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Abstract: This paper performed a detailed study on the fundamental properties and thermal
conductivity of autoclaved aerated concrete (AAC) self-insulation block, and the mechanical properties
and heat transfer resistance of the AAC self-insulation block masonry. Different kinds of joints and
the plastering surface were used to build the masonry specimens. The distinctive feature of the
blocks and mortars is the lower thermal conductivity with expected strength. Compared to those
with larger thickness of insulation mortar joints, the masonry with thin-layer mortar joints had better
compressive performance and lower shear strength. The compressive strength of masonry was
related with the block and mortar strengths, the shear strength of masonry along mortar joints was
related with the mortar strength. The stress–strain relationship of masonry in compression could be
predicted by the similar expression of conventional block masonry. The tested heat transfer coefficient
of AAC self-insulation block masonry with thickness of 250 mm without plastering surfaces was
(0.558 ± 0.003) W/(m2

·K). With the plastering surfaces, the heat transfer coefficient reduced by 4.4%
to 8.9%. Good agreements in values of heat transfer coefficient existed by using the test, theoretical
computation and ANSYS (ANSYS Inc. Canonsburg, PA, USA) analytical methods. Based on the
extensibility analyses, the heat transfer coefficients of AAC self-insultation block masonry with
different thickness are proposed. The best thickness is proposed for the outer walls of residential
buildings in different cold zone to meet the design requirement of energy conservation.

Keywords: autoclave aerated concrete (AAC); self-insulation block; masonry; fundamental property;
thermal conductivity; heat transfer coefficient

1. Introduction

In the past century, research and production technology of autoclaved aerated concrete (AAC)
have been constantly developed. With the feature of integrated performance in thermal insulation,
fireproofing and durability, AAC becomes a green lightweight building material [1–3]. In China, to
meet the design standard of the 65% energy-saving buildings with class-A fireproof ability, AAC has
popularly applied to construct the self-supporting walls as partition or filled in the frame structures
and the bearing walls of low-rise civil buildings [4–6].

Based on the literature, a variety of important researches on AAC have performed to investigate the
composition and microstructures affected by the constituent materials, quartz particle size, autoclaving
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process and the dry–wet circulation of service environment. The basic performances including density,
water absorption, strength, drying shrinkage, freeze–thaw resistance as well as the thermal insulation
properties were also studied [1,3,7–15]. AAC is commonly produced through molding and autoclaved
aeration process of constituent materials including cement, lime, sand, water and aluminum powder.
At present with the needs of environmental protection, the raw materials changed to be various
industrial by-products and other wastes mainly containing silicon and calcium [3,6]. The industrial
by-products included fly ash, silica fume, bottom ash and iron ore tailing, copper tailing, blast furnace
slag, coal gauge [16–19]. A study indicated that using rice husk ash as partial replacement for fine
aggregate reduced the strength and density of AAC with a tendency to reduce the autoclaving time
and autoclaving temperature required [20]. Another effort was done to enhance the mechanical
properties especially fracture toughness and promote the thermal insulation performance of AAC
by using the wood fiber and the rubber powder [21]. The thermal conductivity of AAC was linear
with the substitution of sand with equal volume fibers, the higher thermal conductivity got from the
substituting of basalt fiber, the best compressive and flexural strengths got due to the reinforcement of
carbon fiber [22]. Whatever the constituent materials used, the core concern is the thermal insulation
of AAC with the premise of sufficient strength and durability.

Normally, the thermal conductivity of AAC block varies from 0.1 to 0.7 W/(m·K) for density of
400–1700 kg/m3 [3]. In China, the thermal conductivity of AAC block applied in civil building varies
from 0.13 to 0.22 W/(m·K) for density of 400–700 kg/m3 [6]. As per China codes [6,23,24], the thickness
of the outer walls built by AAC blocks should be no less than 400 mm and 300 mm, respectively for
residential buildings in the severe cold zone and the cold zone. This faces a challenge to reduce the
thermal conductivity of AAC blocks to reduce the wall thickness. An effective method is filling AAC
with phase changed materials [25,26]. This paper follows another route of improving the production
technology to get the AAC with a lower thermal conductivity. To identify this new AAC, it is called as
the AAC self-insulation block.

As an indispensable component of the masonry, the mortar joints play an important role in the
loading and thermal transferring [27,28]. Normally, the loading performance of AAC block masonry is
enhanced by the mortar joints due to the higher strength of mortar, while the thermal resistance of
AAC block masonry is reduced due to the formation of a microthermal bridge through the mortar
joints. Based on a case study, the energy consumption of masonry with insulation mortar could reduce
by 21.5% [29]. The tensile and shear strength of masonry are greatly affected by the bond strength
of block-mortar interface formed with different mortars [29]. Therefore, it is valuable to develop the
thermal insulation masonry mortar. By replacing the river sand with lightweight sand, the thermal
conductivity of mortar reduced by 25.9% to 46.5% [30]. By using ordinary silicate cement, fly ash, river
sand, water retaining agent and dispersed latex powder, a thin-layer masonry mortar with thickness of
mortar joint from 3 mm to 5 mm was developed [31]. However, the validity of the mortars used for the
masonry with AAC self-insulation blocks needs to be further studied.

At present, based on investigations of mechanical properties and thermal insulation performance
of conventional AAC block masonry, the masonry structures can be designed in accordance with the
standard specifications [6,27–29,32–34]. A composite wall with the AAC block masonry filled in and
completely linked with the lightweight concrete frame was proposed by Gao et al. [35]. This provides
a feasible technical solution for the loading combination in relation with the thermal insulation of AAC
block masonry with lightweight concrete. A new attempt is to apply AAC in the seismic and energy
retrofit of reinforced concrete framed buildings by the replacement of the external layer of double-leaf
infill walls made of hollow bricks. With the improvement of seismic resistance, the energy demand can
be reduced by 10% and 4% for heating and cooling, respectively [36]. However, in view of the thermal
transfer properties of AAC block masonry, less experimental studies except numerical analyses were
performed [27,37,38].
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2. Research Significance

The AAC self-insulation block with a smaller thermal conductivity and the special masonry
mortar were developed to meet the requirement of building energy conservation. However, as a
new product, there is lack of the research on the fundamental properties of the block masonry in
cooperation with the heat transfer property [6,32]. This is not conductive to the promotion of AAC
self-insulation blocks due to no reliable data in standards. To bridge this gap, a detailed experimental
study was conducted to determine the fundamental properties and the thermal transferability of the
AAC self-insulation block, masonry mortars, plastering mortar and masonry. Test results are presented
in this paper. Meanwhile, the design parameters and predictive formulas for the compressive strength
and stress–strain relationship, the shear strength along mortar joints, and the heat transfer coefficient
of AAC self-insulation block masonry are proposed.

3. Experimental Work

3.1. Production of AAC Self-Insulation Block

The specific mix proportion for a batch of AAC self-insulation blocks was 2900 kg pulverized coal
ash slurry with a diffusion degree at 390–400 mm, 100 kg plaster paste, 330 kg lime, 260 kg ordinary
silicate cement of 42.5 strength grade, 3.5 kg aluminum paste and 800 mL foam stabilizer.

To produce AAC self-insulation blocks, the constitute materials are firstly prepared. The lime is
prehomogenized with complete internal reaction for a period of time after ground, and the aluminum
paste is dissolved in water at room temperature to be aluminum liquid. Then the slurry is made with a
diffusion degree of 280 mm at temperature of 40.2 ◦C. The slurry is cast into the mould preheated at
temperature of 50 ◦C and stands for 31 min at temperature of 64 ◦C to complete the process of foaming,
thickening and hardening. After demolding, the blocks are placed into the autoclave for steam-curing
for 3 h under the pressure of 1.0 MPa and the temperature of 185 ◦C. The blocks were 600 mm long,
300 mm height and 250 mm thick. As per the regulation of size deviation and appearance [5], the
blocks belong to superior class product.

3.2. Preparation of Mortars

Two kinds of masonry mortar were made of cement and sand by admixing water retaining agent
and other additives. One was the thin-layer mortar used for the joints with thickness of 5 mm, in
engineering it is commonly suitable for the superior product of blocks. The dry materials of thin-layer
masonry mortar were market supplied [31]. The mass proportion of dry mortar materials to water
was 1:0.48; the mixing time was about 5 min. Another was the insulation mortar used for the joints of
qualified product of blocks with a thickness of 10 mm. The insulation mortar was made of thin-layer
mortar admixed with expanded perlite and vitrified microsphere to reduce the heat loss of mortar
joint. The mass proportion of dry mortar materials: expanded perlite and vitrified microsphere: water
of 1:0.15:0.46, the mixing time was about 4 min.

The plastering mortar was prepared by admixing the polypropylene fiber with volume fraction of
0.04% into the thin-layer mortar. The function of polypropylene fiber is to prevent shrinkage cracking
of plastering surfaces.

3.3. Tests for Fundamental Properties

The tests for fundamental properties of the AAC self-insulation blocks were in accordance with
China code GB 11969 [39]. The standard cubic specimens with dimension of 100 mm were cut from the
blocks. The dry density, moisture content, water absorption and compressive strength were measured.
The loading direction was perpendicular to the curing steam direction of blocks. Tests were conducted
on 100 kN hydraulic pressure tester with the loading speed of 0.15 kN/s. The tester was manufactured
by Sansi Testing Machine and Equipment Co. Ltd., Tianjin, China.
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The tests for fundamental properties of mortars were in accordance with China code JGJ/T 70 [40].
The dry density, segregation degree, compressive strength, bond strength, setting time at penetration
resistance of 0.5 MPa, freeze-thaw resistance after 25 cycles and linear shrinkage were measured
respectively by using the standard methods.

The tests for basic mechanical performances of AAC insulation block masonry were in accordance
with China code GB/T 50129 [41]. As presented in Figure 1a, the compressive strength, deformation,
crack pattern and failure modes of the masonry were measured.

Figure 1. Tests of block masonry: (a) compression; (b) shear along mortar joints.

The axial deformation along the height and the transversal deformations at the middle height
of the specimen were measured by two meters. Six masonry specimens, three per group, were built
with the thin-layer mortar. Six masonry specimens, three per group, were built with the insulation
mortar. As presented in Figure 1b, the shear strength along mortar joints, deformation, crack pattern
and failure modes of the masonry were measured. The shear deformation at the middle height of the
specimen was measured by a meter. Six masonry specimens, three per group, were built with the thin
layer mortar. Six masonry specimens, three per group were built with the insulation mortar.

The masonry specimens were covered by the plastic film for moisturizing and curing the mortar
joints after construction. This remained for 28 days before testing.

3.4. Tests for Thermal Transferability

As per China code GB 10295 which equals to ISO 8301 [42], the one-dimensional steady-state heat
flow method was used to measure the thermal conductivity of AAC self-insulation block and mortars.
The heat flow meter was used as the test machine [15,30,43,44]. The plate specimens, two of them per
trial, were 300 mm long and 300 mm wide, 50 mm thick for the block and 30 mm thick for mortars.
The specimens of the block were cut from the block products. The specimens of mortars were prepared
by casting in steel moulds.

As mentioned above, two kinds of mortar were used to construct the specimens of the block
masonry. Three specimens per group were built respectively with the thin-layer mortar and the
insulation mortar. The other group was built with the horizontal thin-layer mortar joints accompanied
the vertical joints filled with elastic rock wool and sealed by the outside mortar. The product of elastic
rock wool was market supplied with the dry density of 85 kg/m3, and the thermal conductivity of
0.12 W/(m·K). Figure 2 presents the construction of the block masonry specimens.
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Figure 2. Construction of masonry specimens: (a) finished specimens; (b) flatting horizontal mortar
joint; (c) rock wool for vertical joint; (d) finished specimens with plastering surface.

To ensure better bonding between the mortar and the blocks, the joint surfaces of the blocks were
wetted by spraying water. The mortar joints were covered by plastic film for 28 days before testing.
After tested for heat transfer coefficient, all specimens were plastered with the plastering mortar as
displayed in Figure 2d. After maintaining for 28 days, the heat transfer coefficient of each specimen
was measured again.

Table 1 presents the details of AAC self-insulation block masonry specimens for the testing of
thermal conductivity.

Table 1. Details of AAC self-insulation block masonry specimens.

Group of
Specimens

Wall Size (mm) Mortar Joint (mm) Plastering
ThicknessLength Height Width Horizontal Vertical

M1 1205 1215 250 5 5 No
M1P 1205 1215 260 5 5 5
M2 1210 1230 250 10 10 No

M2P 1210 1230 270 10 10 10
M3 1205 1215 250 5 Rock wool No

M3P 1205 1215 260 5 Rock wool 5

Of which the environmental relative humidity was the value at the time of starting test, the monthly
environmental relative humidity at the curing stage of the specimens was 57% in May, 55% in June and
68% in July. The heat transfer performance of the specimens was measured during June and July.

The heat transfer coefficient of AAC self-insulation block masonry was measured by using WTRZ
series testing machine produced by Shenyang Weite Co. Ltd., Liaoning, China. As per China code GB
10294, which is similar to ISO 8302 [45], the schematic diagram of the test method of the guarded hot
plate apparatus is exhibited in Figure 3.

Figure 3. Testing schematic diagram for thermal conductivity.

The hot and cold boxes simulate the room condition and the external condition in winter,
the measured area is 1.2 m × 1.2 m. The test machine and the installed specimen are exhibited
in Figure 4.
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Figure 4. Testing device and installed specimen for thermal conductivity: (a) installed specimen;
(b) internal meters; (c) close state of device.

The specimen is installed in the mid-box between the hot and the cold, then the three boxes
are tightened by the lock devices. After few hours of operation, the test system reaches steady state
entirely, the air temperatures and surface airflow speeds on the two sides of specimen, the temperature
of the protection chest can be measured. When the power QP of electric heater is inputted in the
hot box, the heat quantity Q1 transmitted through the specimen can be measured. Finally, the heat
transfer coefficient and total specific heat resistance of the specimen can be computed [46]. In this
study, the temperature of hot and cold boxes was 30 ◦C and −10 ◦C.

4. Fundamental Properties

4.1. Fundamental Properties of AAC Block

The dry density, moisture content, water absorption and compressive strength of AAC blocks are
presented in Table 2.

Table 2. Test results of fundamental properties of AAC self-insulation blocks.

Specimen Group 1 Group 2 Group 3

Dry density (kg/m3) 558 555 560
Moisture content (%) 1.43 1.07 1.33
Water absorption (%) 63.5 - -

Cubic compressive strength (MPa) 3.9 4.1 4.1

The dry density of the block is 558 kg/m3, the moisture content is 1.3%, the water absorption
rate is 63.5%, and the compressive strength is 4.0 MPa. The specimens presented higher brittleness
during the loading process of compression. Visible cracks appeared when the load reached about
50% ultimate, then the cracks irregularly developed until the specimens damaged at the ultimate load.
This outlines the lightweight feature of AAC self-insulation block with large porosity. The high-water
absorption needs to take care of by covering water-proofing films before constructions.

4.2. Fundamental Properties of Mortars

The tested fundamental properties of masonry mortars and plastering mortar are presented
in Table 3.
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Table 3. Test results of fundamental properties of mortars.

Item Thin-Layer Mortar Insulation Mortar Plastering Mortar

Dry density (kg/m3) 855 782 850
Segregation degree (mm) 10 12 9

Compressive strength (MPa) 13..6 12.0 9.3
Bond strength (MPa) 1.0 0.75 0.89

Setting time (h) 3.8 4.4 3.8
Freeze-thaw resistance

after 25 cycles
Mass loss 2.9%

Strength loss 12%
Mass loss 3.6%

Strength loss 10%
Mass loss 2.5%

Strength loss 11%
Linear shrinkage (mm/m) 0.70 0.90 0.65

Thermal conductivity [W/(m·K)] 0.50 0.19 0.48

The strength grade of masonry mortars fits the M7.5 as per China code GB 50003 [32] and is
adapted to be applied for AAC self-insulation block masonry.

4.3. Compression Performance of AAC Block Masonry

As presented in Figure 5, three parts of the stress–strain curves reflect the loading performance of
the AAC self-insulation block masonry in compression.

Figure 5. Compressive stress–strain curve of the block masonry: (a) insulation mortar joint; (b) thin-layer
mortar joint.

The first linear part represents the elastic body of masonry before the short cracks initially appeared
on the vertical mortar joint at 58%~75% peak stress. The second nonlinear part accompanies the
extending of the initial crack up and down to the blocks until they went through the blocks. At the
end, the stress reached the ultimate. After that is the third part: the cracks developed rapidly and
divided the masonry into a plurality of column body, which crushed or became instable, then the
whole masonry crushed as exhibited in Figure 6.

Figure 6. Compressive failure of the block masonry: (a) central crack; (b) unsymmetrical crack;
(c) eccentric crack.
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Test results of featured values of the AAC block masonry under compression are presented in
Table 4, of which the modulus of elasticity E is the secant modulus on stress–strain curve at a stress of
0.4σp, and ε0 is the strain corresponding to the peak-stress σp.

Table 4. Test results of compressive strength of AAC self-insulation masonry.

Specimen f 1
(MPa)

f 2
(MPa)

f c,i
(MPa)

E
(MPa) ν ε0 Mortar Joint

C1-1~C1-3 4.1 12.0 1.91 1021 0.158 0.00269 Insulation mortar with
thickness of 10 mmC1-4~C1-6 4.1 12.0 1.77 944 0.212 0.00398

C2-1~C2-3 4.1 13.6 2.01 1628 0.243 0.00178 Thin-layer mortar with
thickness of 5 mmC2-4~C2-6 4.1 13.6 1.98 1925 0.157 0.00221

The Poisson’s ratio is computed by the tested transversal deformation. Due to the transversal
expansion increased with the axial compressive stress, the Poisson’s ratio νwas taking in corresponding
to the stress of 0.4σp.

Based on the modification of the formula of compressive strength for aerated concrete block
masonry [6,32], the compressive strength f c,m of AAC self-insulation block masonry can be calculated
by Formula (1). The average ratio of tested to calculated compressive strength is 1.015, with a dispersion
coefficient of 0.014.

fc,m = 0.52 f 0.46
1 (1 + 0.07 f2) (1)

where f c,m is the compressive strength of the masonry (MPa), f 1 is the strength of the block (MPa), f 2 is
the strength of masonry mortar (MPa).

The modulus of elasticity of the block masonry with thin-layer mortar joints is 1.42 times of that
with insulation mortar joints, and the Poisson’s ratio of the former is 1.13 times of the later. This is due
to the direct connection of the blocks by thinner joints of thin-layer mortar. A slight effect of mortars
was exerted due to the higher strength than that of AAC blocks.

Based on the stress–strain model proposed by Mander et al. [47,48], the stress–strain curve for the
AAC self-insulation block masonry under uniaxial compression is expressed as follows:

σ =
fc,m

(
ε
ε0

)
γ

γ− 1 +
(
ε
ε0

)γ (2)

γ = Em/(Em − Esec) (3)

where Em is the average elastic modulus of the masonry, Esec is the secant modulus with the ratio of
f c,m to ε0.

Another unified compressive stress–strain model used for all kinds of masonry in China code [32]
is also applied for the AAC self-insulation block masonry, which is expressed as follows:

ε = −
1

ξ
√

fc,m
ln(1−

σ
fc,m

) (4)

where ξ is the coefficient related to the elastic properties of masonry.
The stress–strain curves of the block masonry computed by Formula (2) with average tested

values of f c,m, Em and ε0 are exhibited in Figure 5. Good fitness is obtained for the ascending portion
of the curve, and better trends can be predicted although a large deviation exists at the descending
portion. Meanwhile, Figure 5 also presents the calculation results of Formula (4) with ξ = 620; a greater
difference exists for the masonry with thin-layer mortar joints after the stress is over 0.5σp.
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4.4. Shear Performance of AAC block Masonry

Generally, the masonry with higher shear strength has lower shear strain along the mortar joints.
The AAC block masonry damaged in brittle under shear peak-load, most of them had cracks along the
two sides mortar joints before the failure took place. Figure 7 presents two special failure modes of
specimens under shear, of which specimens S1-3 and S2-5 failed along one side of the mortar joint
accompanied with the bending fracture of the middle blocks. This led to the higher shear strength as
presented in Table 5.

Figure 7. Shear failure pattern of AAC block masonry: (a) S1-3; (b) S2-5.

Table 5. Test results of shear strength of self-insulation AAC masonry.

Specimen f 1
(MPa)

f 2
(MPa)

f v,m
(MPa) Mortar Joint

S1-1~S1-3 4.1 12.0 0.390 Insulation mortar with
thickness of 10 mmS1-4~S1-6 4.1 12.0 0.343

S2-1~S2-3 4.1 13.6 0.280 Thin-layer mortar with
thickness of 5 mmS2-4~S2-6 4.1 13.6 0.370

Opposite to the changes of compressive strength, the average shear strength of the masonry with
thin-layer mortar joints is smaller than that with insulation mortar joints. Meanwhile, the dispersion
coefficient of the former is smaller than that of the latter. This indicates the importance of good bond
between mortar and blocks for the shear resistance. The block surfaces bonded well and remained
entirety with a larger thickness of insulation mortar joints, which provided good condition of shear
along the mortar joints.

Based on the modification of the formula of shear strength for aerated concrete block masonry [32],
the average shear strength of AAC self-insulation block masonry can be predicted as follows:

fv,m = k5
√

f2 (5)

where f v,m is the average shear strength of the masonry (MPa); k is the coefficient related to the mortar
joints. k = 0.105 for the masonry with insulation mortar joints, and k = 0.084 for the masonry with
thin-layer mortar joints.

5. Thermal Transferability

5.1. Test Results

The test results of heat transfer coefficient of the masonry are presented in Table 6.
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Table 6. Test results and analytical results for thermal transfer of AAC block masonry.

Group of
Specimens

Measured Surface Thermal
Resistance (m2

·K/W) Heat Transfer Coefficient [W/(m2
·K)]

Hot Side Cold Side Tested
Value

Theoretical
Computed

ANSYS
Analytical

M1 0.091 0.006 0.559 0.523 0.555
M1P 0.105 0.001 0.509 0.518 0.549
M2 0.096 0.006 0.561 0.505 0.548

M2P 0.087 0.012 0.533 0.497 0.529
M3 0.094 0.001 0.555 0.493 0.541

M3P 0.097 0.008 0.536 0.489 0.536

Without the plastering surfaces, the AAC self-insulation block masonry had the heat transfer
coefficient of (0.558 ± 0.003) W/(m2

·K). This indicates the slight influence of different mortar joints on
the thermal insulation of the masonry. With the plastering surfaces, the heat transfer coefficient of the
masonry reduced by 4.4% to 8.9%. This indicates that the plastering mortar benefits to rise the thermal
resistance of the masonry. Moreover, the results provide another foundation of masonry construction
having similar thermal insulation. This provides a selection of the convenient and fast construction for
AAC self-insulation block masonry with the thin-layer mortar joints, the insulation mortar joints or the
horizontal mortar joints with vertical joints filled by rock wool.

5.2. Theoretical Computed Results

Without the plastering surfaces, the AAC self-insulation block masonry composed with blocks
and mortar joints, as presented in Figure 8.

Figure 8. Composition of calculated masonry without plastering (unit: mm).

The thermal resistance is calculated by parallel mode due to the micro-thermal bridge effect of
mortar joints [2,49]. Taking the blocks, mortar joints and rock wool as the single-layer homogeneous
materials, the heat transfer resistances R can be computed as,

R = δ/λ (6)

where δ is the layer thickness of material (m); λ is the thermal conductivity of material [W/(m·K)].
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The heat transfer resistance R0 of the masonry can be calculated as [2,49],

R0 = A/
(Ajh

Rjh
+

Ajv

Rjv
+

Ab

Rb

)
(7)

where Rjh, Rjv, Rb are the heat transfer resistance of horizontal joints, vertical joints and blocks,
respectively (m2

·K/W); Ajh, Ajv, Ab are the area of horizontal mortar joints, vertical mortar joints and
blocks, respectively (m2); A is the total area of the masonry (m2), A = Ajh + Ajv + Ab.

With the plastering surfaces, the plaster layers are regarded as the layered homogeneous material,
the heat transfer resistance Rp is also computed by Formula (5). The heat transfer resistance of the
masonry with plastering is calculated by a series model as follows [2,49]

R0 = Rin + Rt + Rp + Rex (8)

where Rin, Rex are the heat transfer resistance of internal surface and external surface.
The heat transfer coefficient K0 [W/(m2

·K)] of the masonry is calculated as,

K0 = 1/R0 (9)

Under dry condition, the tested thermal conductivity of the self-insulating block, the insulation
mortar, the thin-layer mortar and the plaster mortar was 0.11 W/(m·K), 0.19 W/(m·K), 0.50 W/(m·K)
and 0.50 W/(m·K), respectively. However, the thermal conductivity of AAC block increases with the
increase of moist content [15,44,50], the increment is about 0.02 W/(K·m) for AAC with dry density
of 350–450 kg/m3 when the moist content is within 9% at environment temperature 20 ◦C and RH
= 80% [44]; the increment is about 20% for AAC with dry density of 400–600 kg/m3 when the moist
content is within 10% at environment temperature of 20 ◦C and RH = 20–40% [15]. Therefore, in the
theoretical computations, the thermal conductivity of above materials was taken as 0.13 W/(m·K), 0.23
W/(m·K), 0.60 W/(m·K) and 0.58 W/(m·K), respectively.

Take Rin = 0.10 (m2
·K/W) and Rex = 0.01 (m2

·K/W) based on the test data, the theoretical computed
values of heat transfer coefficient are presented in Table 7.

Table 7. Proposed heat transfer coefficient of AAC self-insulation block walls and applied conditions.

Environment
Storeys of
Building

Block Thickness
(mm) 400 360 300 250 200 180 150

K0 [W/(m2
·K)] 0.35 0.40 0.48 0.55 0.66 0.72 0.84

Severe cold zone A
≤3 K0 ≤ 0.25 × × × × × × ×

4–8 K0 ≤ 0.40
√

best × × × × ×

≥9 K0 ≤ 0.50
√ √

best × × × ×

Severe cold zone B
≤3 K0 ≤ 0.30 × × × × × × ×

4–8 K0 ≤ 0.45
√

best × × × × ×

≥9 K0 ≤ 0.55
√ √ √

best × × ×

Severe cold zone C
≤3 K0 ≤ 0.35

√
× × × × × ×

4–8 K0 ≤ 0.50
√ √

best × × × ×

≥9 K0 ≤ 0.60
√ √ √

best × × ×

Cold zone
≤3 K0 ≤ 0.45

√
best × × × × ×

4–8 K0 ≤ 0.60
√ √ √

best × × ×

≥ 9 K0 ≤ 0.70
√ √ √ √

best × ×

Hot summer and
cold winter zone all K0 ≤ 1.0

√ √ √ √ √ √
best
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The heat transfer coefficient computed was almost lower than tested, and larger difference from
6.5% to 11.2% took place on the specimens without plastering while less difference from 1.7% to 8.8%
took place on the specimens with plastering. This is due to the thermal bridge effect of mortar joints
and rock wool with higher thermal conductivity than AAC self-insulation blocks. The exposed mortar
joints had a higher thermal bridge than the plastered mortar joints. Accompanied with the uniform
distribution of heat transferred from hot side surface through the plastering mortar, the thermal bridge
effect can be weakened by the plastering layer. Meanwhile, the largest difference between tested and
computed heat transfer coefficient took place on the specimens with vertical joints filled by rock wool.
This may be due to the filling quality in this test only relied on the compression from the blocks on the
two sides of mortar joint. If the rock wool is bonded to the blocks by adhesive, the thermal bridge
effect of rock wool should be reduced.

5.3. Analytical Values by ANSYS

The two-dimensional analysis method is often used to analyze the thermal properties of walls,
ignoring the influence of thermal conductivity of vertical mortar joints on the heat transfer coefficient
of masonry wall. By using the ANSYS (ANSYS Inc. Canonsburg, PA, USA) 3D thermal analysis
technology, the influence of horizontal and vertical mortar joints on heat transfer resistance of masonry
wall can be comprehensively dealt with. The steady state heat transfer model of the masonry wall is
built on the hypotheses of one-dimensional variation of temperature and symmetrical heat transfer.

The blocks and mortar joints are divided into three-dimensional 8-node four-side SOLID70
elements, each node has one degree of temperature freedom. According to the energy conservation
principle, the initial conditions and the boundary conditions, the heat balance equation is built for each
node of SOLID70 element. Therefore, the temperature, heat flux gradient and heat flux density of each
node are obtained.

In the ANSYS model, the tested temperature of hot and cold sides at 30 ◦C and −10 ◦C, and the
tested thermal conductivity of AAC self-insulating block and insulation mortar, thin-layer mortar,
plaster mortar of 0.13 W/(m·K), 0.23 W/(m·K), 0.60 W/(m·K) and 0.58 W/(m·K) were taken into account.
The convective heat transfer coefficients at high and low temperatures were 9 W/(m2

·K) and 25 W/(m2
·K).

The distribution nephograms of heat flux density and temperature gradient can be got. The average
surface temperature and heat flux of the high and low temperature sides can be calculated by extracting
their data of nodes. Then the heat transfer coefficient can be calculated by the average heat flux divided
by the difference of average surface temperature between the two sides. Taking M1= specimen as
an example, the average surface temperatures at high and low temperature sides are 27.63 ◦C and
−9.13 ◦C, the average heat flux is 20.40 W/m2, then the heat transfer coefficient is 0.555 W/(m2

·K).
Similarly, the heat transfer coefficient of the masonry under different conditions can be obtained.

The ANSYS analytical results of heat transfer coefficient are presented in Table 7. Compared with
the experimental, good agreement with average ratio of 1.002 is given out with slight differences. This
provides a reliable method by using the ANSYS simulation to get the thermal transfer property of
AAC self-insulation block masonry.

6. Discussion

6.1. Loading Capactity of Masonry

The AAC self-insulation blocks had the compressive strength of 4.0 MPa, the dry density of
558 kg/m3, the moisture content of 1.3%, the water absorption rate of 63.5%. Based on the specification
in China code GB 11968 [5], the block belongs to the superior product with class of strength A5.0 and
density B06. The lower thermal conductivity of 0.11 W/(m·K) than the limit of 0.16 W/(m·K) provides a
salient feature of the block masonry with higher thermal resistance.

With rational compressive stress–strain relationship, the AAC self-insulation block masonry has
compressive strength relied on the strengths of block and mortar, and the shear strength along mortar
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joints relied on the mortar strength. Without any doubt, the AAC self-insulation block masonry has
enough self-supporting capacity and is adaptable to be used for the bearing walls of masonry structure
buildings. The loading performances of AAC self-insulation block masonry under compression and
shear along joints are similar with those of block masonry specified in design code for masonry
structures [6,32].

6.2. Thermal Trasfer of Masonry

No obvious difference of heat transfer coefficient exists on the AAC self-insulation block masonry
with three kinds of joints. This gives a selection of joints for the convenient constructions. The joints
can be made with the insulation mortar and the thin-layer mortar, or with the horizontal mortar joint
with vertical rock wool joint.

The study provides the heat transfer coefficients of AAC self-insulation block masonry without
plastering. This is to verify the function of plastering mortar on the thermal resistance. Generally,
the test specimens with plastering had a reduced heat transfer coefficient about 5%. In view of that the
plastering is part of the construction, the heat transfer coefficient of AAC self-insulation block masonry
with plastering is proposed for building design of energy conservation.

6.3. Thermal Design of Masonry Walls

The extensibility analyses are performed to get the heat transfer coefficient of AAC self-insulation
block masonry with different thickness of blocks. The plastering mortar is 5 mm thick. The blocks are
produced with standard thickness of 150 mm, 180 mm, 200 mm, 250mm and 300 mm. The walls with
thickness of 360 mm and 400 mm are composited by the blocks with thickness of 180 mm and 200 mm.
Results of proposed heat transfer coefficient are presented in Table 7.

The validity of AAC self-insulation block masonry used for the outer wall of residential buildings
to meet the energy conservation of China codes JGJ 26 [23] and JGJ 134 [24] is also indicated in Table 7.

The best thickness of the blocks applied for the outer wall of residential buildings with different
storeys in different energy conservation zones are proposed. Generally, the AAC self-insulation block
masonry can be applied for almost all the residential buildings except those with less of 3 storeys in the
severe cold zones A and B. The AAC self-insulation block masonry with thickness no less than 300 mm
can be applied for the outer wall of residential buildings with no less than 9 storeys.

7. Conclusions

Based on the study of this paper, conclusions can be drawn as follows:

(1) The superior products of the AAC self-insulation block were prepared with the compressive
strength of 4.0 MPa and the dry density of 558 kg/m3. The AAC self-insulation block had a thermal
conductivity of 0.11 W/(m·K). This is smaller than the limit of 0.16 W/(m·K) of conventional AAC
block with similar strength and density.

(2) Two kinds of masonry mortar and a plastering mortar were prepared for the AAC self-insulation
block masonry. The fundamental properties of them were measured by experiments. The feature
of the mortars is the lower thermal conductivity with expected strength. The thermal conductivity
of the thin-layer mortar and the insulation mortar was 0.50 W/(m·K) and 0.19 W/(m·K), respectively.
The thermal conductivity of plastering mortar was 0.48 W/(m·K).

(3) The loading performances of AAC self-insulation block masonry under compression and shear
along mortar joints are like that of the masonry with conventional blocks. The compressive
strength of AAC self-insulation block masonry can be computed by the formula with the strengths
of the block and mortar. The shear strength along mortar joints can be computed by the formula
in relation with the mortar strength.

(4) The heat transfer coefficient of AAC self-insulation block masonry can be determined with good
agreement by the tests, the theoretical computation and the ANSYS analysis. A little deviation
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exists due to the difference of mortar joints including the thin-layer mortar joints, the insulation
mortar joints and the horizontal mortar joints with filled vertical joints by rock wool. Therefore,
the masonry can be built by any of each kind of mortar joints for the convenience of construction.

(5) The heat transfer coefficient of AAC self-insulation block masonry wall with block thickness
differing from 150 mm to 400 mm are proposed. Compared with the specification of China
codes, the best thickness of AAC self-insulation block masonry is suggested for the outer wall
of residential buildings in the severe cold zone, the cold zone and the hot summer and cold
winter zone.
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34. Jasiński, R.; Drobiec, Ł.; Mazur, W. Validation of selected non-destructive methods for determining the
compressive strength of masonry units made of autoclaved aerated concrete. Materials 2019, 12, 389.
[CrossRef]

35. Gao, J.P.; Lei, L.; Wu, Y.B.; Xiong, Y.J. Experiment and analysis on load bearing of thermal insulation composite
wall. J. Hunan Inst. Eng. 2014, 4, 87–90.

36. Artino, A.; Evola, G.; Margani, G.; Marino, E.M. Seismic and energy retrofit of apartment buildings through
autoclaved aerated concrete (AAC) blocks infill walls. Sustainability 2019, 11, 3939. [CrossRef]

37. Madan, A.; Reinborn, A.M. Modeling of masonry infill panels for structural analysis. Concrete 1997, 12,
1295–1302. [CrossRef]

http://dx.doi.org/10.1016/j.matdes.2011.08.046
http://dx.doi.org/10.1016/j.conbuildmat.2015.12.041
http://dx.doi.org/10.1016/j.conbuildmat.2011.08.034
http://dx.doi.org/10.1016/j.conbuildmat.2016.10.031
http://dx.doi.org/10.1016/j.cemconcomp.2014.07.021
http://dx.doi.org/10.1016/j.jclepro.2019.06.276
http://dx.doi.org/10.1016/j.conbuildmat.2016.02.223
http://dx.doi.org/10.3390/ma12132170
http://dx.doi.org/10.5755/j01.ms.23.2.15451
http://dx.doi.org/10.3390/ma12162543
http://www.ncbi.nlm.nih.gov/pubmed/31405027
http://dx.doi.org/10.1016/j.jobe.2019.101039
http://dx.doi.org/10.3390/ma12030389
http://dx.doi.org/10.3390/su11143939
http://dx.doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1295)


Materials 2020, 13, 1680 16 of 16

38. She, W.; Xie, D.; Jones, M.R. Numerical analysis of the thermal behaviors of cellular concrete in two and
three dimensional models. Comput. Concr. 2016, 18, 319–336. [CrossRef]

39. General Administration of Quality Supervision of the People’s Republic of China. Test Methods of Autoclaved
Aerated Concrete; GB11969-2008; Standards Press of China: Beijing, China, 2008.

40. Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Test Method for Basic
Properties of Building Mortar; JGJ/T70-2009; China Building Industry Press: Beijing, China, 2009.

41. Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Standard for Test
Method of Basic Mechanical Properties of Masonry; GB/T50129-2011; China Building Industry Press: Beijing,
China, 2011.

42. General Administration of Quality Supervision of the People’s Republic of China. Thermal Insulation-
Determination of Steady-state Thermal Resistance and Related Properties—Heat Flow Meter Apparatus; GB10295-2008;
ISO8301:1991; Standards Press of China: Beijing, China, 2008.

43. Lu, M.J.; Yang, S.; Feng, X.Z.; Zhao, S.B. Experimental study on thermal conductivity of concrete for building
reinforced concrete composite wall. Appl. Mechan. Mater. 2013, 438, 329–332. [CrossRef]

44. Campanale, M.; Deganello, M.; Moro, L. Effect of moisture movement on tested thermal conductivity of
moist aerated autoclaved concrete. Transp. Porous Med. 2013, 98, 125–146. [CrossRef]

45. General Administration of Quality Supervision of the People’s Republic of China. Thermal Insulation
Determination of Steady-State Thermal Resistance and Related Properties—Guarded Hot Plate Apparatus; GB/T
10294-2008; ISO8302:1991; Standards Press of China: Beijing, China, 2008.

46. Zhao, S.; Li, F.L.; Yang, S.; Song, L.S. Thermal insulation behavior of reinforced concrete composite wall with
internal insulating layer. Adv. Mater. Res. 2011, 152–153, 395–398.

47. Mander, J.B.; Priestley, M.J.N.; Park, R. Therotical stress-strain behavior of confined concrete. J. Struct. Div.
ASCE 1988, 8, 1827–1849. [CrossRef]

48. Reinborn, A.M.; Madan, A.; Valles, R.E.; Reichamnn, Y.; Mander, J.B. Modelling of Masonry Infill Panels for
Structural Analysis; Tchnical Report NCEER-95-0018; State University of New York at Buffalo: Buffalo, NY,
USA, 1995.

49. Zhao, S.B.; Yang, S.; Song, L.S.; Sun, L.; Song, C.X. Experimental study on thermal insulation properties of
reinforced concrete composite wall. Appl. Mechan. Mater. 2011, 99–100, 676–679. [CrossRef]

50. Jin, H.Q.; Yao, X.L.; Fan, L.W. Experimental determination and fractal modeling of the effective thermal
conductivity of autoclaved aerated concrete: Effects of moisture content. Intern. J. Heat Mass Transf. 2016, 92,
589–602. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.12989/cac.2016.18.3.319
http://dx.doi.org/10.4028/www.scientific.net/AMM.438-439.329
http://dx.doi.org/10.1007/s11242-013-0136-z
http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
http://dx.doi.org/10.4028/www.scientific.net/AMM.99-100.676
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.103
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Research Significance 
	Experimental Work 
	Production of AAC Self-Insulation Block 
	Preparation of Mortars 
	Tests for Fundamental Properties 
	Tests for Thermal Transferability 

	Fundamental Properties 
	Fundamental Properties of AAC Block 
	Fundamental Properties of Mortars 
	Compression Performance of AAC Block Masonry 
	Shear Performance of AAC block Masonry 

	Thermal Transferability 
	Test Results 
	Theoretical Computed Results 
	Analytical Values by ANSYS 

	Discussion 
	Loading Capactity of Masonry 
	Thermal Trasfer of Masonry 
	Thermal Design of Masonry Walls 

	Conclusions 
	References

