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Abstract: Chronic itch is one of the most prominent clinical characteristics of diverse systematic
diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no
FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis
and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized
antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic der-
matitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics
available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly
identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have
opened new avenues for therapeutic development. Proof-of-principle studies have been successfully
performed on antagonists against these proteins and their receptors in itch treatment in animal
models. Their translational interventions in humans need to be evaluated. It is of great importance to
summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote
the development of novel anti-itch therapeutics. The goal of this review is to analyze the different
physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets
and discussing future therapeutic development.

Keywords: atopic dermatitis (AD); B-type natriuretic peptide (BNP); chronic pruritus (CP);
interleukin-31 (IL-31); oncostatin M (OSM); protease-activated receptor 2 (PAR2); T helper 2 (TH2);
transient receptor potential vanilloid-3 (TRPV3); thymic stromal lymphopoietin (TSLP); Mas-related
G-protein-coupled receptors (Mrgprs)

1. Introduction

Chronic pruritus (CP) or chronic itch is a devastating clinical condition that entails
continuous itch for more than 6 weeks, but there are limited medications to help with
this condition. The complexity and heterogeneity of this clinical condition pose a major
challenge for clinical care. Genetic studies and single-cell sequencing data have provided
in-depth neural–immune networks encoding itch information in different mechanisms
of itch. The detailed signature of itch-sensing neurons has been characterized but is still
largely unknown. There are no therapeutics that are generally effective. Dysregulated
communications between sensory and immune cells, skin resident cells, as well as central
systems trigger chronic itch and chronification. When the skin is irritated, itch signals are
sent to the peripheral nerve of the cutaneous nerve endings, which originated from dorsal
root ganglion (DRG), then are ascended to the spinothalamic tract and the parabrachial nu-
cleus at the other side before reaching the somatosensory thalamus, and then are projected
on the cortex [1–4]. Diverse chemical stimuli trigger itch, including neuropeptides [5–10],
amines [11,12], cytokines [13–19], chemokines [20,21], proteases [22–25], lipids [26–29], and
opioids [30]. The goal intended to be achieved by this review is to understand the different
physiologies and pathophysiologies of itch and discuss potential emerging targets as well
as achievements in ongoing therapeutic development.
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2. Neuropeptide Targets in Itch Transmission

Neuropeptides are critical in the transmission of itch sensation from the peripheral
nervous system to the spinal nervous system and to higher levels. Diverse neuropeptides
including calcitonin gene-related peptide (CGRP), substance P (SP), and vasoactive in-
testinal peptide (VIP) can promote skin inflammation [6,31,32]. B-type natriuretic peptide
(BNP) and gastrin-releasing peptide (GRP) [4] play critical itch-selective roles in itch sen-
sation [33]. The inter-neurons are defined by the neurochemical and neuropeptidergic
characteristics [34], based on marker molecule expressions including somatostatin (SST),
neuropeptide Y (NPY), and parvalbumin (PV) [35,36].

2.1. CGRP

CGRP is an extensively studied vasodilator that is expressed in the sensory neurons,
motor neurons, and many other cell types, including monocytes/macrophages [37], Langer-
hans cells (LCs, dendritic antigen-presenting cells that reside within the epidermis) [38]
and keratinocytes [39], but not in basophils. Its splice variants, CGRPα is mainly found in
the central nervous system (CNS) and peripheral nervous system (PNS), whereas CGRPβ
is less expressed in PNS but is the only isoform in keratinocytes [40]. Activation of TRPV1+

sensory neurons release CGRP to act on diverse immunocytes, including T cells, B cells,
dendritic cells (DCs), mast cells, macrophages, and LCs, causing neuro-inflammation,
neurogenic vasodilation, and immune response [41]. CGRP released from other cells (i.e.,
cutaneous lymphocyte-associated antigen (CLA)+ T cells) may exaggerate neurogenic in-
flammation response and induce the release of itch-related cytokines, i.e., interleukin-4
(IL-4) or interleukin-13 (IL-13) from immune cells [42]. CGRP was involved in the regula-
tion of pruritus. Significantly higher CGRP concentration was detected in patients suffering
from severe pruritus [43]. The plasma CGRP level of patients with greater eczema score
(SCORing Atopic Dermatitis, SCORAD) was significantly higher than that of patients with
lower SCORAD score. CGRP+ interneurons mediate spinal itch transmission but not pain
signals [33]. Although the deletion of CGRPα+ sensory neurons in mice showed a reduced
sensitivity to histamine and chloroquine-induced itch [44], intradermal injection of CGRP
failed to induce skin itch response and did not cause itch in humans [45]. An antagonist
for CGRP has proved effective in relief of pain and migraine [46], and also reduces itching
caused by harmful heat stimuli, histamine, and chloroquine [44]. The prospective for the
usage of CGRP antagonists in treatment of itch in humans still remains elusive.

2.2. SP

SP is an important transmitter of the afferent neurons in the PNS and CNS. SP acts
on diverse immunocytes, including eosinophils, mast cells, and T cells, and promotes
skin inflammation [47,48]. Although neurokinin-1 receptor (NK-1R) has been traditionally
regarded as the main SP receptor, mas-related G-protein-coupled receptor member B2
(MrgprB2)/MrgprX2) on the mast cells may be the critical receptor mediating SP-mediated
mast cell activation [49]. The SP-activated mast cells release histamine, leukotriene B4
(LTB4), prostaglandin D2 (PGD2), and tumor necrosis factor alpha (TNF-α) [50–52] to
further induce SP release from the sensory nerve endings and exacerbate itch. SP may
trigger the release of pruritogenic compounds from other cell types such as keratinocytes
and endothelial cells [53,54]. SP is also involved in the transmission of itch sensation at the
spinal cord level [9]. In contrast to CGRP, intradermal injection of SP into the mouse dose-
dependently produced scratching at the injected site and peaked 10 min after injection [55].
An antagonist for NK-1R, aprepitant, has proved beneficial in itch relief in phase II clinical
studies [56]; however, the safety and long-term effect is unclear.

2.3. BNP

BNP is a central itch mediator [5]. Release and synthesis of BNP is upregulated by
interleukin-31 (IL-31) in sensory dorsal root ganglionic neurons (DRGs) [18,57] (Figure 1).
IL-31 receptors (IL-31RA and OSMR) are co-enriched with the BNP gene (Nppb) in
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DRG [58,59]. BNP and receptor expression is increased in the pathogenic skin of AD
patients [58,59]. In the human skin cells, the pro-inflammatory and itch-promoting pheno-
types are promoted by BNP [18]. Moreover, the itch responses to subcutaneously injected
IL-31 were significantly attenuated in Nppb-KO mice and mice treated with Nppb-saporin,
a toxin that ablated 70% of BNP receptor-positive neurons in the spinal cord [60,61]. BNP
was found to significantly promote neuromedin B (NMB)-mediated scratching behav-
ior [62]. Nppb saponin simultaneously ablates spinal cord Npr1 and Npr3 neurons, impair-
ing histamine- but not CQ-induced pruritus [62]. In the skin, BNP was found to sensitize
transient receptor potential vanilloid 3 (TRPV3), resulting in enhanced Serpin E1 release,
an itch-specific mediator with transcription levels positively correlated with the severity
of human AD skin [63]. Thus far, no BNP or NPR1 antagonist has been identified for itch
relief in humans, although the NPR1/2/3 antagonist is effective in chronic itch models [64].
In AD-like murine models, an antagonist for Serpin E1 reduced itch-like behaviors [63],
revealing underlying potential for antagonizing Serpin E1 in itch relief.
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neurons. Instead, BNP is expressed in a separate neuronal subpopulation which also express SST 
and IL-31RA. During AD itch, IL-31 induces BNP release from these Nppb+ neurons, and the released 
BNP binds NPR1+ dorsal horn neurons to propagate itch signal. 

2.4. GRP 
GRP is a spinal itch-selective transmitter known to be highly expressed in a 

population of spinal cord dorsal horn (DH) interneurons [33,65–67], and may serve as a 

Figure 1. Glutamate and BNP transmit itch through distinct pathways. MrgprA3+ neurons utilize
glutamate together with NMB, to transmit itch signal to dorsal horn neurons. Distant from glutamate
that activates NMBR+ and NMBR- dorsal horn neurons, NMB activates only NMBR+ neurons. Instead,
BNP is expressed in a separate neuronal subpopulation which also express SST and IL-31RA. During
AD itch, IL-31 induces BNP release from these Nppb+ neurons, and the released BNP binds NPR1+

dorsal horn neurons to propagate itch signal.

2.4. GRP

GRP is a spinal itch-selective transmitter known to be highly expressed in a population
of spinal cord dorsal horn (DH) interneurons [33,65–67], and may serve as a “leaky gate” for
nociceptive signals [68]. GRP18-27 induces scratching behavior upon intrathecal injection
via activation of the GRP receptor (GRPR) [69]. Spinally restricted ablation of GRP neu-
rons reduced itch-related behaviors to different pruritogens, whereas their chemogenetic
excitation elicited itch-like behaviors and facilitated responses to several pruritogens. In
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contrast, responses to painful stimuli remained unaltered. GRP neurons receive direct input
from MrgprA3+ pruritoceptors [33]. Since glutamate and NMB are implicated in MrgprA3+

neurons, how the itch signal is coded with GRP is not clear. These data confirm a critical
role of dorsal horn GRP neurons in spinal itch transmission [33]. GRP level is also increased
in AD patient skin and GRP seems to promote thymic stromal lymphopoietin (TSLP) release
from keratinocytes [70]. Despite its pivotal role in regulating itch, therapeutic interventions
in GRP signaling have not been progressed so far, mainly due to a complex integration of
central circuits within the spinal cord level and a variety of modulators involved. Apart
from this, it is reported that intradermal injection of GRP in mice also elicited scratching, in
addition to mast cell degranulation [8]. It remains unknown if targeting GRP peripheral
signaling would be beneficial for clinical treatment of itch.

2.5. NMB

Both NMB and GRP are related to the amphibian bombesin protein [71], and seem
to act as itch-specific neuropeptides in DRGs [72]. Intrathecal injection of NMB elicits
scratching behavior, similar to GRP, at a picomolar dose range [73], but intradermal in-
jection of NMB also induces itch at a nanomolar dose range [74]. NMB and GRP encode
predominantly histaminergic pruritus and non-histaminergic pruritus, respectively [73,75].
Each of them can bind to the cognate receptor GRPR and NMB receptor (NMBR) in the
spinal cord. Moreover, the NMB is wide-spread in sensory neurons, and together with glu-
tamate is highly expressed in MrgprA3+ neurons, which form monosynaptic, glutamatergic
connections with NMBR+ and NMBR− DH neurons and function in a context-dependent
manner (pruritogen type, concentration, etc.) to enhance the activity of NMBR+ DH
neurons [76]. Glutamate is an essential itch mediator in sensory neurons expressing Mrg-
prA3/NMB/Vglut2, and its signaling to NMBR+ DH neurons is enhanced by NMB from
MrgprA3+ afferents [76]. MrgprA3+ and NPPB+-neurons are in distinct neuronal subsets,
and each are labelled by different itch biomarkers and receptors (Figure 1). Interestingly,
BNP is found to crosstalk with NMB in the spinal cord by facilitating NMB-involved itch
through each respective receptor NPR3-NMBR co-signaling [62]. How this signaling is
manipulated by GRP and glutamate requires further investigation. The antagonist for NMB
signaling (CNQX, i.t. injection) blocks chloroquine-induced itch in mice [73]. However,
its potential as a therapeutic target in chronic itch at both peripheral and central level is
not clear.

2.6. SST

SST originates from the DRGs and spinal dorsal horn neurons and is an important
endocrine hormone and a neuropeptide in the nervous system, including the PNS and CNS.
SST induces scratching behavior in rats when intrathecally injected [77]. It is not known yet
whether intradermal injection of SST induces peripheral itch in mammals, despite that SST
is expressed in Nppb+ DRGs (Figure 1), and optogenetically activated SST+ primary afferent
neurons triggered itch behavior [58]. In addition, SST+/Nppb+ neurons mediate mast-cell-
induced itch [78,79]. At the spinal cord level, spinal SST+ neurons partially overlapped
with NPR1+ neurons, the receptor of BNP [80]. The transcription factor Bhlhb5+ neurons
that express the antipruritic neuropeptide endorphin were found to be hyperpolarized
by SST, resulting in disinhibition of GRPR+ neurons, underlying the SST potentiation of
chemically induced scratching [58]. However, how SST feeds back to BNP signaling from
the spinal to peripheral system has not been clarified.

2.7. Endothelin-1 (ET-1)

ET-1 is a neuropeptide in spinal cord and sensory neurons [81], and it is also released
by the keratinocytes, endothelial cells, immunocytes, and neurocytes. ET-1 is an effective
vasoconstrictor related to itch sensation in humans and is one of the most effective itch
sources that directly act on the sensory neurons [82–88]. It binds with the endothelin
A receptor (ETAR) and endothelin B receptor (ETBR), inducing strong itch response on
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mammals as a non-histamine itch agent, and mediates a histamine-dependent itch reaction
in humans. Neural peptidase endothelin-converting enzyme 1 (ECE-1) regulates the ET-1-
induced scratching reaction in mice [82,86]. Moreover, both the epidermal level and plasma
level of ET-1 are increased in human AD, and ET-1 also induces BNP release from sensory
neurons, in a similar manner as IL-31 [89], underlying the exacerbated atopic itch and
associated dysregulated vascular reactions in human skin. Topical application of its dual
receptor antagonist bosentan effectively relieved mite-induced AD-like itch [90]. ET-1 also
plays critical roles in psoriasis and Prurigo Nodularis, and ETAR antagonist ambrisentan
improved the symptom in psoriasiform dermatitis in a mouse model [91], highlighting
their possible anti-pruritic potential by antagonizing ET-1 pathway.

3. Itch Targets in G-Protein-Coupled Receptor Pathways

GPCR detects diverse itch-inducing chemical substances. Many types of GPCR have
been discovered, such as histamine-related H1 and H4 receptors, protease-activated re-
ceptor 2 (PAR2), Mrgpr, IL-31RA, IL-13RA, IL-4R, CysLT receptors, TSLP, and endothelin
receptors, etc. [23,92,93]. The G-protein-coupled signal cascade is triggered via phospholi-
pase C and phospholipase Gβγ, and thus mediates TRP cation channel gating [88,94].

3.1. Histamine

Histamine is a common inflammatory mediator and the most known itch inducer. It
is released mainly by the mast cells and basophils and occasionally by keratinocytes. It
activates eosinophils, mast cells, basophils, and TH2 cells [3,95–100]. Among the known
four histamine receptors, H1, H2, H3, and H4, histamine induces the itch sensation via
activation of H1 and H4 receptors on sensory neurons [11], resulting in activation of
TRPV1 via phospholipase, leading to the release of neuropeptides such as CGRP and SP,
thus inducing neurogenic inflammation, local vasodilation, plasma extravasation, and
mast cell degranulation [3,95,96]. Spinal cord H4R-mediated itch can be persistent, and
antagonists for H4R attenuated itch in AD patients whereas antagonists for H1R and H2R
are largely ineffective in AD and psoriasis [101,102]. However, although the antagonists of
H4R are tested in clinical trials, there is not even one that meets the clinical standard for
chronic itch. Oral ZPL-3893787 improved inflammatory skin lesions in patients with AD;
however, this still requires further investigation to give a conclusive result in the reduction
in pruritus [103].

3.2. Proteases, Tryptase, and Kallikreins (KLK) 5 and 14

Specific serine and cysteine proteases, including tryptase, KLK 5 and 14, and cathepsin
activate PAR2, which plays a critical role in itch sensation and cutaneous inflammation in
mice and humans [104]. Intradermal injection of tryptase activates PAR2 to elicit scratching
in mice [25]. Tethered ligands, such as SLIGRL (agonist of PAR2) and AYPGKF (PAR4 ago-
nist), elicit non-histamine-dependent scratching bouts in mice, but not rats [105]. Moreover,
cathepsin S cysteine protease cleaves PAR2 and PAR4 as well as MrgprC11 to produce
itch in mice [23]. PAR2 activation induces mobilization of keratinocytes and TSLP through
phospholipase C (PLC), and this itch-related process is regulated by the PAR2/TRPV3
signaling cascade in keratinocytes [106]. TRPV3 and PAR2 are upregulated in skin biopsies
of patients with AD and mice, while in mouse models of AD, their inhibition attenuates
itch-related behaviors and inflammation. In a murine model of AD, pruritus, local skin
inflammation, and epidermal thickening were significantly inhibited by a PAR2 antago-
nist, PZ-235 [107]. Whether the PAR2 antagonist can improve debilitating itch and skin
lesions in AD without causing immune suppressive side effects is still a challenging unmet
clinical need.

3.3. Mas-Related G-Protein Coupled Receptors (Mrgprs)

Among 50 mouse and 10 human Mrgpr subjects, mouse MrgprA1, A3, B2, C11, and D,
and human X1, X2, and X4, are characterized as itch receptors. Mouse MrgprA1+ sensory
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fibers respond to bilirubin and SP to induce itch [108]. MrgprA3+ and its human ortholog
MRGPRX1 respond to CQ, BAM8-22, and mucunain [76]. Mouse MrgprB2 is homologous
to human MRGPRX2 in mast cells, except for the absence of MrgprB2 from nerves [109–113].
Tick salivary peptides induce itch through MrgprC11/MRGPRX1 signaling in sensory neu-
rons and also promote acute skin inflammation via mouse MrgprB2 and human MRGPRX2
on mast cells [114]. Mouse MrgprD+ neurons innervating the epidermis sense itch, and non-
peptidergic MrgprD+ neurons are implicated in immunoregulatory function and cutaneous
immune homeostasis [115]. Mouse MrgprA3+ account for 95.2% of MrgprC11+ neurons,
and MrgprD+ account for 18.5% MrgprC11+ neurons; however, these have distinct roles,
particularly in glabrous skin itch, which is sensed mainly by MrgprC11 [79]. SP also acti-
vates mouse MrgprB2 and human MRGPRX2 to induce mast cell degranulation and drives
allergic contact dermatitis and non-histaminergic itch in mice [116]. Mouse MrgprC11 also
responds to BAM8-22, Cathepsin S, and SLIGRL. In both human and rodents, B-alanine
activates MrgprD to induce itch [117]. In humans, MrgprD is co-localized with MRPGRX1
in the TRPV1+ sub-population in DRG. In addition, like mouse MrgprA1, sensory neuronal
MRGPRX4 in humans is activated by bilirubin to sense cholestatic itch [118]; however,
distant from MRGPRX4 that can be activated by bile acids, none of mouse Mrgprs respond
to it [118,119]. MRGPRX3 is overexpressed in AD [120], however, its ligand and relation to
itch remain elusive. Currently, new antagonists for inhibiting MRGPRX4 (EP547) are under
clinical development by Escient Pharmaceuticals, with a positive effect in phase I for safety,
tolerability, and pharmacokinetic (PK) profile, and great potential treatment of cholestatic
and uremic pruritus (ClinicalTrials.gov Identifier: NCT04510090).

3.4. 5-Hydroxytryptamine (5-HT, Serotonin)

The neurotransmitter 5-HT is important in the CNS and is an inflammatory mediator
released by the mast cells, melanocytes, and platelets [121]. In addition, 5-HT is required
for both central and peripheral itch sensation, its skin and spinal cord levels are increased in
chronic itch models, and it is able to induce itch upon intradermal injection in mice [122,123],
in rats [124], and in humans [125]. Serotonin-triggered acute itch requires both HTR7 and
TRPA1, and AD itch also requires HTR7 [126]. Mice lacking HTR7 or TRPA1 displayed
reduced scratching and skin lesion severity in a mouse model of AD [126]. In addition,
5-HT- and glucosyl sphingosine-induced itch also involve sensory neuronal TRPV4 and
5-HT2 receptors [127,128]. How these two distinct pathways cooperate in different itch
conditions is unclear. Central 5-HT1A descends signals through GRP-GRPR pathways to
promote itch output [129]. Targeting 5-HT receptors may be beneficial for relief of itch in
cholestatic condition [130], in AD [128], and psoriasis patients associated with anxiety [131];
however, apart from several antagonists being effective in mice models, no 5-HT targeted
therapeutics are available for clinical treatment of itch.

3.5. Leukotrienes

The leukotrienes are eicosanoids which are synthesized from arachidonic acid under
the catalyst of lipoxygenase (LO). Leukotriene C4 (LTC4) and LTB4, but not LTD4 and LTE4,
induce itch. LTC4 activates peripheral neuronal CysLT2R to induce acute itch, and LTC4 is
implicated in the MC903-induced AD-like itch, but not dry skin itch [132]. LTB4 induces
scratching behavior in mice [133–135], and was increased in the AD lesional skin of patients
and in an AD mouse model [27]. Antigen-induced activation of basophils release LTC4 to
activate sensory neuronal CysLT2R to induce acute itch flares [136]. SP-induced scratching
may be partially mediated by LTB4 released from the keratinocytes, and LTB4 release can
be mediated by several stimuli, and thus drives neutrophil recruitment to the skin [137].
Sphingosyl phosphoryl choline (SPC)-induced scratching may be associated with LTB4
synthesis and released by the keratinocytes [73]. LTB4 receptor 1 (BLT1) and BLT2 are the
two receptors for LTB4, and these are expressed in peripheral sensory neurons with op-
posing roles in sensitization [138]. BLT2 in neutrophils is known to mediate LTB4-induced
allergic skin inflammation [139]. Among the LTB4 antagonists, Etalocib, Amelubant, and
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Moxilubant have been actively developed in clinic trials, yet none have been indicated for
anti-itch uses.

4. Cytokine and Chemotactic Factor Induced Itch

The cytokines build “a bridge of communication” between the immune system and
the nervous system. AD-related skin lesions and itch are aggravated under the mutual
interaction of neural–epidermal immune signal pathways. Pruritus is caused by a variety
of pruritus-derived cytokines, including TSLP, interleukin-2 (IL-2), interleukin-4 (IL-4),
interleukin-13 (IL-13), IL-31, interleukin-33 (IL-33), etc. [140–144], and by the imbalance of
the neuro–immune circuit between the receptors IL-4R, IL-13R, IL-31RA, OSMR, Mrgprs,
and itching peptides (SP, BNP, CGRP, GRP and protease, etc.) [145,146]. As the quantity of
TH2 cells is increased, the inflammation related to specific cytokines and the generation
of eosinophilia and immunoglobulin E (IgE) are promoted, whilst the generation of epi-
dermal barrier proteins and antibacterial peptides is inhibited. IL-4 and IL-13 are typical
type 2 cytokines and have been proven to directly stimulate the sensory neurons via the
Janus Kinase 1 (JAK1) signals and promote itch sensation, and IL-5 is considered as a critical
link in the growth, differentiation, and migration of the eosinophils and the recruitment of
the eosinophils.

4.1. IL-13

IL-13 levels are increased in skin and serum from AD patients, and IL-13 participates
in the initiation of AD and itching. Together with IL-4, it aggravates epidermal barrier
dysfunction by downregulation of the filaggrin (FLG) and involucrin (IVL) expression in
the keratinocytes [147,148]. The sensory neurons and keratinocytes express heterodimer
receptor IL-4, receptor alpha/IL-13, receptor alpha 1 (IL-4Rα/IL-13Rα1), and IL-13 receptor
alpha 2 (IL-13Rα2) [19,149]. IL-13 binds with IL-13Rα1 with low affinity, and when the
heterodimer receptor consisting of IL-13Rα1 and IL-4Rα is formed, with high efficiency,
the latter is a type II receptor [150]. IL-13 activates sensory neurons directly, however, it
may not induce itch directly in mice, but acts as an enhancer of other stimuli, such as
histamine [17]. IL-13 and TLR2 heterodimer agonists can upregulate the transcription
of IL-13Rα2 in keratinocytes and sensory neurons, respectively [149], thereby promoting
neurogenic inflammation and exacerbating AD and itch. Breaking the connection between
cutaneous IL-13 and IL-13Rα2 as well as TLR2 and IL-13Rα2 will block the excessive
release of these cytokines and hypersensitization of AD, and therefore attenuate itching
conditions [149]. Interestingly, Lebrikizumab, a mouse antibody that interacts with IL-13
and is effective in treatment of AD itch, reduces neuronal gene transcription in human
sensory neurons, including IL-13Rα2, suggestive that IL-13Rα2 is a downstream target and
contributes to the relief of AD itch [144]. STAT6 has been identified as a prime target in IL-
13-mediated itch and skin inflammation in murine AD (Figure 2). STAT6 selective inhibitors
are proved effective in attenuating scratching bouts, downregulation of transcriptional
levels of a various of itch-related mediators, and rescuing skin barrier repairment gene
transcription [151].
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shared subunit gene IL-4Rα of the IL-4 and IL-13 receptors is seemingly widely expressed 
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Figure 2. STAT6 mediates IL-13-induced itch signaling. IL-4 induces STAT6 activation in ker-
atinocytes, and IL-13 triggers STAT6 activation to upregulate periostin and IL-24 expression, therefore
both promoting skin barrier dysfunction via downregulation of filaggrin. STAT6 Y641 phospho-
rylation is upregulated in patient skins with AD. Pharmacological inhibition of STAT6 Y641 phos-
phorylation attenuates MC903-induced ear thickening, immune cell infiltration, and transcription
of IL-13, IL-4, and CCL8, while promotes transcripts involved in maintaining skin barrier. Both
intraperitoneal and orally active inhibitors of STAT Y641 (namely AS1517499 and AS1810722) are
effective in prevention of MC903-incuded itch and cutaneous inflammation.

4.2. IL-31

IL-31 plays an important role in the induction of itch and inflammation in AD
and chronic contact dermatitis in mice and humans [18,152,153]. IL-31 stimulates itch-
related neuronal subset NP3, a subpopulation also responsive to mast-cell-released 5-HT,
leukotriene C4 (LTC4), and S1p [78], and release BNP and SST. Moreover, IL-31 binds to
its receptors on epidermal keratinocytes and immune cells (i.e., eosinophils) to induce
skin barrier dysfunction and cutaneous inflammation (Figure 1). Compared with IL-31RA,
shared subunit gene IL-4Rα of the IL-4 and IL-13 receptors is seemingly widely expressed in
itch sensation neuronal subsets NP1, NP2, and NP3, supporting more extensive functions.
IL-31RA expression level is increased in AD lesional skin and abundant in the sensory
neuronal outgrowth [154]. IL-31 can be induced by IL-33, and thus itch sensation and



Int. J. Mol. Sci. 2022, 23, 9935 9 of 27

scratching behavior are promoted [155]. Moreover, the IL-31-mediated sensory sensation is
also amplified by IL-4 and IL-13 [156]. Moreover, IL-31 induces Nppb transcription from
both murine and human sensory neurons [18,144], further exacerbating itch signaling.
Dupilumab has proved effective in relief of Prurigo Nodularis and chronic spontaneous
urticaria (CSU) in a phase 3 clinical trial, in addition to its indication in AD.

4.3. IL-33

IL-33 is an effective amplifier of type 2 immune reaction and is an important target for
dry skin pruritus and chronic pruritus of unknown origin (CPUO). IL-33 receptor ST2 (also
named IL-33R) is expressed in DRGs [157], keratinocytes, immune cells, fibroblasts, and
mast cells [158]. Though plasma levels of IL-33 were elevated in AD patients, the neuronal
restricted IL-33R signaling was dispensable for itch in AD-like disease in mice models [143].
The neuron-restrictive IL-33R signals are critical regulatory factors of itch sensation, which
are shown in the dry skin environment, and are independent from the immune cells. IL-33
directly stimulates sensory neurons, but its intradermal injection alone does not induce
acute itch behaviors, though it can potentiate sensory neurons [159,160]. However, injection
of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2,
in a histamine-independent manner [160]. Binding of IL-33 to keratinocytes contributes to
the impeded filaggrin and claudin-1 protein expressions and functional damages to the
skin barrier, and facilitation of immune regulation. IL-33 stimulates diverse cells including
ILC2 and generates type 2 cytokines including IL-5 and IL-13. ILC2 separated from the
lesion site is activated by IL-33 rather than TSLP [161].

4.4. IL-6

IL-6 is predominantly expressed in dendritic cells, keratinocytes, macrophages, and
neurons. The dendritic-cell-derived IL-6 level is linked to AD. IL-6 facilitates production of
IL-4 expression by CD4+ T cells and their differentiation to TH2 cells [162,163]. It was up-
regulated in the DRG of mice in a contact dermatitis model (a model induced by Diphenyl-
cyclopropenone (DCP)) [164–166]. Skin-derived IL-6 is upregulated upon intradermal in-
jection of calcium phosphate (CaP), which mediates mild to severe scratching in mice [167].
IL-6-induced inositol 1,4,5-triphosphate receptor (IP3R1)/transient receptor potential cation
(TRPC)-channel-mediated Ca2+ signals in the astrocytes are necessary for the continuous
signal transducer and activator of transcription (STAT3) activation, LCN2 expression, and
chronic itch [164–166]. However, the mAb tocilizumab-antagonizing IL-6 receptor was effec-
tive in severe AD but associated with bacterial superinfection/immunodeficiency [168,169].

4.5. IL-2

IL-2 is an itch inducer as well as an autocrine cytokine, and its single intradermal
injection induces a long-time low-intensity local skin itch that lasts 48–72 h, as well as
erythema in human AD patients and healthy subjects [170]. Serum levels of its receptor
IL-2R are elevated and correlated with the severity in patients with AD and psoriasis [171].
IL-2 is released from keratinocytes and various immune cells, then activates histaminergic
neurons. Moreover, it induces erythema and dermal T-cell infiltration [170]. Therapeutics
specifically targeting IL-2 or its receptor have not been developed for chronic itch relief;
however, gabapentin has been proposed as a treatment option in IL-2-related pruritus, but
this requires final investigation at the clinic level [172].

4.6. TSLP

TSLP is a pro-allergic cytokine that is mainly released from keratinocytes, and is
the prime target in AD. TSLP drives TH2-mediated inflammation and enhances periostin
release from keratinocytes, thereby promoting itch signaling, and this effect is susceptible
to JAK2 inhibitor SD1008 and the STAT3 inhibitor niclosamide [173]. Upon release from
keratinocytes, TSLP activates various immune cells such as T cells, dendritic cells, mast
cells [174], and sensory neurons directly to evoke itch behaviors [16]. Biological functions of



Int. J. Mol. Sci. 2022, 23, 9935 10 of 27

TSLP require heterodimer formation between the TSLP receptor (TSLPR) and interleukin-7
receptor-alpha (IL-7Ra) [175]. Intradermal injection of TSLP into mouse cheek skin induces
scratching behavior in a primary afferent neuron-dependent manner together with T cell
and eosinophil-dependent systemic TH2 inflammatory response [176]. TSLPR activation of
primary afferent sensory neurons requires TRPA1 but not TRPV1 [16]. However, the anti-
TSLP human monoclonal antibody tezepelumab is modest or nonsignificant compared to
placebo in improving pruritic skin lesion in AD, as shown in a randomized phase 2a clinical
trial [177,178]. Apart from this, TSLP is also important for promoting wound-induced hair
growth and regeneration in mice [179], which may be an issue that should be considered to
use TSLP antagonists for pruritus accompanied by hair loss.

4.7. Periostin

Periostin plays critical roles in pathogenesis of skin fibrosis, lesional AD, psoriasis,
allergic skin inflammation, and Prurigo Nodularis [180–182]. It is released from dermal ker-
atinocytes and fibroblasts upon stimulation by TH2 cytokines IL-13 and IL-4, then activates
integrin aVβ3 on a fraction of SST+/NPPB+ sensory itch fibers [173]. Meanwhile, periostin
stimulates keratinocytes and immune cells to release various cytokines, including TH2
cytokines such as IL-31 [180]. MC903 and house dust mites promote periostin release via a
JAK/STAT-mediated mechanism [173]. Periostin also induces TSLP release in a periostin-
TSLP-TH2 cytokine–periostin feedback loop (Figure 3). Intradermal or intracutaneous
or subcutaneous injection of periostin directly induces itch in mice, dogs, and monkeys,
and this response in mice can be inhibited by cilengitide [173], a broad integrin inhibitor
which has been tested in clinical trials for other diseases such as glioblastoma multiforme,
except pruritus.
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Figure 3. TSLP–periostin–TSLP–NPPB loop in peripheral itch. Periostin is abundantly expressed in
the skin of AD patients. TSLP, HDM, and MC903 induce periostin release in a JAK/STAT-mediated
mechanism from mouse keratinocytes. Periostin binds directly with integrin aVβ3 that is expressed
on a fraction of NPPB+ sensory itch fibers to induce itch; meanwhile periostin stimulates immune
cells to release other itch mediators including Th2 cytokines, resulting in IL-24 upregulation and
epidermal barrier dysfunction in allergic skin inflammation. Periostin also induces TSLP release
to promote a periostin-TSLP-Th2 cytokine–periostin feedback loop. Intradermal or intracutaneous
or subcutaneous injection of periostin directly induces itch in mice, dogs, and monkeys, and this
response in mice can be inhibited by cilengitide.
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4.8. Lipocalin-2 (LCN2)

LCN2 is a central modulator of chronic itch via a STAT3-dependent mechanism in
the astrocytes. It is also released by neutrophils and keratinocytes [183]. However, the
involvement of the LCN2 cellular receptor (LCN2-R, SLC22A17) is unclear. The Ca2+ influx
of the IP3R1-dependent Ca2+ reaction in the astrocytes is regulated via TRPC [184,185], and
DRG-specific IL-6 knockdown, spinal astrocyte–specific IP3R1 knockdown, and pharma-
cologic spinal TRPC inhibition attenuated LCN2 expression and chronic itch [164]. The
serum level of LCN2 is associated with the severity of itch in patients with psoriasis [186].
The function of LCN2 in peripheral itch and the receptor involved is unknown.

4.9. Serpin E1

Serpin E1 is produced from neutrophils, glial cells, keratinocytes, and immune cells.
Its release from keratinocytes is induced by TRPV3 activation and this effect is enhanced
by BNP [63]. IL-31 elevates synthesis and release of BNP in the neurons [18], subsequently
upregulating the expression and surface of TRPV3 expression, causing increased TRPV3
activity and Serpin E1 release [63]. Skin Serpin E1 level is correlated with severity of
AD [63]. Cheek injection of Serpin E1 in mice induces itch [63]. This IL-31-BNP-TRPV3
cascade [63] and PAR2-TRPV3-TSLP signaling [106] seem to exhibit a compounded effect
to amplify chronic pruritus and cutaneous inflammation in mice (Figure 4). However, their
linkage with human itch requires further investigation. Thus far, many therapeutics have
been developed toward Serpin-E1-mediated pathways and have made it to clinical trials,
but none have been tested for therapeutic use in human itch.
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Figure 4. Epidermal PAR2/TRPV3 signaling cascade plays a key role in AD pruritus. PAR2-induced
TSLP release requires TRPV3 in keratinocytes and opening of endoplasmic reticulum (ER) Ca2+

storage, contributing to acute and AD-related pruritus. In the case of AD, IL-31 induces the synthesis
and release of BNP in the neurons, which binds with NPR1 on the keratinocytes to up-regulate
TRPV3 transcription. BNP also enhances the activity of TRPV3 to promote calcium influx and
Serpin E1 release. Serpin E1 activates the PLAUR receptor in skin sensory fibers and promotes
itch sensation transmission, strengthening the effects of TRPV3-related mediators in dermatitis and
pruritus of humans. Serpin E1 receptor PLAUR resides in TLR2+ neurons and Serpin E1 stimulus
leads to transcriptional upregulation of TLR2 and its co-signaling proteins. The PLAUR-TLR2-OSM
signaling promotes skin–nerve communication, cutaneous inflammation, and itch, all feeding into an
aggravation of AD and exaggerated itch circuits.
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4.10. Oncostatin M (OSM)

OSM is released by dermal T cells, macrophages, dendritic cells, neutrophils, and
monocytes. Its receptor OSMR resides in sensory neurons expressing BNP; however,
OSM does not activate sensory neuronal calcium entry, thus it is different from other
pruritogens [187]. OSM knockout or its receptor antagonist reduced itch-like behavior in
an inflammatory dermatitis murine model [187]. Intradermal injection of OSM induces
itch behavior in mice, albeit via indirect activation of sensory neurons. OSM induces acute
itch in mice and promotes keratinocyte G-CSF and IL-8 release [188]. OSM also potentiates
histamine- and leukotriene-evoked itch behaviors [187]. Serpin E1 receptor PLAUR resides
in TLR2+ neurons, where Serpin E1 stimulates transcriptional upregulation of TLR2 and
its co-signaling proteins [188]. The PLAUR-TLR2-OSM signaling promotes skin–nerve
communication, cutaneous inflammation, and itch, all feeding into an aggravation of AD
and exaggerated itch circuits [188]. There are a few neutralizing humanized mAb ongoing
clinical trials showing successful proof of principle in murine models for systemic sclerosis
and asthma, which might be useful for itch treatment [189].

4.11. C-X-C Motif Chemokine Ligand 10 (CXCL10)

CXCL10 is released by diverse immune cells including neutrophils, myeloid cells, and
skin keratinocytes. Neutrophil-derived CXCL10 plays a critical role in AD [190]. Although
cheek injection of CXCL10 failed to directly cause scratching-like behaviors within a specific
dose range [20], CXCL10 has been shown to drive acute itch in a model of allergic contact
dermatitis via C-X-C chemokine receptor 3 (CXCR3) signaling in sensory neurons [190].
CXCL10 promotes the recruitment of T cells and dendritic cells (DC) via the receptor
CXCR3 [20]. CXCR3 antagonists can alleviate chronic itching [190].

4.12. Chemokine C-C Motif Chemokine 2 (CCL2)

Another CCL2 is also implicated in murine allergic contact dermatitis (ACD) [191]. A
CCL2 known as monocyte chemoattractant protein 1 (MCP-1) has a receptor called CCR2,
which is involved in the pathophysiology of ACD [21]. Intradermal injection of CCL2 into
the site of CHS on the cheek evoked site-directed itch- and pain-like behaviors, which are
attenuated by prior delivery of an antagonist of CCR2. The targeted CCL2/CCR2 signals
may be helpful in the treatment of itch and pain sensations in ACD patients.

5. Research Progress on Itch Therapeutical Development

Although substantial research has been conducted to fill the gaps pertaining to the mys-
tery of itching, this debilitating clinical condition is still faced with a highly inapt medical
need for efficient treatment. No neuropeptide-targeting therapeutic or agonist/antagonist
achieved has successful chronic itch treatment in humans. Many humanized antibodies
approved for itch-related diseases have great potential in chronic itch treatment. However,
this closely depends on the disease phenotypes and dominance of inflammatory pathways.
The combination of different biological agents has resulted in significant advances in the
efficacy in some diseases, opening new avenues for future treatment on diseases which are
refectory to single treatment. Here, a detailed summary of current development of anti-itch
therapeutics is listed in Table 1.



Int. J. Mol. Sci. 2022, 23, 9935 13 of 27

Table 1. Current advanced therapeutical development for chronic itch.

Drug Category Drug Names Advantages Disadvantages

Targeted monoclonal
antibodies (mAb)

Dupilumab

Is a fully human mAb against
IL-4Rα that inhibits both IL-4
and IL-13 signaling; is the first

approved mAb for AD
treatment; demonstrated

efficacy and acceptable safety
on patients with AD and some

other chronic pruritic
diseases [192,193]; currently,
is ongoing second phase 3

trials on Prurigo Nodularis; is
effective in Netherton

syndrome, an itchy disease, in
a case study [194].

High cost and side effects that
cause eye discomfort

(especially conjunctivitis)
[80,195,196]; administered

subcutaneously twice weekly
which is painful for

children [197]; cannot treat
sub-population of patients.

Tralokinumab

Is a fully human mAb that
potently and specifically

neutralizes IL-13; in phase 3
for moderate-to-severe adult

AD; subcutaneous
tralokinumab has an
acceptable safety and

tolerability profile and
appears to provide early
improvements in disease

symptoms including itch, in
participants with

moderate-to-severe AD [2];
less costly than dupilumab.

Less effective
than Dupilumab [198].

Lebrikizumab

Is a novel, high-affinity,
monoclonal antibody

targeting IL-13 that selectively
inhibits IL-13

signaling [144,199]; in phase 2
for moderate-to-severe AD;

significantly improves clinical
manifestations of AD,

pruritus, and quality of life in
a rapid, dose-dependent
manner; generally well

tolerated [200,201]; might
simultaneously target both
inflammation and itch via
blocking signals on both

immune cells and neurons;
less frequency in

subcutaneous injection
comparing to

dupilumab [202].

Might induce conjunctivitis in
a few patients with

AD [199,203].
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Table 1. Cont.

Drug Category Drug Names Advantages Disadvantages

Nemolizumab (CIM331)

Is a humanized antibody
against IL-31RA, in the
treatment of AD [204];
significantly improves

pruritus in patients with
moderate-to-severe AD; in

two phase 3 trials,
nemolizumab plus topical

agents improved atopic AD
and moderate-to-severe

pruritus for up to 68 weeks,
without safety issue [205].

Subcutaneous injection might
be associated with higher
incidence of injection-site

reaction than placebo [204].

Vixarelimab (KPL-716)

Is an OSMRβ antagonist and a
fully-human antibody, inhibits
the IL-31 signaling and OSM
pathway by antagonizing the
OSM beta receptor [206]; in

phase 2a, subcutaneous
injection improves Prurigo

Nodularis signs and
symptoms, with an average
pruritus reduction of 70% by

week 8 of treatment as well as
significantly improved

nodules as early as week 4;
safe; currently, it just

completed phase 2b in Prurigo
Nodularis (ClinicalTrials.gov

Identifier: NCT03816891).

No severe adverse
effects [206].

Tezepelumab (AMG-157/
MEDI9929)

Is a human anti-TSLP
antibody that prevents

TSLP-TSLPR interactions; has
high curative effect, good
safety, and high tolerance

level [207]; in phase 2a AD
treatment (ClinicalTrials.gov

Identifier: NCT02525094),
tezepelumab achieved

improvement on week 12 and
16 (post hoc), albeit not

statistically significant over
placebo and the itch relief is

limited [177].

The treatment cycle is longer
and expensive, and a few
(5.4%) patients developed

injection-site erythema, which
was not seen in

placebo group [177].

Brodalumab (AMG 827)

Is a human anti–IL-17 receptor
A IgG2 mAb; in phase 3, it
significantly and rapidly

improves moderate-to-severe
psoriasis, including itch, in

patients [208–210]; approved
by FDA to treat adult
moderate-to-severe

plaque psoriasis.

Subcutaneous injection might
be associated with higher
incidence of injection-site

reaction than placebo [204].

ClinicalTrials.gov
ClinicalTrials.gov
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Table 1. Cont.

Drug Category Drug Names Advantages Disadvantages

Secukinumab

Is a fully human
anti-interleukin-17A IgG1

monoclonal antibody [211]; is
well-tolerated, safe, and
effective in psoriasis and
associated itch and pain;

approved by the US FDA and
European Medicines Agency

for moderate-to-severe plaque
psoriasis and psoriatic

arthritis [212,213]; in phase 2
for AD treatment including

intrinsic, Asian, and pediatric
AD, secukinumab is not
effective in reduction of

epidermal thickness,
epidermal hyperplasia, and
immune cell infiltrates, or
inflammatory markers in
relation to TH17/IL-23 at

week 16 [212].

Observed adverse events, all
in secukinumab-treated

patients: orbital cellulitis,
upper respiratory infection,

and streptococcal
pharyngitis [212]; treatment

of AD is not effective,
however, may be helpful in

conjunction with TH-2
biological agents [212].

Ixekizumab

Is an IgG4 monoclonal
antibody that targets IL-17A;

achieved outstanding
performance in the itch and
moderate-to-severe psoriasis

treatment effect at
12 weeks [214]; can

demonstrate persistent
efficacy through 108 weeks (80
mg ixekizumab every 2 weeks

up to week 12 and every 4
weeks thereafter); FDA

approved for treatment of
adult moderate to severe
plaque psoriasis, active

psoriatic arthritis [215,216].

Mild or moderate adverse
events included

nasopharyngitis, upper
respiratory tract infections,

injection-site reactions,
arthralgia, bronchitis, and

headache [217]; some patients
may be associated with
eczematous eruptions in

the face [218].

Ustekinumab

Is an IL-12/IL-23p40 IgG1κ
monoclonal antibody that
suppresses Th1, Th17, and

Th22 activation; approved for
psoriasis patients [219];

beneficial clinical effects in
moderate-to-severe AD

patients [220]; has unique
mechanistic effects in AD as

early as 4 weeks of treatment;
strongest anti-inflammatory
effects already occur within

4–8 weeks following an
ustekinumab dose, with

waning efficacy
thereafter [221].

Individual patients were
excluded from analyses after

week 28 due to newly
developed contact dermatitis

and due to worsening skin
infection (eczema
herpeticum) [221].
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Table 1. Cont.

Drug Category Drug Names Advantages Disadvantages

Risankizumab

Is a novel IL-23 mAb, with
relatively high efficacy and

low risk; had been approved
by the FDA in April 2019 to
treat AD [214], and in June

2022 to treat
moderate-to-severe active

Crohn’s disease in adults, an
itchy disease.

The most relevant adverse
events were nasopharyngitis,

upper respiratory tract
inflammation, and injection

site reaction [214].

Guselkumab

Is an IL-23 mAb; approved for
moderate-to-severe plaque

psoriasis. It has demonstrated
safety and efficacy in phase III

clinical trials [222–225];
combined treatment by

dupilumab and guselkumab
rapidly and sustainably

improved itch, erythroderma,
and eczema in severe AD
associated with congenital

ichthyosiform erythroderma
(CIE), whereas treatment with

dupilumab or guselkumab
was less or not effective [226].

There are scarce data
regarding its drug survival in
clinical practice [224]; serious

adverse events included
serious infections,

nonmelanoma skin cancer,
malignancies other than

nonmelanoma skin cancer,
and major adverse

cardiovascular events [222].

Tildrakizumab

Is a high-affinity, humanized,
IgG1 κ antibody targeting p19

subunit of IL-23;
demonstrated superior

efficacy, safety, and long-term
control of moderate-to-severe

chronic plaque psoriasis;
FDA-approved in 2018 for
moderate-to-severe plaque

psoriasis [214,227].

Caused some minor adverse
events, including body aches

or pain, chills, cough,
difficulty in breathing, ear

congestion, fever, etc. [227].

IgE antibody Omizumab

Is a humanized IgG1 mAb. It
binds to the Ce3 domain of
IgE with higher affinity; is
highly selective for human

and non-human primate IgE,
with higher efficacy, good

safety and high tolerance level
in vivo; effective in AD,

bullous pemphigoid, and
urticaria [228]; received FDA

breakthrough therapy
designation for patients with
chronic spontaneous urticaria

in patients that cannot be
treated effectively by

H1 antihistamine.

Reported serious adverse
events, viral upper respiratory

tract infection (20%),
injection-site reaction [229].

Although pruritus is not the main target in the approval of dupilumab for the treatment
of AD [230], the recognition of the high antipruritic effect of this therapy has highlighted the
significance of this symptom [231–233]. Several small molecule therapeutics have shown
promising outcomes by reducing pruritus related with AD and Prurigo Nodularis, such as
Janus kinase inhibitor ruxolitnib, and phosphodiesterase 4 inhibitor crisaborole [234,235].
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Thalidomide is a drug with anti-inflammatory properties by modification of immune
systems. The exact mechanism of action of thalidomide is unknown, but it inhibits TNF-α,
IL-6, interleukin-10 (IL-10), interleukin-12 (IL-12), and other pro-inflammatory cytokines.
It also modulates natural killer cell cytotoxicity and inhibits NF-κB and COX-2 activity.
Erythropoietin (EPO), a hormone produced by the kidneys that stimulates the production
of red blood cells, may have some anti-itch properties, as it is shown to reduce plasma
histamine concentrations [236].

6. Concluding Remarks

Chronic itch is modulated by a complex network involving diverse cell types and
systems, and is classified into dermatologic, systemic, neurologic, psychogenic, mixed, and
other pruritus. It ranks at the top position of all dermatological diseases. The quality of life
of affected individuals is dramatically reduced, as symptoms such as the itching–scratch
cycle are combined with a social stigmatization. All chronic itch diseases can show a life
quality that is diminished to a degree comparable to diabetes, cancer, or serious cardio-
vascular events. The most important contribution to this high disease burden comes from
inflammatory skin diseases such as psoriasis and AD, two distinct diseases differing in the
characteristics of immune response, inflammation, and pathogenesis [237]. However, they
have comparable itch scores, such as the itch-specific patient-reported outcome measure
used to assess quality of life in patients with chronic pruritus (ItchyQoL) [238], whereas the
most common cause of itching among elder patients is xerosis (dry skin). These diseases are
very frequent, with a prevalence of 2–4% in the adult population in industrialized countries.
Among children, the prevalence of AD is high, but certain chronic itch-associated systemic
diseases are more common in older patients, such as chronic kidney disease, hepatic dys-
function, endocrine disorders, and some very heterogeneous diseases that are associated
with multiple pruritogenic pathways and pruritogens. Much effort has been made in the
scientific community in the last two decades to identify key molecules and biomarkers
of those chronic diseases, and a lot of progress has been achieved in psoriasis and AD.
Numerous specific and costly therapies are available, which are opposed by the lack of
biomarkers to predict the therapeutic outcome at an individual patient’s level and for
different categories, including itch with lesion, itch without lesion, and itch on secondary
skin lesions. Given the fact that even the best therapies have a non-responder rate between
10% and 20%, identification of biomarkers predicting a response is of great socioeconomic
impact for our society. Typically, trials investigating itch treatments are single-center studies
with small numbers and often have significant selection bias or conflicting results. Past
meta-analyses had insufficient data to recommend one treatment compared with another,
and further rigorous trials were needed. A single antagonist is not sufficient due to the
switch from one phenotype to another, such as long-term dupilumab treatment switches
from TH2 to TH17, and thus an IL-17 antagonist must be followed. Likewise, treatment
with a psoriatic drug can improve psoriasis but cause atopic dermatitis, depending on the
individual. Dose optimization and combination of different drugs are required. Therefore,
it is important that a modern systematic assessment of the existing evidence be conducted
to summarize the effects of current studies. Research into the enhanced understanding
of the mechanisms of itch are ongoing and studies identifying novel mechanisms of pru-
ritis in animal and human models are continuing, with the goal to improve the current
development of potential therapeutics for chronic itch cases.
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