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ABSTRACT: Promoted model architectures or algorithms are crucial for
intelligent manufacturing since developing them takes a lot of trial and error
to embed the domain knowledge into the models correctly. Especially in
semiconductor manufacturing, the whole processes depend on complicated
physical equations and sophisticated fine-tuning. Therefore, we use a
neuroevolution-based model to search the optimized architecture automati-
cally. The collector current value at a particular bias of the silicon−
germanium (SiGe) heterojunction bipolar transistor, generated by technol-
ogy computer-aided design (TCAD), is used as the target dataset with six
process parameters as the inputs. The processes include oxidation, dry and
wet etching, implantation, annealing, diffusion, and chemical−mechanical
polishing. Our work can build a suitable model network with a fast
turnaround time, and practical physical constraints are fused in it without
domain knowledge extraction. Take the case with 3840 data and one output as an instance. The mean square errors of the train set
and validation set, as well as the mean absolute percentage error of the test set, are 1.317 × 10−6, 7.215 × 10−7, and 0.216 while using
multilayer perceptron (MLP) and they are 3.285 × 10−7, 1.661 × 10−7, and 0.097 while using NE. The consequences show that the
work in this vein is promising. According to the trend plot and results, the ability to extract physic is much better than the traditional
(MLP) model.

■ INTRODUCTION
Many machine learning (ML) and deep learning technologies
have been developed for intelligent manufacturing to deal with
various tasks and apply them to process monitoring, process
control, optimization, fault detection, and prediction.1 Even in
semiconductor manufacturing, sophisticated and intricate
industries, ML methods can still be used for them. This includes
using optimized model architectures based on traditional ML
models2 or innovative ones,3 and improved optimization
algorithms4 in yield prediction and analysis, manufacturing
process excursion detection, and manufacturing flow simplifi-
cation.5

In model architectures, most current models are designed
mainly by human experts, which is very time-consuming due to
the need for sufficient domain knowledge and trial and error for
suitable architectures. Therefore, the neural architecture search
(NAS) or neuroevolution (NE) is a field attracting more
attention as it can automatically find the optimized model for
different cases by using search methods and fitting scores.6

These methods are generally divided into several categories.
First, the evolution-based methods, or neuroevolution (NE),
where the genetic algorithm is the most regularly used technique
in which a specific population of individuals is generated by
algorithms, and a series of the process with selection, crossover,
and mutation will be conducted after being evaluated and sorted
according to their fitness score. Then, the new generation of

individuals will develop in the direction of increasing the overall
fitness from generation to generation until the termination
condition is satisfied.7,8 Second, the reinforcement learning
(RL) method uses the accuracy of the child network defined by
action space as a reward to set the training direction.9 Third, the
recently flourishing gradient optimization methods in which the
model architecture composed of mixed operations are processed
in a differentiable form and parameterized, and then, using the
gradient descent method to evaluate the quality of the
architecture.10 Fourth, the surrogate model-based optimization
can be regarded as a progressive model-constructing process. Its
core concept is to search from a simple model, build a surrogate
model of the objective function iteratively by recording past
evaluations, gradually evolve to more complex architectures, and
use it to predict the most promising architecture.11−13 Bayesian
Optimization (BO) is one of the most popular hyperparameter
optimization methods, and many recent studies have attempted
to apply them to NAS,11,12 in which the validation results, in
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some cases,11 are modeled as a Gaussian process (GP) guiding
the search for an optimal architecture. Nevertheless, in GP-
based BO methods, the inference time can cubically increase
with the number of observations and cannot validly deal with
variable-length problems.14 Finally, other methods, including
random search,15 grid search,16 simulated annealing,17 etc., have
been applied to execute NE/NAS. Although more and more
applications of neural architecture search have been utilized in
various problems,18 in semiconductor fields, NAS studies have
not been prevailing. Only a few studies using RL methods are
located in the field of semiconductor manufacturing,19 and
almost none of them are based on NE or gradient optimization
methods to optimize model architectures.

Achieving high accuracy needs a great deal of data which is
sometimes tricky, costly, or impractical to attain.20 Furthermore,
data from science and engineering are apt to be dispersed and
noisy because real-world experiments are expensive and subject
to the environment and equipment. Hence, predictions may not
be robust, owe interpretability, and even violate physical
constraints, leading to generalization errors.21 Integrating
human knowledge into ML can help overcome these difficulties
to some extent by significantly reducing data requirements,
ameliorating reliability and robustness, and building interpret-
able ML systems.20,22 Domain-knowledge-based ML is a
practical approach employed in primarily scientific fields and
can be generally classified into domain-knowledge-informed
machine learning architecture, hybrid domain-knowledge-
informed machine learning model, multifidelity framework,
and Bayesian framework.23 By embedding prior information
into the neurons or layers, combining domain-knowledge-based
models with ML models, or incorporating domain knowledge
constraints into learning algorithms, it can enhance the
information content of the available data and promote the
learning algorithm to attain the correct solution. In this work,
technology computer-aided design (TCAD) is used for
simulating semiconductor processes under various parameters
and producing datasets,24 which offer sufficient, densely
distributed data when experimental data measured from real
devices are limited.

TheMLP neural network is usually used as the basic structure
in domain-knowledge-based ML. Still, its architecture must be
adjusted first whenever it is applied to different tasks. Besides,
accurately integrating prior domain knowledge into the
architecture is also a conundrum. Thus, we take advantage of
the automatic search ability of NAS to find out a particular
network architecture as a type of domain knowledge constraint
to help convergence. Previously, we have received some
achievements in optimizing ML compact device models via
NE algorithms.25 In our work, the NE algorithm capable of
dynamically tuning model architectures is utilized as a model
optimization method to extract the physical characteristics of
semiconductor devices manufactured under different process
parameters. There have been very few studies in the field of
semiconductors using NE with evolved topologies.26 Therefore,
we want to apply the method to clarify the effect of NE in
semiconductor processes and device problems. Even in the
entire field of chemistry and physics, NE-related works do not
prevail, and after a careful literature review, we only found these
studies27

■ METHODS
TCAD Simulations. The silicon−germanium (SiGe)

heterojunction bipolar transistor (HBT) from Sentaurus

TCAD examples is the device used in this work. The simulations
are conducted using TCAD Sentaurus 2016 where SProcess28

and SDevice29 are both utilized to take into account the process
effect on device characteristics. The advanced calibration for
process simulation, the implantation models, and the diffusion
models are considered in the process flow. First, the advanced
calibration set of models and parameters guarantees accurate
results for SiGe HBT fabrication during process simulation.
Second, default analytic implantation tables are used for
computing the profiles of the implanted dopants for each
implantation step. The dual-Pearson distributions moment is
extracted from Monte Carlo simulations with Crystal-TRIM.
The point defect distribution, which is utilized to describe
transient-enhanced diffusion (TED) phenomenon, is con-
structed via the “plus.one” model. The analytic Hobler
model,30 with a Gaussian primary function and an exponential
tail, is used for calculating the damage to the crystal. As for
diffusion models, the charged pair model is used. The dopant-
point defect pairs and unpaired point defects are treated as
movable species, and the substitutional dopants are treated as
immobile species. The coupled system of three continuity
equations, i.e., interstitials, vacancies, and unpaired dopants, is
thus formed. Moreover, germanium diffusion and GeB cluster
formation31 add two more equations to the system. The whole
process flow contains ten main steps, including isolation trench
definition, subcollector implantation, subcollector activation,
polysilicon base−contact deposition, the definition of base
opening, SiGe base deposition, collector implantation, nitride
spacer definition, final anneal, and metallization. Before the first
step, the initial mesh set-up of the substrate is defined. In the first
step, the isolation trench is defined and etched by the first mask,
and then, the oxide is deposited after the photoresist is stripped.
In the second and third steps, for the subcollector process, pre-
implantation and primary implantation are processed with the
second mask before the second photoresist stripping. Afterward,
the device is annealed for several seconds by rapid thermal
annealing (RTA), and the oxide is etched. Subsequently, the
base area of HBT is defined, which contains polysilicon doped
by boron with a doping concentration of 1 × 1020 cm−2. Then,
the subsequent structures of the device are specified through the
third and fourth masks. Oxide and nitride are deposited after
polysilicon etching, exposure and development with the third
mask. Afterward, the silicon nitride, silicon oxide, and
polysilicon are etched one by one before photoresist stripping.
Then, another run of nitride deposition and etching of nitride
and oxide is conducted with the fourth mask. The fourth step to
the sixth step is to cope with the strained SiGe base, in which a
0.2 μm SiGe layer is deposited first, and the layer is etched back
by chemical−mechanical polishing to a final thickness of 0.1 μm.
In collector implantation, the oxide layer is deposited after the
nitride stripping, and then, this region is doped with an n-type
dopant before stripping the oxide. In the next step, the nitride
spacer is defined by the nitride deposition diffused under 900 °C
and nitride etching. Later, the emitter doped with an n-type
dopant is defined, and the fifth mask is used in polysilicon
etching. In the final annealing, the device is annealed to
reconstruct the bonding between the dopants and silicon and
activate the dopants after the oxide deposition. Finally, the
metallization is performed to form the contacts of the device by
the sixth mask. In this section, six variables are taken into
account, including the dopant types and the implant dose of the
emitter implant, collector pre-implant, and collector main
implant. In addition, the implant energy of the collector implant
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is also changed. They are varied uniformly within specific ranges,
which are two kinds of ions, arsenic, and phosphorus, doses of
the subcollector for pre-implant, 1 × 1015 and 5 × 1015 cm−2,
doses of the collector for main implant, 5 × 1015 to 1 × 1016 cm−2

with step 1 × 1015 cm−2, dose energy of the collector for pre-
implant, 40 to 400 keV with step 40 keV, dose energy of the
collector for main implant, 30 to 100 keV with step 10 keV, as
well as dose energy for the emitter, 1 × 1020 and 5 × 1020 cm−2.
The setting ensures that NE > NB > NC, where N is doping
concentration and E, B, and C are symbols for emitter, base, and
collector, respectively. These variables are used as inputs in ML.

In device simulations, necessary models are chosen to attain a
multidisciplinary simulation. For instance, doping dependence
and high field saturation models are used for carrier mobility
description. Auger recombination, Schottky−Reed−Hall re-
combination (SRH), and Avalanche breakdownmodels are used
to describe recombination. The hydrodynamic model is used to
describe the transportation of carriers in semiconductor devices.
The effective intrinsic density model is used to describe band
gap narrowing. Poisson equations with the electron and the hole
continuity equations are also solved. Then, the base of HBT is
changed to the current mode and set to three values from 2 ×
10−6 to 4 × 10−6 A. The collector voltage (Vce) is ramped in
quasistationary simulations from 0 to 0.5 V. At last, the collector
current (Ic) values at a certain Vce and each base current are
extracted with Matlab and used as outputs in ML.

Neuroevolution Algorithm. In this study, python3.8.15,32

Tensorflow2.7.0,33 Numpy1.21.6,34 Pandas1.2.4,35 Scikit-Learn
0.24.1,36 andMatlab R2021a37 are used. TheMLPmodel is used
as a baseline. The dataset size in this work is less than 5000.

Previously, we used a NE-based model with genetic
algorithms (GA) in transistor compact device modeling and
achieved satisfactory results.25 In this work, the NE method is
applied to searching the neural network architecture shown in
Figure 1, which can find the optimized model to extract domain
knowledge in semiconductor manufacturing. Initially, the input
parameters are denoted as dopants, Cdose1, Cdose2, Endose1,
Endose2, and Edose for the abovementioned parameters.
TCAD simulation data are randomly divided into a training
set and a test set for model training and testing. Data are
preprocessed before training, which can help converge faster
within gradient descent. The values of the dose of the collector,

the dose of the emitter, and the collector current are taken
logarithm of, and then, the dataset is normalized. The GA are
utilized as the NAS method to modify the network architecture,
and the genomes can be effectively assembled with the encoding
strategy to facilitate subsequent operations such as crossover and
mutation in the entire network structure. In the encoding
strategy, the blocks are considered as units, and each layer is
composed of blocks with different numbers of neurons and
activation functions, i.e., hyperbolic tangent (tanh) and sigmoid.
The connections between each layer are chosen by uniform
selection, and there are some restrictions on connections
between the blocks in each layer. First, the first hidden layer
should take three to six input parameters as connections.
Second, each layer can only be selected and connected by the
previous layer. Finally, the output layer should select at least half
of the blocks from the previous layer. In the process, layer
numbers, block numbers in each layer, neurons, and activation
functions are all used in the search space to find the optimal
network architecture. The MLP model training and validation
are performed with the number of hidden layers set at five and
the neurons of each layer set between five and ten. The MLP
baseline set in this manner has similar parameter numbers in
reference to NE-based models. The early stopping method are
also applied to MLP and NE model with patience = 500. As for
the model with GA, the parameters of the search space are
mainly decided to be <500 within the setting range of two to five
hidden layers, one to four blocks, and one to six neurons to carry
out the network architecture search. Every population has N
individuals. At first, the initial generation should randomly
generate the genomes of the individuals based on the setting.
Then, the genomes of each individual will convert to the
neuroevolution-based model whose networks will be trained
through an adaptive moment estimation (Adam) optimizer and
be evaluated by the validation set simultaneously. After that, the
weights will be saved according to the loss from the validation set
as the target functions for GA. Since the validation set is from the
training set, it can effectively assess the ability of the networks to
the untrained data and can avoid overfitting. The random
selections for individuals chosen from a population that can
maintain genetic diversity will select a pair of parents, depending
on the fitness scores, to conduct crossover and mutation to
reproduce their offspring. The crossover operation can swap the

Figure 1. Workflow of Neural Architecture.
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tail of the genome of the parents, and the mutation is used to fix
the connections loosened because of the crossover operation.
The process will be repeated until the number of offspring attain
N individuals. Then, a group coupled with parents and offspring
will be sorted by the fitness score and selected as a new
population. During the continuous evolving process, the
population will gradually converge to a particular network
architecture, which is the optimal model for the sequence of
semiconductor processes.

The computer with CentOSn 5.7, Intel Core i5−3470 CPU
@ 3.20GHz, and 20GB RAM is used for TCAD simulations,
while the computer with Windows 10 64-bit, Intel Core i7−
12,700 @2.1GHz, and 16GB RAM is used for NAS.

■ RESULT AND DISCUSSION
Table 1 shows the MLP and NE-based models trained under six
inputs with one Ic value as an output. In each dataset size, the
train set is divided into different proportions, and the rest is the
test set. During training, 20% of the train set is assigned to the
validation set, and training is conducted for 20,000 epochs with
the patience 500 of early stop setting. The best case of the MLP
models selected among multiple architectures is used to
compete with the optimized model based on NE. It should be
emphasized that both MLP and NE models are saved at the
lowest validation loss during training, i.e., restoring the best
weights. From the performance on either the training or the test
set, NE is better than MLP. It is observed that the optimized
model architecture of the NE-based model can attain better
results with fewer iterations when using gradient descent

Table 1. MLP and NE Results on SiGe HBT Semiconductor Processing Datasets with 6 Inputs and 1 Outputs Networks Used in
This Case, and Training Epochs Are 20,000 with the Patience 500 of Early Stop Setting and Restoration of the Best Weights

model
architecture

dataset
size

train-
test
split epochs train set MSE

train set
MAPE (%)

validation set
MSE

validation set
MAPE (%) test set MSE

test set
MAPE
(%)

numbers of
parameters

multilayer
perceptron

1920 0.2 2373 1.095 × 10−4 1.515 1.109 × 10−4 1.511 1.274 × 10−4 1.692 353
0.5 7066 1.160 × 10−6 0.166 8.905 × 10−7 0.173 9.880 × 10−7 0.183 281
0.8 6136 6.305 × 10−7 0.129 4.746 × 10−7 0.125 5.985 × 10−7 0.139 217

2880 0.2 6220 1.001 × 10−5 0.474 1.088 × 10−5 0.542 2.374 × 10−5 0.709 217
0.5 8837 5.114 × 10−7 0.103 5.774 × 10−7 0.117 4.473 × 10−7 0.112 281
0.8 4208 4.695 × 10−6 0.292 2.942 × 10−6 0.300 2.862 × 10−6 0.298 217

3840 0.2 8144 2.383 × 10−6 0.350 2.851 × 10−6 0.407 4.139 × 10−6 0.459 353
0.5 5353 5.047 × 10−7 0.146 3.537 × 10−7 0.157 3.490 × 10−7 0.152 353
0.8 8132 1.317 × 10−6 0.210 7.215 × 10−7 0.222 6.861 × 10−7 0.216 217

neuroevolution 1920 0.2 7554 1.480 × 10−7 0.070 2.007 × 10−7 0.077 2.589 × 10−7 0.086 346
0.5 9200 1.283 × 10−7 0.045 6.031 × 10−8 0.041 8.690 × 10−8 0.049 258
0.8 9885 1.103 × 10−7 0.045 6.578 × 10−8 0.046 7.711 × 10−8 0.051 228

2880 0.2 11,054 4.996 × 10−7 0.088 4.172 × 10−7 0.095 7.624 × 10−7 0.121 203
0.5 9155 2.722 × 10−7 0.062 2.231 × 10−7 0.067 2.026 × 10−7 0.069 258
0.8 6935 3.016 × 10−7 0.069 1.561 × 10−7 0.071 1.695 × 10−7 0.069 228

3840 0.2 7043 3.303 × 10−7 0.125 2.937 × 10−7 0.142 3.182 × 10−7 0.142 343
0.5 4940 2.803 × 10−7 0.104 1.739 × 10−7 0.107 1.872 × 10−7 0.107 346
0.8 6904 3.285 × 10−7 0.099 1.661 × 10−7 0.097 1.582 × 10−7 0.097 228

Table 2. MLP and NE Results on SiGe HBT Semiconductor Processing Datasets with 6 Inputs and 3 Outputs Networks Used in
This Case, and Training Epochs Are 20,000 with the Patience 500 of Early Stop Setting and Restoration of the Best Weights

model
architecture

dataset
size

train-
test split epochs train set MSE

train set
MAPE(%)

validation set
MSE

validation set
MAPE(%) test set MSE

test set
MAPE(%)

numbers of
parameters

MLP 1920 0.2 8023 5.607 × 10−6 0.403 6.355 × 10−6 0.444 7.465 × 10−6 0.476 297
0.5 3716 6.984 × 10−6 0.456 3.770 × 10−6 0.370 7.007 × 10−6 0.455 297
0.8 5383 3.058 × 10−7 0.092 2.517 × 10−7 0.096 2.569 × 10−7 0.096 453

2880 0.2 10,843 6.271 × 10−6 0.366 7.191 × 10−6 0.439 7.515 × 10−6 0.453 231
0.5 5621 9.154 × 10−7 0.152 8.010 × 10−7 0.158 7.904 × 10−7 0.164 371
0.8 7086 9.709 × 10−7 0.166 8.011 × 10−7 0.172 7.960 × 10−7 0.171 297

3840 0.2 7283 2.133 × 10−6 0.327 4.059 × 10−6 0.475 4.616 × 10−6 0.433 543
0.5 3745 2.486 × 10−6 0.378 2.443 × 10−6 0.397 2.338 × 10−6 0.395 453
0.8 6480 8.150 × 10−7 0.208 6.943 × 10−7 0.211 6.003 × 10−7 0.201 453

NE 1920 0.2 20,000 2.564 × 10−7 0.079 2.487 × 10−7 0.089 2.798 × 10−7 0.097 272
0.5 16,594 1.283 × 10−7 0.059 1.129 × 10−7 0.066 1.128 × 10−7 0.065 272
0.8 5078 2.505 × 10−7 0.074 1.564 × 10−7 0.075 1.593 × 10−7 0.076 488

2880 0.2 19,633 4.930 × 10−7 0.123 4.917 × 10−7 0.130 7.505 × 10−7 0.151 242
0.5 12,477 5.497 × 10−7 0.104 3.417 × 10−7 0.107 3.383 × 10−7 0.107 365
0.8 5113 3.613 × 10−7 0.089 2.737 × 10−7 0.094 2.254 × 10−7 0.087 272

3840 0.2 13,761 5.657 × 10−7 0.161 5.273 × 10−7 0.189 5.743 × 10−7 0.190 499
0.5 15,175 5.445 × 10−7 0.172 3.803 × 10−7 0.170 3.801 × 10−7 0.169 468
0.8 11,437 2.455 × 10−7 0.112 1.969 × 10−7 0.116 1.716 × 10−7 0.111 421
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regardless of the dataset sizes or train-test splits. This
phenomenon also indicates the effect of data efficiency. The
dataset sizes and train-test splits in Table 2 are the same as the
conditions in Table 1, but the only difference is that the three Ic
values at different biases are used as the outputs inMLP andNE-
basedmodels. The purpose of training under six inputs and three
outputs is to increase the complexity of the problems to show the
superior fitting and domain-knowledge extraction capability of
NE. The results externalize that NE can still outperform MLP in
this case.

As shown in Figure 2, the domain-knowledge trends are
plotted to see the effect of NE for the different cases in Tables 1
and 2. Figure 2a−d shows predictions under 3840 data, train-test

split = 0.8, and one output. Figure 2a,b shows the linear graphs
and logarithm graphs of Ic to Endose2, while Figure 2c,d shows
graphs of Ic to Endose1 andCdose2, respectively. As shown in Figure
2a,b, the predictions of MLP are roughly the same as those of
NE. Nevertheless, in Figure 2c,d, due to the slight change in
collector current, it is evident that NE is better than MLP at
predicting the domain-knowledge trends, showing the fitting
capability and domain-knowledge extraction of NE. Figure 2e, f
shows images similar to those in Figure 2a−d, which are only
changed to three outputs. Since the simultaneous prediction of
three outputs enhances the complexity of the model, the poor
predictions of the curves in MLP are observed in Figure 2e−f. In

Figure 2. Trend charts by the prediction of MLP and NE with dataset size = 3840 and train-test split = 0.8. (a) Ic − Endose2 in the linear scale with one
output, (b) Ic − Endose2 in log scale with one output, (c) Ic − Endose1 with one output, (d) Ic − Cdose2 with one output, (e) Ic − Endose2 in the linear scale
with three outputs, (f) Ic − Endose2 in the log scale with three outputs, (g) Ic − Endose1 with three outputs, and (h) Ic − Cdose2 with three outputs.

Figure 3. MLP and NE models’ fitness score with dataset size = 3840, train-test split = 0.8. (a) MLP and NE model’s loss in the train set with one
output. (b) MLP and NE model’s loss in the validation set with one output. (c) MLP model’s training loss and validation loss comparison with one
output. (d) NEmodel’s training loss and validation loss comparison with one output. (e) MLP and NEmodel’s loss in the train set with three outputs.
(f)MLP andNEmodel’s loss in the validation set with three outputs. (g)MLPmodel’s training loss and validation loss comparison with three outputs.
(h) NE model’s training loss and validation loss comparison with three outputs.
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this case, it can also be observed that NE’s fitting capability and
domain-knowledge extraction is better, as shown in Figure 2g,h.

Figure 3a−d are the one-output cases, and Figure 3e−h are for
three outputs. In (a), (b), (e), and (f), train loss and validation
loss of the best individual in a generation of NE are selected.
They indicate that after the evolution of NE, the convergence

speed of the architecture training process increases in both the
train set and validation, stably surpassing the performance of
MLP. In (c), (d), (g), and (h) the training loss and the validation
loss of the model with one output and three outputs during
training are shown. (c) and (g) show both for MLPs, while (d)
and (h) are all models after NE optimization. The graphs reveal

Figure 4. (a) MLP and NE models’ performance in the test set with six inputs and one output. Dataset size = 3840 and train-test split = 0.8. (b) MLP
and NE models’ performance in the test set with six inputs and three outputs.

Figure 5. (a) Optimized NE model by GA with six inputs and one output. Dataset size = 3840 and train-test split = 0.8. (b) Optimized NE model by
GA with six inputs and three output.
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that the optimized NE model has a fast convergence speed and
less fluctuation.

Finally, Figure 4a,b shows the performance of NE and MLP
models in 1 output and three output cases, respectively. The
graphs record the accuracy of each generation of NE and the best
hand-tuned MLP for the predictions from the test set, in which
the mean absolute percentage error (mape) is used as an
evaluation. At the beginning of the process, the mape scores of
each individual of NE are relatively scattered. However, the
individual of each generation in the search space will be stably
evolved and converged to a specific architecture that is good at
predicting the domain knowledge trend of TCAD simulations,
and then, the optimal model is obtained, as shown in Figure 5a,b.

In smart manufacturing, NAS is suitable for solving the issue
that the development time of domain-knowledge-based model
construction is time-consuming. NE methods are used as a
strategy to search the entire search space, such as neural
networks through augmenting topologies (NEAT).7 By the
genetic algorithm, NEAT evolves architecture and weights
incrementally through adding neurons and removing con-
nections, which can continuously explore search space.
However, for the complex nonlinearity in the dataset, NEAT
only uses the genetic algorithm to solve it, and it may take a long
time to approach excellent performance compared to gradient
descent. In our work, Adam is used to train the network, and the
genetic algorithm is used to evolve the architecture and weights.
Selection operation randomly chooses parents to reproduce,
which maintains the genetic diversity of networks. Parts of the
parents’ characteristics are kept under various operations, such
as crossover and mutation, and the architectures are robustly
evolved. In the way of the gradient descent, the nonlinearity
issue can be solved, and the genetic algorithm can find the
optimized model for domain-knowledge extraction.

In the field of using domain knowledge in ML, Li et al.
eliminate the nonphysical behavior produced from MLP model
predictions by embedding domain knowledge into layers of the
model. The domain knowledge is to use the tanh function to fit
the linear region of ID − VDS at small VDS and the saturation
region at large VDS in thin-TFET devices. Besides, sigmoid
functions are used to describe the ID − VTG curve in the
subthreshold region that turns on exponentially and then
becomes polynomial in the on region. Using these two activation
functions as the domain-knowledge constraints can solve the
counter-theory prediction caused by the lack of devices’ domain
knowledge in a specific part of the MLP model.38 Kao et al. also
proposed a hybrid physics-based BSIM model and ML model
architecture, where the output of the BSIM is the current value
and the output of the ML model is a bias-dependent correction
function ε(VGS, VGD) for the nonidealities not included in the
BSIM model. The output of the BSIM and ML models are
multiplied to obtain the final current value. This method can
achieve satisfactory generalization and Gummel symmetry of
devices in most device operation regions.39 Although the above
two methods can successfully reach their aim, they still need
human tuning in MLmodel architectures to find a better one. In
our approach, our model uses the GA-based NAS method to
generate the model architecture and activation function
selection, which is a fully automated process. As long as the
search rules of the algorithm are given, the architecture search
can be automatically tuned without trial and error by human
hands. Compared with the MLP model, the NE model shows
better generalization and is closer to the actual value in the result
prediction.

The nonlinearity and high complexity of the dataset is a
significant problem inmany fields. TheMLPmodel makes use of
an activation function to solve this problem. The domain
knowledge itself can be complicated and thus results in high data
nonlinearity. Therefore, MLP that only uses a single activation
function often cannot effectively solve it. Although using an
MLP model with more parameters can help fit a dataset with
complex changes, it is also more likely to cause the model to
overfit the training set. Eventually, the model’s prediction
accuracy on the test set will decline. Consequently, the GA-
based NE method employed in this work is to adjust the model
architecture, which is tantamount to integrating domain
knowledge constraints into the framework after modifications.
Combining the connections with two activation functions
between blocks here provides another assistance to the
architecture. It helps nonlinearity fitting since the connections
are selected by GA with a uniform random selection scheme to
ensure the search space’s diversity. Parents’ strengths are
preserved for the next generation through crossover and
mutation to evolve the network architectures robustly. The
whole process here is to limit the counter-theory behavior that
the MLP model is prone to predict because of insufficient data
information. Thus, our work can retain generalizability with
customized network architecture.

Among the current optimizers, Adam combines the
advantages of momentum on the RMSProp method’s base,
stabilizing it via additional hyperparameters, such as β1, β2, and
ϵ.40 Parameter updates can be made more stable when
initializing or encountering small gradients continuously.
Nevertheless, Adam tends to have poor generalization than
traditional SGD. Even though a fast convergence is accom-
plished during training, this causes the fact that errors during
testing are almost much worse than those during training.41

Some studies also mention that Adam has convergence
problems in some cases. The adaptive learning rate algorithm
in Adam may lead to suboptimal solutions due to exponential
moving averages.42 MLP models are more restricted models
with redundant architectures than the NE model, so the neural
networks trained in such a space with extremely high dimensions
easily get stuck in the saddle and stagnate. In our approach, since
the model architectures are constantly optimized in addition to
the parameter update during each training, the abovementioned
dilemma can be overcome during training. Given a problem, the
NEmodel has more chance to smooth the error surface owing to
the calibration through GA, that is, an easier way to approach the
minimum in comparison with the MLP model.

■ CONCLUSIONS
This work can robustly and automatically tune the model
architecture and find the model capable of extracting domain
knowledge in semiconductor manufacturing problems. The
autoevolved network architecture is shown to be self-adaptive to
the domain knowledge, which can be important in many
practical fields where data are expensive, or the problems are
highly complex. With the combination of NE and Adam, the
optimal model architectures can achieve convergence with the
train set loss and validation set loss settled at smaller values in
reference to MLP baselines. Compared with MLP, overfitting
can be avoided, and less data are required for training. After
training, the prediction of the test data and the trend graph
drawn reflect that the optimal NE model has a better
comprehension of the domain knowledge, denoting that the
method can reduce the need for complex formulas and
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tremendous human effort to build appropriate model
architectures.
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