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Simple Summary: Chickens have been bred for meat and egg production as a source of animal
protein. With the increase of productivity as the main purpose of domestication, factors such as
metabolism and immunity were boosted, which are detectable signs of selection on the genome. This
study focused on copy number variation (CNV) to find evidence of domestication on the genome.
CNV was detected from whole-genome sequencing of 65 chickens including Red Jungle Fowl, broilers,
and layers. After that, CNV region, the overlapping region of CNV between individuals, was made to
identify which genomic regions showed copy number differentiation. The 663 domesticated-specific
CNV regions were associated with various functions such as metabolism and organ development.
Also, by performing population differentiation analyses such as clustering analysis and ANOVA
test, we found that there are a lot of genomic regions with different copy number patterns between
broilers and layers. This result indicates that different genetic variations can be found, depending on
the purpose of artificial selection and provides considerations for future animal breeding.

Abstract: Copy number variation (CNV) has great significance both functionally and evolutionally.
Various CNV studies are in progress to find the cause of human disease and to understand the
population structure of livestock. Recent advances in next-generation sequencing (NGS) technology
have made CNV detection more reliable and accurate at whole-genome level. However, there is a lack
of CNV studies on chickens using NGS. Therefore, we obtained whole-genome sequencing data of 65
chickens including Red Jungle Fowl, Cornish (broiler), Rhode Island Red (hybrid), and White Leghorn
(layer) from the public databases for CNV region (CNVR) detection. Using CNVnator, a read-depth
based software, a total of 663 domesticated-specific CNVRs were identified across autosomes. Gene
ontology analysis of genes annotated in CNVRs showed that mainly enriched terms involved in
organ development, metabolism, and immune regulation. Population analysis revealed that CN and
RIR are closer to each other than WL, and many genes (LOC772271, OR52R1, RD3, ADH6, TLR2B,
PRSS2, TPK1, POPDC3, etc.) with different copy numbers between breeds found. In conclusion, this
study has helped to understand the genetic characteristics of domestic chickens at CNV level, which
may provide useful information for the development of breeding systems in chickens.

Keywords: CNV; Cornish; Rhode Island Red; White Leghorn; broiler; layer; economic trait; population
differentiation; domestic animal; CNVnator
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1. Introduction

Structural variation refers to the variation above 1 kb in the genome including copy number
variation (CNV), translocation, and inversion [1]. CNV is a genomic region that shows quantitative
variants when compared to the reference genome and is comprised of deletion and duplication
regarding copy number [2]. With the alteration of gene structure or dosage [3], CNV shows larger
variation compared to small-scale variation such as single nucleotide polymorphism (SNP). This means
that CNV could have a significant impact on the phenotype of an individual [4]. Indeed, CNV has
great impact both functionally and evolutionally [5,6] and has been studied on a variety of animals
such as humans [7–9], cattle [10–12], pigs [13–15], chickens [16–18], goats [19], dogs [20], cats [21], etc.
Recent studies have shown the importance of CNV [22] regarding the relations to human diseases
(cancer [23,24], schizophrenia [25], depression [26]) and the major traits of livestock [27–29].

Chicken is not only a major source of protein providing meat and eggs [30] but also has great value
to be utilized as bioreactors [31] and animal models of disease [32]. Therefore, various studies from the
genomic point of view have been conducted to develop economic traits and reveal the mechanisms
underlying phenotypic variation [33]. Beginning with avian evolution study through the comparative
genomics approach between chickens and turkeys [34], CNV studies have several interesting findings
such as identification of CNVs related to pea-comb [35] or muscle development [17] and breed-specific
CNVs detected on the population-level [16,36].

Identification of CNV was usually processed through two types of microarray; array-based
comparative genomic hybridization and SNP array. But now next-generation sequencing (NGS)based
method is preferred for the following reasons: Microarray-based method cannot identify 1) small
CNV, and 2) CNV at genome-wide level due to low probe density. Also, 3) the price of whole-genome
sequencing is more affordable due to the development of NGS technology [37]. Although NGS is
more expensive and requires more effort while used for diagnostic tests [38], it has more benefits; it is
applicable for various analysis other than CNV, can be detected in poorly annotated regions, and other
researchers’ data can be used as a control. Although NGS-based identification has been widely used on
various animals, it has not been used much on chickens [39–43]. Existing studies also have limitations
regarding analyzing breed-specific CNV region (CNVR) due to small sample sizes of 2–12 chickens.
Kerstens et al. analyzed 100 chickens (25 per breed) using the reduced representation library only
sequencing the regions around the restriction site which led to the limitations with identification of
CNV compared to individual sequencing that uses full genetic information [39,44].

The goal of this study is to understand the phenotypic characteristics of commercial chicken breeds
at the CNV-level with an NGS-based method, especially on the artificial selection during domestication.
We used CNVnator [45], a widely used read-depth based CNV detection program. CNVs were
identified on three breeds naturalized in South Korea [46]: Cornish (CN; broiler), White Leghorn (WL;
layer), and Rhode Island Red (RIR; hybrid) [30], 20 per breed, a total of 60 chickens by whole-genome
sequencing with approximately 10× depth from the public database. The identified CNVRs were
compared with five Red Jungle Fowl (RJF; Gallus gallus) to distinguish CNVRs related to domestication.
Finally, through functional annotation, we confirmed which gene ontology (GO) terms were enriched.
Our findings will deepen the understanding of the breed-specific physiology and characteristics on a
genome-wide level as the basis for future breeding systems.

2. Materials and Methods

2.1. Collection of Chicken Whole-Genome Sequencing Data

Twenty samples each from CN, RIR, and WL were downloaded (60 total samples), from the
National Agricultural Biotechnology Information Center (NABIC; https://www.nabic.rda.go.kr) public
database [47]. The project name is ‘Construction of standard genome maps of Korean native chicken’
and the accession number for the CN sample are NN-0991-000001 to NN-0991-000020, the RIR
NN-0991-000081 to NN-0991-000100, and the WL NN-0991-000101 to NN-0991-000120.

https://www.nabic.rda.go.kr


Animals 2019, 9, 809 3 of 15

Five RJF samples were downloaded from NCBI Sequence Read Archive (SRA; https://www.ncbi.
nlm.nih.gov/sra) and were used as the control group. The experiment numbers for the five RJF chickens
are SRX408166 [48], SRX511213, SRX511214, SRX511216, and SRX511217 [49].

All the data were sequenced on an Illumina HiSeq 2000 sequencer (Illumina Inc.) with 100bp
paired-end reads.

2.2. Sequence Alignment to Reference Genome

The adapters of sequencing reads were removed by Trimmomatic-0.36 [50], and trimming was also
performed where the Phred-score at the end of the read was less than 20 (TRAILING:20). Trimmed reads
were mapped to galGal5 (Gallus gallus) assembly of the chicken genome using the bowtie2-2.3.3.1 [51]
with the default option. PCR duplicates that could affect the CNV analysis were removed by using
Picard-2.9.2 (https://broadinstitute.github.io/picard/) with Markduplicates. Finally, Genome Analysis
Toolkit-3.3.0 [52] was used to realign reads for correcting errors caused by InDels.

2.3. CNV and CNVR Detection

CNVnator-v0.4 software [45], a read-depth based method, was used for CNV prediction relative
to the galGal5 reference assembly. Since the average depth of the realigned bam files was about
10×, the optimal bin size was unified to 300bp for all individuals. The CNV calls were filtered with
p-value < 0.001, q0 (zero mapping quality) <0.5, and size >1 kb. To compare the copy number
between breeds, the estimated copy number for each region was calculated using the ‘-genotype’
option of CNVnator.

CNVRs were obtained using ‘CNV_overlap.py’ script on GitHub (https://github.com/bjtrost/
TCAG-WGS-CNV-workflow) [53], and only CNVRs found in three or more individuals of any breed
were used for downstream analysis to remove false-positive results [54].

2.4. CNVR Annotation

The list of chicken autosome galGal5 genes was downloaded from NCBI, and the gene annotation
was performed using the ‘annotatePeak’ command of the Bioconductor package ChIPseeker [55]
with ‘addFlankGeneInfo = TRUE’ option. GO enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis were performed using Database for Annotation, Visualization and Integrated
Discovery (DAVID; https://david.ncifcrf.gov/) [56,57] only on protein-coding genes. Biological process,
cellular component, and molecular function were used as GO term categories, and the significance
level was a p-value of 0.05. Also, the chicken’s quantitative trait loci (QTL) were downloaded from the
chicken QTLdb Release 38 (https://www.animalgenome.org/cgi-bin/QTLdb/GG/summary) [58] and
compared with the identified CNVRs. We only considered QTLs reported in galGal5 version with
confidence interval less than 5 Mb. We used Bedtools-v2.27.1 [59] ‘intersect’ command to detect which
QTL overlaps with the identified CNVRs.

2.5. Breed Differentiation

We examined population differentiation with CNVRs found only in domesticated chickens using
three methods; clustering analysis, VST statistic, and ANOVA test. First, clustering analysis was
performed using pvclust R package [60]. During this process, a scoring matrix encoded as 0 or 1 was
used according to the presence or absence of CNVRs identified for each individual. Approximately
unbiased (AU) p-value and bootstrap probability (BP) value were obtained through 10,000 multiscale
bootstrap resampling based on unweighted pair-group average method (UPGMA), and they were
shown in red and green on the edges of the clustering. Second, the VST statistic was applied to detect
regions with high differentiation between populations [61]. To better understand the effect on each
breed, protein-coding genes annotated in CNVRs were used for VST calculation, instead of CNVRs.
VST was calculated for protein-coding genes as VST = (VT − VS) / VT, where VT is the total variance
in copy number between two populations and VS is the average variance within each breed. Finally,

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://broadinstitute.github.io/picard/
https://github.com/bjtrost/TCAG-WGS-CNV-workflow
https://github.com/bjtrost/TCAG-WGS-CNV-workflow
https://david.ncifcrf.gov/
https://www.animalgenome.org/cgi-bin/QTLdb/GG/summary
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ANOVA test was performed to detect differences in copy number of genes between breeds. The genes
used for ANOVA were the same as for the VST analysis. Since the sample size for each breed was
the same (20 samples per breed), Tukey’s HSD test for post-hoc analysis was selected. In addition,
for some of the genes found to be significant in the ANOVA test, the depth of coverage was obtained at
a specific bin size to see the part of the gene with different copy number pattern. Depth of coverage
was obtained using Mosdepth-0.2.6 software (https://github.com/brentp/mosdepth) [62].

3. Results

3.1. Identification of CNVs and CNVRs

Statistics of read mapping and CNVs are shown in Table S1. Mapping sequencing data to galGal
5 assembly showed an average 96.21% mapping rate and 11.51× depth. Except for RJF, an average of
340 deletions and 120 duplications were detected on autosomes with an average size of 26.9 kb for
deletion and 16.1 kb for duplication (Table 1).

Table 1. Statistical summary of detected CNVs.

Breed CNVs Deletion Size_Del (bp) Duplication Size_Dup (bp)

Red Jungle Fowl 714 584 20,377.4 130 16,019.1
Cornish 443 327 27,572.3 116 16,156.9

Rhode Island Red 471 346 26,778.9 125 16,394.3
White Leghorn 467 347 26,451.8 120 15,823

The overlapping regions of CNVs obtained using the TCAG-WGS-CNV workflow (https://github.
com/bjtrost/TCAG-WGS-CNV-workflow) consisted of 3079 CNVRs with 2443 deletions sized from
1.2 kb to 514.8 kb and 636 duplications from 3 kb to 198.9 kb. Among the CNVRs combined from
65 samples, 1061 (34.5%) were detected in only one individual, 331 (10.8%) in two individuals,
and 259 (8.4%) in three individuals. Of the 1687 CNVRs detected in three or more individuals, a total
of 663 CNVRs were detected only in domesticated breeds (CN, RIR, and WL). Among the three breeds,
the highest number of 466 CNVRs were detected in CN, followed by 421 in RIR and 419 in WL. A total
of 211 CNVRs were detected in all three breeds. The number of breed-specific CNVRs was 84 in CN,
53 in RIR, and 94 in WL, respectively. CNVR detected in most individuals was duplication detected in
44 individuals, located on chr5 at 6.31–6.33 Mb, and second was deletion in 40 individuals, on chr1
at 11.42–11.44 Mb (Figure 1A; Table S2). Figure 1B shows the density of gene and distribution of all
CNVRs we used for analysis on chromosome ideogram except for the microchromosome. We used
CNVs with a minimum length of 1 kb in the analysis and the shortest CNVRs had a length of 1.8 kb.
Four hundred and ninety-nine deletions ranged in size from 1.8 kb to 501 kb, with 275 deletions (55%)
less than 10kb and 164 duplications from 3.9 kb to 92.1 kb with 81 duplications (50%) less than 12 kb
(Figure 1C). The number of CNVRs on the chromosomes was not significantly different among the
breeds. In general, the number of CNVRs detected was proportional to the chromosome size, but
chromosomes such as 16 and 27 showed more CNVRs than longer chromosomes (Figure 1D).

https://github.com/brentp/mosdepth
https://github.com/bjtrost/TCAG-WGS-CNV-workflow
https://github.com/bjtrost/TCAG-WGS-CNV-workflow
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Figure 1. General description of the identified copy number variation regions (CNVRs). (A) Venn
diagram for overlapping CNVRs between Red Jungle Fowl (RJF) and domesticated breeds (above),
and among Cornish (CN), Rhode Island Red (RIR), and White Leghorn (WL) (below); (B) distribution
of CNVRs on chromosome ideogram according to their state (deletion and duplication). This was
drawn using Rideogram R package. The color painted on the chromosome represents the gene density;
(C) distribution of CNVRs size by state; (D) chromosomal distribution of CNVRs for three chicken
breeds and length of chicken autosome.

3.2. Annotation of CNVR

We annotated genes corresponding to 663 CNVRs using NCBI Gallus gallus Annotation Release
103 (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/103/). When CNVR and
gene overlap more than 1 bp, the relevant gene is annotated. If not, the closest gene is annotated.
When there was another gene within 1 kb, it was additionally annotated because it may affect the
expression of the gene. Six hundred and sixty-three CNVRs were annotated to a total of 856 genes,
including 609 protein-coding genes, 200 lncRNAs, and 16 miRNAs. Four hundred and sixty CNVRs
were annotated to only one gene, and up to 12 genes were annotated for duplication on chr27 at
578.7–641.7 kb (Table S3).

Functional enrichment analysis was performed on GO terms and KEGG pathways through
DAVID with 491 protein-coding genes within 1 kb of CNVR. Twenty-two terms in biological process,
five cellular components, seven molecular functions, and five pathways in KEGG pathway were
significantly enriched (p-value < 0.05) and presented in Table S4. They were mainly involved in
organ development, neuromodulation, immune regulation, and metabolism. In particular, in KEGG
pathway category, pathways related to protein and carbohydrate metabolism (gga00051: Fructose and
mannose metabolism, gga00350: Tyrosine metabolism, and gga00360: Phenylalanine metabolism) and

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/103/
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xenobiotics metabolism (gga00982: Drug metabolism—cytochrome P450 and gga00980: Metabolism of
xenobiotics by cytochrome P450) were significant.

The QTL reported in chicken QTLdb were downloaded to detect QTL associated with the identified
CNVRs. A total of 432 QTLs reported as galGal 5.0 version and shorter than 5 Mb [16] were used
(Production_QTL: 334, Physiology_QTL: 53, Health_QTL: 26, Exterior_QTL: 16, Reproduction_QTL: 3).
The results showed that 165 QTLs overlapped more than 1 bp with some of the 663 CNVRs. The most
detected category was Production_QTL, a total of 142 QTLs overlapped with CNVRs. The most
detected QTL was breast muscle pH, followed by QTLs such as feed intake, ileum weight, abdominal
fat weight, body weight and eggshell strength (Table S5).

3.3. Breed Differentiation of CNVR

Clustering analysis was performed on CNVRs identified only in domesticated breed through the
result of each individual. Hierarchical clustering was created using the scoring matrix which represents
the presence or absence of any CNVR in an individual, and the p-value was calculated by multiscale
bootstrap resampling. The results are shown together with the AU p-value and BP value, and it was
confirmed that they were significantly clustered within each breed (Figure 2).
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Figure 2. Hierarchical clustering analysis according to the presence or absence of CNVR.

We estimated VST statistic which is known to be similar to FST to examine population differentiation
for CNVR [61]. VST value was calculated using the variance of copy number of 609 protein-coding
genes annotated by CNVR to see population-specific selective pressure at gene-level. The average
values of VST of the whole genes were 0.11 for ‘CN vs. WL’, 0.11 for ‘CN vs. RIR’, and 0.15 for ‘WL
vs. RIR’ (Table S6). ‘WL vs. RIR’ showed the highest degree of differentiation, which is consistent
with the above clustering result. To see genes with high differentiation between breeds, we examined
genes with VST > 0.79, the top 98th percentile. Five genes (LOC772271, OR52R1, LOC107052719,
LOC107052465, RD3) in the ‘CN vs. WL’ pairs and nine genes (LOC772271, OR52R1, LOC101752215,
AKR1B1L, LOC101748892, LOC101751764, LOC107049090, LOC107054696, LOC107054697) in ‘WL
vs. RIR’ pairs exceeded the threshold and none of the ‘CN vs. RIR’ pairs exceeded the threshold.
LOC772271 (aldo-keto reductase family 1 member B10-like), which overlaps 1712 bp with CNVR41,
and OR52R1, which is included in CNVR145 exceeded the threshold in both ‘CN vs. WL’ and ‘WL vs.
RIR’ pairs (Figure 3).
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Figure 3. Manhattan plot of genome-wide genes’ VST value. (A) CN vs. WL; (B) WL vs. RIR; (C) CN
vs. RIR. The red line represents 0.79 VST.

ANOVA was also performed to examine the differentiation of CN frequency and post-test
was performed with Tukey’s test. As a result, 232 genes showed a statistically significant
difference (p-value < 0.01) between breeds (Table S7). Even after Bonferroni correction
(p-value < 0.01/609 = 1.64 × 10−5) and removal of the microchromosome with a chromosome size
less than 20Mb, 63 genes remained significant. LOC772271 (p-value < 3.55 × 10−27), and OR52R1
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(p-value < 1.16 × 10−24) mentioned in VST analysis were most significant, and many other genes also
showed significance, such as RD3 (p-value < 4.41 × 10−20), ADH6 (p-value < 1.42 × 10−17), TLR2B
(p-value < 7.6 × 10−13), and POPDC3 (p-value < 6.16 × 10−11) (Figure S1). In most cases, only one out of
the three breeds showed a difference in copy number. On the other hand, PRSS2 (p-value < 8.68 × 10−13)
showed different copy numbers among all three breeds (CN:RIR:WL = 1.5:2:1). We looked at the region
around PRSS2 through genome browser and found that TRBV6-5 (biotype: C_region) overlapped
with PRSS2. Checking the mapping read, it showed the same depth of coverage as PRSS2 over the
much larger region including TRBV6-5 (Figure 4A). This region was also included in QTL with body
temperature. There were cases where different copy number patterns were observed between breeds
in one gene. For example, within TPK1 gene (chr2: 52858574-53196804), WL showed deletion in
CNVR175 (chr2: 52890601-52910100) and CNVR176 (chr2: 53185501-53190300), while CN and RIR
with CNVR177 (chr2: 53190301-53209800) showed duplication (Figure 4B). Additionally, functional
analysis was performed on significant genes through DAVID. As a result, pathways related to receptor
signaling and metabolic activity were significantly enriched (Table 2).
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Figure 4. Estimated copy numbers of genes with different copy numbers between breeds and depth of
coverage of gene region. The center line of the box represents the median and the line at the end of the
box represents the first and third quartiles. Tukey’s HSD test was used to determine which breeds were
significantly different (left). The depth of coverage of the region around the gene was extracted for
a specific window size and divided by the total depth of each sequence file. The window size was
determined by gene size. The scatter plot represents each individual and the line represents breed
average (right). (A) PRSS2, window size: 300bp; (B) TPK1, window size: 10,000bp.
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Table 2. Functional annotation of genes with significant differences in copy number between breeds
(p-value < 0.05).

Category ID Term Count p-Value Genes

BP GO:2000251 Positive regulation of actin
cytoskeleton Reorganization 2 1.88E-02 NTRK3, HRAS

BP GO:0002224 Toll-like receptor signaling pathway 2 3.90E-02 TLR2B, TLR2A
BP GO:0050852 T cell receptor signaling pathway 2 4.81E-02 HRAS, CD247

BP GO:0060041 Retina development in
camera-type eye 2 4.99E-02 LPCAT1, RD3

CC GO:0031226 Intrinsic component of
plasma membrane 2 1.58E-02 TLR2B, TLR2A

MF GO:0016491 Oxidoreductase activity 5 3.44E-05 LOC425137, LOC107053269,
AKR1B1L, LOC772271, ADH6

MF GO:0004888 Transmembrane signaling
receptor activity 3 2.57E-03 CD247, TLR2B, TLR2A

KEGG
PATHWAY gga01100 Metabolic pathways 7 3.10E-02

TPK1, LOC425137, LPCAT1,
AKR1B1L, ADH6,

TWISTNB, ALDH3B1
KEGG

PATHWAY gga00040 Pentose and glucuronate
interconversions 2 4.25E-02 LOC425137, AKR1B1L

BP = biological process; CC = cellular components; MF = molecular function.

4. Discussion

Using the NGS-based method to detect CNVs shows much better performance compared to the
array-based method even in low-coverage situations [63]. However, since there is a possibility of
false-positives [64,65], we used 20‘individuals per breed with five RJF as a control group and only
CNVRs identified in at least three individuals were used for analysis. Also, ANOVA test was performed
and the actual depth of coverage was visualized for significant genes.

We identified a total of 1624 CNVRs for the CN, RIR, and WL, but only 633 (40.8%) remained after
removing the commonly detected CNVRs from RJF. The reason for the high number of commonly
detected CNVRs between domesticated breeds and RJF is probably that they share an evolutionary
history before artificial selection. It is thought that genes which were important for survival such
as nervous or immune system related genes were selected before domestication [66]. Even though
microchromosomes such as chromosomes 16 and 27 are short in length, plenty of CNVRs have been
detected in many previous studies [16,36,41]. CNVRs detected in various studies were combined
into one CNVR on chromosome 16, which covers 99.95% of the full length of chromosome 16 [64].
This is because almost all genes mapped to chromosome 16 are immune-related, including major
histocompatibility complex genes which have high levels of genetic diversity [67].

Chickens have been bred for a variety of purposes, including eggs, meat, and game [68].
For example, CN was bred for meat, WL for eggs, and RIR for both purposes [69]. The result of
this breeding leads to unimaginable increases in productivity not found in RJF and is also found in
various forms of variation on the genome [70]. Of course, this includes CNV, which affects productivity
in a variety of ways, such as by deleting genes or changing gene dosage. The functional and QTL
analysis resulted in enrichment of pathways of carbohydrate and protein related metabolism and
organ development. This suggests that evidence of domestication can be confirmed at the CNV level.

Clustering and VST analyses showed that CN is closer to RIR than WL. In the VST results of ‘CN,
RIR vs. WL’, two genes, LOC772271 and OR52R1, were found to be common. LOC772271 gene which
is associated with fatty acid synthesis [71] was expressed more in the fast-growing line than in the
slow-growing line [72] and has already reported a copy number difference between WL and ‘CN and
RIR’ in the previous study [73]. OR52R1 is an olfactory receptor gene (OR) and the copy number
variable of OR was found in chickens as well as in pigs [74] and cattle [75]. Olfactory is associated
with social communication of chickens. Especially laying hens may have high selection pressure
on the copy number of OR due to housing conditions of sex-homogenous groups that are restricted
from communicating with males [76]. In addition, various factors such as cognition of predators [77],
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daily activity pattern, habitat, and diet can act as a selective pressure on OR [78], indicating that copy
number could vary between breeds.

ANOVA test showed differences in copy number between breeds in many genes. In RD3 gene
involved in photoreceptors [79], deletion occurred with CNVR261 in fifteen WL. Since light has a major
effect on egg production [80,81], the variation on gene structure by deletion is thought to alter light
acceptance in chickens and positively affect egg production. Similarly, in POPDC3 gene, the estimated
copy number of CN and RIR was 2, which was very conserved among individuals. However, WL had
an average copy number of 3. In the previous study, the same duplication was found in WL and
associated with myometrium maturation, protein secretion, and eggshell formation [41]. Chicken
breeds we analyzed are more likely to be subject to selective pressure for genes related to meat or
egg production. Therefore, we thought that most of the genes with significant differences in ANOVA
test would be ‘CN, RIR (meat) vs. WL’ or ‘WL, RIR (egg) vs. CN’. However, there were also many
genes in the ‘CN, WL vs. RIR’ case. For example, ADH6 gene, associated with glycolysis [82], showed
duplication only in RIR, and TLR2B associated with immune response [83,84] showed deletion only
in RIR. PRSS2 gene showed deletion in both CN and WL breeds. However, when looking at the
depth, the number of deleted copy numbers was different. Increasing the copy number of PRSS2 gene,
which encodes trypsinogen, is associated with chronic pancreatitis in humans [85]. However, the read
mapping showed similar deletion patterns in the PRSS2 gene as well as the overlapped gene, TRBV6-5.
TRBV genes provide a variable component in the adaptive immune receptor biosynthesis, which is
related to the beta chain of T-cell receptors [86]. The reason for the difference in copy number between
breeds in TRBV6-5 is similar to that of many CNVs detected due to a large number of immune-related
genes in chromosome 16. This means that the immunological response can vary greatly between
breeds [75]. We could identify duplication in the promoter region of TPK1 and two deletions within the
gene. Interestingly, duplication could only be found in CN and RIR, and deletion in WL. The known
function of TPK1 in livestock is to produce ATP by hydrolyzing thiamine diphosphate to thiamine when
ATP is exhausted in the early stages of the postmortem period [87]. In addition, it has been reported
that when Escherichia coli suffers from amino acid deficiency, it accumulates thiamin triphosphate,
a higher phosphate derivative of thiamin, and acts as a signal related to adaptation to nutritional
condition changes [88]. However, it is unclear what physiologically important function TPK1 has in
chickens. Therefore, further research is needed to determine the cause of copy number differentiation
on TPK1 between breeds.

5. Conclusions

In this study, whole-genome sequencing data of 65 chickens was collected from public databases
to detect domesticated-specific CNVRs. By analyzing the function of annotated genes in the CNVR
and genes that showed copy number differentiation between breeds, we investigated how genetic
characteristics are linked to phenotypic characteristics of increased productivity. As a result, we have
discovered that the genetic variation caused by artificial selection is effective on CNV level. The findings
will be a great contribution to the understanding of poultry breeding and the development of economical
traits along with other genomics studies on domesticated chickens.
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