‐at‐risk (OAR) toler-

ances. This study aims to further the comprehension of DIR accuracy

for typical head and neck cancer patients over the treatment course.

Deformable image registration is a non‐affine process that uses

mathematical models to deform one image to match another. Unlike

rigid or affine registration, each voxel in DIR is assigned a deforma-

tion vector that may be only loosely dependent on neighboring vox-

els. The resulting deformed image is characterized by its deformation

vector field (DVF), vector matrices which define the relationship

between the original and deformed images. Due to the high number

of degrees of freedom present in DIR algorithms, the DVF output

from an algorithm may result in an image deformation that is not

biologically or geometrically plausible.

Because of the freedom with which DIR may deform an image,

there have been research efforts to validate the use of DIR in radia-

tion therapy. Ground‐truth models with a known DVF relating pre‐
and post‐deformation images, or with phantoms containing known

landmarks, are often used for this purpose.5–10 Each of these

ground‐truth models provides a framework that can help the clinical

physicist validate the DIR implemented in their clinic. This study uses

virtual phantoms provided by the Deformable Image Registration

Evaluation Project (DIREP).10 Deformable Image Registration Evalua-

tion Project created publicly available phantoms based on computed

tomography (CT) data from head and neck cancer patients. These

phantoms provide a clinically based ground‐truth model that encom-

passes the anatomical changes that occur over the course of a typi-

cal treatment.

As an additional tool to validate DIR accuracy, AAPM’s Task

Group 132 (TG‐132) report provides a framework to commission

and provides QA of DIR output.11 The report provides several digital

deformable phantoms for testing DIR along with their recommended

tolerances. When using DIR, TG‐132 does recommend that relevant

boundaries and anatomical features in the registered images be

within 1–2 voxels, and that any additional error should feed into

planning margins. However, it does not provide information on how

the digital phantoms might compare to clinical cases or site‐specific
accuracy expectations.

Several studies have quantified DIR accuracy from different com-

mercial or research algorithms, using data submitted by multiple

institutions. This has been done using either contour‐based12,13 or

landmark‐based14,15 analysis. Contour‐based methods can be subjec-

tive, as they introduce variability based on the observer drawing the

contours and contain little information about the accuracy of voxels

within the contour. Landmark‐based methods provide accuracy infor-

mation in the vicinity of the landmark, but are limited to those

regions. In both cases, a contour or landmark that is easy for a

human to identify may also be easy for an algorithm to identify. This

may produce biased accuracy data. Comparatively, the DIREP model

assesses deformation accuracy for each voxel by comparing the

entire registration DVF to the ground‐truth DVF. Additionally, the

previous studies referenced have been limited by sample size, with a

maximum of 14 institutions submitting results for commercially avail-

able algorithms.

To establish a benchmark for DIR accuracy, several commercial

algorithms were previously tested with the DIREP phantoms.16 Fol-

lowing the benchmarking study, 35 institutions have submitted DIREP

registrations for the complete phantom set. The aim of this work is to

analyze the data submitted from these institutions using the DIREP

ground‐truth model in order to characterize the inter‐algorithm and

inter‐institutional variability of three commercial DIR software pack-

ages: Velocity (Varian Medical Systems, Palo Alto, CA), MIM (MIM

Software Inc., Cleveland, OH), and Eclipse (Varian Medical Systems,

Palo Alto, CA). This is done to provide the clinical physicist with insight

that can assist in implementing DIR clinically, and to enhance the

understanding of the inherent accuracy and limitations of these DIR

algorithms. Additionally, this study aims to use these results to aug-

ment the expectations set by the recommendations of TG‐132.

2 | METHODS

2.A | Ground‐truth model

Deformable Image Registration Evaluation Project provides ten vir-

tual phantoms, based on CT images taken at the start of treatment

(SOT) and near the end of treatment (EOT) for ten patients treated

for head and neck cancer. All of the virtual phantom datasets had an

in‐plane resolution of 0.97–1.37 mm and a slice thickness of

3 mm.10 A biomechanical algorithm17,18 and a thin‐plate splines algo-

rithm19 were used to create an anatomically representative pair of

images where the underlying “true” deformation field was known.

The thin‐plate splines algorithm was available as a deformation tool
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within the ImSimQA software package (Oncology Systems Limited,

Shrewsbury, Shropshire, UK). In all, these tools allowed for the mod-

eling of the following anatomical changes: head rotation and transla-

tion, mandible rotation, spine flexion, shoulder movement, hyoid

movement, tumor/node shrinkage, weight loss, and parotid shrink-

age. Physician‐drawn brainstem, spinal cord, mandible, left parotid,

and right parotid contours are included in these phantoms to allow

for the analysis of those structures. Figure 1 shows an example of

one of the DIREP phantoms along with its associated ground‐truth
DVF.

2.B | Basic DIR evaluation

To test the accuracy of a given DIR process, each EOT phantom is

registered to its associated SOT phantom, as would be performed

for dose accumulation. The DVFs created by each of these registra-

tions can then be directly compared to the ground‐truth DVFs pro-

vided by the DIREP phantoms. Complete datasets were submitted

by 35 institutions. The algorithms used by the submitting institutions

are listed in Table 1. The companies behind these DIR algorithms do

not typically publish detailed information on their algorithms to pro-

tect intellectual property. Aside from the information given in

Table 1, these algorithms will be treated as a “black box” for the pur-

poses of this study.

Using target registration error (TRE) as a figure of merit, the

DVFs submitted by each institution were compared to the ground‐
truth DVFs for all ten phantoms. Registration accuracy was evalu-

ated for six regions of interest (ROIs): brainstem, spinal cord, mand-

ible, left parotid, right parotid, and external contour. From this, the

TRE from the ground truth for each voxel in each ROI was calcu-

lated. These values were summarized into a mean TRE across each

region for each phantom. The maximum deviation in each region

was also recorded. This information was averaged across all ten

phantoms in order to calculate a set of summary statistics represent-

ing the overall accuracy of the deformable registration for each insti-

tution.

2.C | Statistical analysis

2.C.1 | Inter‐algorithm variability

To determine inter‐algorithm variability, the summary statistics for

each institution were grouped by the registration software used for

the deformation. A Welch’s t‐test was performed in order to com-

pare the mean TRE for each combination of DIR algorithms, for each

contoured region. This was done to test the null hypothesis that any

two algorithms have the same mean TRE.

2.C.2 | Inter‐institutional variability

In order to evaluate the variability within each algorithm, the institu-

tional data were again grouped by the DIR algorithm used. Because

the summary statistics for an institution are averaged across the 10

DIREP phantoms, an ANOVA was performed to test the null hypoth-

esis that the average TRE within an algorithm for each contour was

not institutionally dependent.

3 | RESULTS

3.A | Summary statistics

Table 2 shows the summary statistics for all institutions submit-

ting data using Velocity, MIM, and Eclipse. On average, MIM per-

formed the tests with the smallest registration error, with average

TRE values consistently smaller than the other two algorithms.

However, the maximum error for MIM is greater than the other

two algorithms in areas that tend to fluctuate in overall volume

throughout the course of a treatment, in particular with both par-

otid contours.

(a) (b) (c)

F I G . 1 . Virtual phantom example.
(a) Start‐of‐treatment image. (b) End‐of‐
treatment image. (c) Start‐of‐treatment
image with the ground‐truth DVF overlaid.

TAB L E 1 Details of the DIR algorithms evaluated in this study.

Software Versions DIR algorithm Algorithm type Number of institutions

Velocity 3.1 to 3.2.1 Deformable multi‐pass or extended

deformable multi‐pass
Multiresolution B‐spline 16

MIM 6.2.2 to 6.7.7 VoxAlign Constrained, intensity‐based, free‐form 13

Eclipse 11 to 13.7 SmartAdapt Accelerated demons 6
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The data can be seen in more detail, separated by institution, in

Fig. 2. Upon review of these data, it can be seen that the institutions

using Velocity and Eclipse showed similar results across all contours.

The exceptions to this are the cord, where Eclipse consistently outper-

formed Velocity, and for the mandible, where Eclipse consistently per-

formed worse than Velocity. For all other contours, some of the

Velocity institutions performed better than some of the Eclipse institu-

tions and vice versa. The MIM institutions, however, exhibited a lower

mean TRE than all of the Velocity and Eclipse institutions for all of the

contours except for the right parotid. Within the MIM results, there

appears to be a bimodal distribution in that the same institutions con-

sistently yielded a lower mean TRE across all contours.

3.B | Inter‐algorithm variability

Table 3 shows the full results of a Welch’s t‐test applied to the aver-

age TRE for each combination of registration algorithms, separated

by region. In order to adjust the false‐positive rate to account for

performing 18 separate tests, an initial alpha threshold of 0.05 was

corrected using a Bonferroni correction to an adjusted value of

0.0028. From Table 3, it can be seen that the mean TRE using MIM

is significantly different than the mean TRE using either Velocity or

Eclipse. For the brainstem, both parotids, and external contours,

there was a failure to reject the null hypothesis that the mean TRE

between Velocity and Eclipse is the same. This suggests that for the

DIREP head and neck phantoms, both Velocity and Eclipse per-

formed similarly on average in most cases. These results are consis-

tent with the institution‐specific results contained in Fig. 2.

3.C | Inter‐institutional variability

Tables 4 shows the results of one‐way ANOVAs performed to test

the null hypothesis that the mean TRE for a given algorithm, within

a given region, is not institutionally dependent. Because there were

18 comparisons made, the significance threshold of 0.05 was altered

with a Bonferroni correction to an adjusted value of 0.0028. For

most cases, algorithm performance is not significantly user depen-

dent. There is a significant institutional impact on the mandible and

external contour registrations when using Velocity, but overall user

dependence on mean TRE is minimal; these differences account for

a sub‐mm change in registration accuracy, which is likely not clini-

cally significant. When all of the MIM submissions are grouped

together, the mean TRE for the MIM data is user dependent in all

regions except for the parotids. This is not surprising, given the

bimodal distribution shown in Fig. 2.

Although MIM initially showed an overall user dependence on

registration accuracy, there appeared to be a difference between the

mean TRE produced by MIM versions 6.5 and prior, when compared

to MIM versions after 6.6. Table 5 shows the mean and maximum

TRE for each region for MIM data grouped by versions. Once data

were grouped in this way, Welch’s t‐tests were performed in order

to test for a significant difference in mean TRE through this group-

ing. From these data, it is clear that there is a notable improvement

in mean TRE after version 6.6. The maximum error is also notably

lower for MIM versions after 6.6, especially for the mandible, paro-

tid, and external contours. Beyond this, the variability found both

pre‐ and post‐MIM version 6.6 is lower than the overall variability

found in MIM when these data were grouped together; the true

variability in MIM output is lower than what was shown in Table 2.

One‐way ANOVAs, shown in Table 6, were performed in order

to test for user variability both before and after this change in ver-

sion. From this, it was found that there was no user dependence on

registration accuracy for pre‐6.6 and post‐6.6 registrations when

treated as separate groups. Consequently, the user dependence

found with MIM is likely the result of a difference in algorithm

between MIM versions, and not a user dependence on the software.

4 | DISCUSSION

In all, the summary statistics compiled here reflect 350 individual

registrations. While the maximum errors on the order of 25–
40.7 mm are concerning, the mean errors (ranging from 0.38 to

2.35 mm) were less than the largest voxel dimension (3 mm).

Although MIM consistently produced the smallest errors for this

dataset, to our knowledge, there are no aspects of the phantoms

that would have biased the results toward that algorithm. In fact,

the DIREP phantoms were created using multiple algorithms and

human interaction in an attempt to eliminate bias toward any algo-

rithm.10

TAB L E 2 Summary statistics for all institutions that submitted data using Velocity, MIM, and Eclipse. Errors shown are ±standard error of the
mean.

Region

Velocity (N = 16) MIM (N = 13) Eclipse (N = 6)

Mean (mm) Max (mm) Mean (mm) Max (mm) Mean (mm) Max (mm)

Brainstem 1.23 ± 0.23 4.8 0.42 ± 0.10 2.4 1.15 ± 0.10 7.3

Cord 1.40 ± 0.24 12.2 0.38 ± 0.15 2.7 1.12 ± 0.04 4.6

Mandible 1.34 ± 0.23 9.0 0.68 ± 0.24 8.2 1.97 ± 0.08 9.4

Left parotid 1.92 ± 0.21 10.8 1.12 ± 0.11 13.1 1.92 ± 0.12 11.0

Right parotid 1.59 ± 0.26 13.1 1.23 ± 0.28 26.9 1.75 ± 0.10 8.9

External 2.04 ± 0.35 40.7 1.10 ± 0.29 34.7 2.35 ± 0.15 25.0
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The outlier in the MIM data appears in the right parotid results.

For eight of the MIM institutions, the standard deviation of the reg-

istration error for the right parotid contour was much greater than

was seen in the other ROIs. This was the result of a failure of the

MIM algorithm within the contour of the right parotid for one of the

DIREP phantoms. As shown in a previous study,16 MIM was unable

F I G . 2 . Mean TRE for each institution in
this study. The error bars represent one
standard deviation of the mean registration
error for each of the ten phantoms. Note
that the Y‐axis scale is 4 mm and that the
mean TRE difference between institutions
is typically <1 mm.
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to reproduce the correct registration of the right parotid for Phan-

tom 9. This investigation found mean and maximum registration

errors similar to the previous study (greater than 6 and 20 mm,

respectively) for the right parotid of Phantom 9 prior to MIM version

6.6. With version 6.6, the mean and maximum TRE for the right par-

otid of Phantom 9 were reduced to just over 3 and 10.9 mm,

respectively. This finding emphasizes the changes that may occur, in

this case improvements, as updates are made to DIR algorithms.

When comparing algorithm performance, Table 3 shows that the

difference between Velocity and Eclipse was not significant for most

ROIs. The exceptions are for the cord and mandible where one algo-

rithm consistently performed better than the other. This is consistent

with the data observed in Fig. 2. Table 3 also shows that the MIM

average TRE was significantly different than both Velocity and

Eclipse for all of the evaluated ROIs. However, these differences

were typically on the order of about 1 mm. Such small differences

TAB L E 3 Results of Welch’s t‐test to compare mean TREs across
algorithms. Tests marked with an asterisk (*) indicate a significant
difference in mean TRE.

Algorithm 1 Algorithm 2 Region P‐value

Velocity MIM Brainstem <0.001*

Velocity Eclipse Brainstem 0.312

MIM Eclipse Brainstem <0.001*

Velocity MIM Cord <0.001*

Velocity Eclipse Cord <0.001*

MIM Eclipse Cord <0.001*

Velocity MIM Mandible <0.001*

Velocity Eclipse Mandible <0.001*

MIM Eclipse Mandible <0.001*

Velocity MIM Parotid L <0.001*

Velocity Eclipse Parotid L 0.977

MIM Eclipse Parotid L <0.001*

Velocity MIM Parotid R 0.001*

Velocity Eclipse Parotid R 0.058

MIM Eclipse Parotid R <0.001*

Velocity MIM External <0.001*

Velocity Eclipse External 0.009

MIM Eclipse External <0.001*

TAB L E 4 Results of one‐way ANOVAs performed on mean TRE for
each region. Regions that show a significant institutional dependence
are indicated by an asterisk (*).

Region Magnitude (mm) F‐value P‐value

Velocity

Brainstem 1.23 1.62 0.074

Cord 1.40 0.873 0.596

Mandible 1.34 2.92 < 0.001*

Left parotid 1.92 0.928 0.535

Right parotid 1.59 1.87 0.031

External 2.04 2.93 < 0.001*

MIM

Brainstem 0.42 5.56 < 0.001*

Cord 0.38 31.7 < 0.001*

Mandible 0.68 12.4 < 0.001*

Left parotid 1.12 0.526 0.894

Right parotid 1.23 0.650 0.795

External 1.10 13.8 < 0.001*

Eclipse

Brainstem 1.15 0.426 0.829

Cord 1.12 0.119 0.988

Mandible 1.97 0.096 0.993

Left parotid 1.92 0.466 0.800

Right parotid 1.75 0.168 0.974

External 2.35 2.46 0.044

TAB L E 5 Registration error and Welch’s t‐test results for MIM
before and after version 6.6. The t‐test compared mean TRE across
version grouping. Errors shown are ±standard error of the mean.
Asterisk (*) indicate significant values.

Pre‐6.6 (N = 8) Post‐6.6 (N = 5)

P‐valueMean (mm)
Max
(mm) Mean (mm)

Max
(mm)

Brainstem 0.45 ± 0.01 2.4 0.31 ± 0.00 1.4 <0.001*

Cord 0.47 ± 0.03 2.7 0.23 ± 0.00 2.1 <0.001*

Mandible 0.87 ± 0.08 8.2 0.41 ± 0.00 5.8 <0.001*

Left parotid 1.20 ± 0.05 13.1 0.97 ± 0.01 10.7 <0.001*

Right parotid 1.46 ± 0.02 26.9 0.92 ± 0.01 10.9 <0.001*

External 1.36 ± 0.04 34.7 0.79 ± 0.01 26.3 <0.001*

TAB L E 6 One‐way ANOVA results for MIM mean TRE before and
after version 6.6.

Region Magnitude (mm) F‐value P‐value

MIM pre‐6.6

Brainstem 0.50 0.002 1.00

Cord 0.49 0.033 0.999

Mandible 0.85 0.087 0.999

Left parotid 1.19 0.015 0.999

Right parotid 1.44 0.003 1.00

External 1.34 0.008 1.00

MIM post‐6.6

Brainstem 0.30 0.002 0.999

Cord 0.20 0.000 1.00

Mandible 0.40 0.001 0.999

Left parotid 1.00 0.001 0.999

Right parotid 0.90 0.001 0.999

External 0.82 0.004 0.999
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may not be clinically significant when considering contour propaga-

tion, but may be significant when reviewing dose accumulation,

especially in high‐dose gradient regions.16

A surprising finding was that, on average, the differences in TRE

between institutions using the same software were not statistically

significant when accounting for the change in MIM versions as

shown in Tables 4–6. The lone exceptions to this were the mandible

and external ROIs for institutions using Velocity. Upon further inves-

tigation, it was discovered that the difference in registration error

between institutions for the mandible was most likely due to the use

of the Deformable Multi Pass (DMP) algorithm versus the Extended

Deformable Multi Pass (EDMP) algorithm. Unfortunately, further

analysis comparing the DMP to the EDMP algorithm was prohibited

because not all sites reported which was used at the time of submis-

sion. Within Velocity, a user‐defined 3D ROI may be used to define

the region to be deformed. Any part of the dataset outside of this

ROI is not deformed. A subset of the Velocity users elected to

define an ROI that excluded the patients’ shoulders in an effort to

improve the DIR in the rest of the dataset. While an improvement in

the registration of the anatomical ROIs was not obvious when using

the DIR‐limiting ROI, the shoulder regions were misregistered result-

ing in large DIR errors in those regions compared to the ground

truth. This is the reason for the statistically significant difference of

the external ROI between Velocity institutions. The lack of signifi-

cant differences between users of a particular DIR platform suggests

that, at least for the displacements seen in these virtual phantoms

representing head and neck cancer patients over a typical course of

treatment, the choice of algorithm may be more impactful than the

registration technique employed by trained users.

Other multi‐institution studies that have evaluated commercial

algorithms include those published by Loi et al12,13 and Kadoya

et al.14 The first study published by Loi et al assessed submissions

from 13 centers using six different commercial DIR platforms, includ-

ing RayStation (RaySearch Laboratories, Stockholm, Sweden), MIM,

Velocity, Eclipse, Mirada XD (Mirada Medical Ltd, Oxford, UK), and

ABAS (Elekta AB, Stockholm, Sweden).12 That investigation evalu-

ated three virtual phantoms representing the head and neck region,

pelvis, and thorax. The second Loi et al study added an institution

but primarily investigated the performance of DIR algorithms for

multimodal (cone beam CT and megavoltage CT) registration using

head and neck virtual phantoms.13 While it is difficult to directly

compare those studies to this work because only contour‐matching

metrics were reported (e.g., Dice similarity coefficient and mean dis-

tance to conformity), both studies found significant differences

between the various platforms used but not between users of the

same algorithm. This is similar to what we have reported.

Kadoya et al evaluated DIR performance using landmark analysis

of thoracic 4D CT datasets.14 Eleven institutions submitted data for

RayStation, MIM, and Velocity. The mean registration error found in

that work was 3.28 mm for RayStation, 3.29 mm for MIM, and

5.01 mm for Velocity. While the errors seen in that study are higher

than those reported here, that is likely the result of the greater

anatomical displacement seen in 4D thoracic datasets than in head

and neck cancer patients. In fact, Kadoya et al found that the cases

that were tested with the largest displacement between peak inhale

and peak exhale exhibited the largest registration error with the

highest standard deviation. The Kadoya study also found moderate

variation among institutions using the same DIR software, contrary

to this work. This suggests that the technique used for registration

or the proficiency of the user may have more of an influence on the

DIR error for datasets with greater anatomical variation.

TG‐132 recommends that DIR platforms be tested during com-

missioning, annual QA, and upon upgrade, and provides digital phan-

toms for this purpose.11 The recommended tolerance for one of the

phantom datasets is that 95% of voxels within the phantom be

within 2 mm with a maximum error less than 5 mm. While many of

the individual OARs examined in this study may meet that criteria,

the entire phantom does not as seen in the summary statistics for

the external contour in Table 2. In other words, clinicians should not

assume that the results achieved during testing are indicative of the

results achievable in all situations or, presumably, with complex clini-

cal datasets. TG‐132 further recommends that patient‐specific
deformable registration QA should verify that relevant anatomic

boundaries and features are within 1–2 voxels, and that any addi-

tional error should feed into margins. For the OARs studied, this

work could assist clinicians in determining the minimum margins

required when using DIR for dosimetric evaluation.

The primary limitation of this study is that the findings are likely

only applicable to the type of patients represented by the virtual

phantoms, that is head and neck cancer patients over a single course

of treatment. Additionally, while a variety of patients were chosen

for creation of the virtual phantoms, only ten phantoms were cre-

ated and evaluated which may not be representative of the anatomic

changes seen in the entire population of head and neck radiotherapy

patients. These results should not be extrapolated to other sites or

situations (e.g., retreatments) without further research to confirm

their validity. Furthermore, while the authors found no significant

difference between users of the same DIR algorithms in this study,

the use of advanced tools was not investigated. As new DIR tools

are developed by vendors, such as the ability to refine a registration

or contour‐guided DIR, these tools may provide more options and

differentiation between users.

5 | CONCLUSIONS

Three hundred and fifty registrations from 35 institutions were eval-

uated for DIR accuracy in this study. While it was shown that the

average error was <3 mm for all three software platforms, care

should be exercised when using DIR because localized or maximum

errors can be much greater. The authors found that one algorithm

performed statistically better than the others, but that all algorithms

were typically more accurate than the largest voxel dimension. For

the relatively small displacements between registered images studied

here, no significant inter‐institutional difference was found between

users of the same algorithm. This suggests that, for head and neck
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DIR within a treatment course, the algorithm used may have more of

an impact on registration accuracy than a trained user’s DIR technique.

A significant difference between versions of one of the algorithms was

reported. This finding supports the TG‐132 recommendation that regis-

tration algorithms should be tested upon upgrade. Unfortunately, the

current DIR testing options are often time‐consuming and limited to

academic centers. To enable more frequent testing and the use of

appropriate DIR margins, vendors should provide analysis tools to sim-

plify testing for various sites and situations.
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